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Abstract

Abuse on the Internet represents a significant
societal problem of our time. Previous re-
search on automated abusive language detec-
tion in Twitter has shown that community-
based profiling of users is a promising tech-
nique for this task. However, existing ap-
proaches only capture shallow properties of
online communities by modeling follower—
following relationships. In contrast, working
with graph convolutional networks (GCNs),
we present the first approach that captures
not only the structure of online communities
but also the linguistic behavior of the users
within them. We show that such a heteroge-
neous graph-structured modeling of communi-
ties significantly advances the current state of
the art in abusive language detection.

1 Introduction

Matthew Zook (2012) carried out an interesting
study showing that the racist tweets posted in
response to President Obama’s re-election were
not distributed uniformly across the United States
but instead formed clusters. This phenomenon is
known as homophily: i.e., people, both in real
life and online, tend to cluster with those who ap-
pear similar to themselves. To model homophily,
recent research in abusive language detection on
Twitter (Mishra et al., 2018a) incorporates em-
beddings for authors (i.e., users who have com-
posed tweets) that encode the structure of their sur-
rounding communities. The embeddings (called
author profiles) are generated by applying a node
embedding framework to an undirected unlabeled
community graph where nodes denote the au-
thors and edges the follower—following relation-
ships amongst them on Twitter. However, these
profiles do not capture the linguistic behavior of
the authors and their communities and do not con-
vey whether their tweets tend to be abusive or not.

In contrast, we represent the community of au-
thors as a heterogeneous graph consisting of two
types of nodes, authors and their tweets, rather
than a homogeneous community graph of authors
only. The primary advantage of such heteroge-
neous representations is that they enable us to
model both community structure as well as the lin-
guistic behavior of authors in these communities.
To generate richer author profiles, we then pro-
pose a semi-supervised learning approach based
on graph convolutional networks (GCNs) applied
to the heterogeneous graph representation. To the
best of our knowledge, our work is the first to use
GCNs to model online communities in social me-
dia. We demonstrate that our methods provide sig-
nificant improvements over existing techniques.

2 Related work

Supervised learning for abusive language detec-
tion was first explored by Spertus (1997) who
extracted rule-based features to train their classi-
fier. Subsequently, manually-engineered lexical—
syntactic features formed the crux of most ap-
proaches to the task (Yin et al., 2009; Warner and
Hirschberg, 2012). Djuric et al. (2015) showed
that dense comment representations generated us-
ing paragraph2vec outperform bag-of-words fea-
tures. Several works have since utilized (deep)
neural architectures to achieve impressive results
on a variety of abuse-annotated datasets (Nobata
et al., 2016; Pavlopoulos et al., 2017a). Recently,
the research focus has shifted towards extraction
of features that capture behavioral and social traits
of users. Pavlopoulos et al. (2017b) showed that
including randomly-initialized user embeddings
improved the performance of their RNN methods.
Qian et al. (2018) employed LSTMs to generate in-
ter and intra-user representations based on tweets,
but they did not leverage community information.
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3 Dataset

Following previous work (Mishra et al., 2018a),
we experiment with a subset of the Twitter dataset
compiled by Waseem and Hovy (2016). Waseem
and Hovy released a list of 16, 907 tweet IDs along
with their corresponding annotations,! labeling
each tweet as racist, sexist or neither (clean). Re-
cently, Mishra et al. (2018a) could only retrieve
16, 202 of these tweets since some of them are no
longer available. This is the dataset we use in our
experiments. 1,939 (12%) of 16,202 tweets are
racist, 3,148 (19.4%) are sexist, and the remaining
11,115 (68.6%) are clean. The tweets have been
authored by a total of 1, 875 unique users. Tweets
in the racist class come from 5 of the users, while
those in the sexist class come from 527 of them.

4 Approach

4.1 Representing online communities

We create two different graphs: the first one is
identical to the community graph of Mishra et al.
(2018a) (referred to as the community graph). It
contains 1, 875 nodes representing each of the au-
thors in the dataset. Two authors/nodes are con-
nected by a single undirected edge if either one
follows the other on Twitter. There are 453 soli-
tary authors in the graph who are neither followed
by nor follow any other author in the dataset.
This graph is homogeneous, i.e., it has nodes (and
hence edges) of a single type only.

Our second graph is an extended version of the
first (referred to as the extended graph) that addi-
tionally contains nodes representing the tweets of
the authors. Specifically, in addition to the 1,875
author nodes, the graph contains 16,202 tweet
nodes. Each tweet node is connected to a sin-
gle author node, denoting that the tweet is elicited
from that particular author. This graph is no longer
homogeneous since it contains nodes and edges of
two different types.

4.2 Generating author profiles

We first describe the approach of Mishra et
al. (2018a) that learns author embeddings us-
ing node2vec (Grover and Leskovec, 2016); this
serves as our baseline. We then move on to our
semi-supervised approach based on graph convo-
lutional networks (Kipf and Welling, 2017).

'https://github.com/ZeerakW/
hatespeech/

Node2vec. Node2vec extends the word2vec skip-
gram model (Mikolov et al., 2013) to graphs in
order to create low-dimensional embeddings for
nodes based on their position and neighborhood.
Specifically, for a given graph with nodes V' =
{v1,v9,...,v,}, node2vec aims to maximize the
following log probability:

Z log P (Ns(v) |v)

veV

where N;(v) denotes the neighbor set of node
v generated using neighbor sampling strategy s.
The framework utilizes two different strategies
for sampling neighbor sets of nodes: Depth-
First Sampling (DFS) and Breadth-First Sampling
(BES). The former captures the structural role of
nodes, while the latter captures the local neigh-
borhood around them. Two hyper-parameters con-
trol the overall contribution of each of these strate-
gies. Following Mishra et al. (2018a), we initial-
ize these parameters to their default value of 1 and
set the embedding size and number of iterations to
200 and 25 respectively. Since node2vec cannot
produce embeddings for nodes without edges, we
map the solitary authors to a single zero embed-
ding as done by Mishra et al.

Graph convolutional networks. We propose an
approach for learning author profiles using GCNs
applied to the extended graph. In contrast to
node2vec, our method allows us to additionally
propagate information with respect to whether
tweets composed by authors and their communi-
ties are abusive or not. Specifically, as labels are
available for a subset of nodes in our graph (i.e.,
the tweet nodes), we frame the task as a graph-
based semi-supervised learning problem, allowing
the model to distribute gradient information from
the supervised loss on the labeled tweet nodes.
This, in turn, allows us to create profiles for au-
thors that not only capture the structural traits of
their surrounding community but also their own
linguistic behavior based on the types of tweets
that they have composed.

We consider a graph G = (V, E), where V is
the set of nodes (|[V| = n) and F is the set of
edges. A denotes the adjacency matrix of G. We
assume that A is symmetric (4;; = Aj;), and that
all nodes in G have self loops (A;; = 1). The sig-
nificance of these assumptions is explained in Kipf
and Welling (2017). Let D be the diagonal degree
matrix defined as Dy; = jAij,and F € R7xm
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be the input feature matrix that holds feature vec-
tors of length m for the nodes in G. We can now
recursively define the computation that takes place
at the i*" convolutional layer of a k-layer GCN as:

00 — o (X061 W)

with the computation at the first layer being:

O =g (AFWM)

Hlere, o 1deno‘[es an activation function; A =
D72 A D™ 2 is the normalized adjacency matrix;
W@ ¢ Ré-1%d js the weight matrix of the i*
convolutional layer; O—1) € R"*%i-1 represents
the output from the preceding convolutional layer,
where d; is the number of hidden units in the 7"
layer (note that dy = m, i.e., the length of the in-
put feature vectors).

In our experiments, we apply a 2-layer GCN to
the extended graph.” Specifically, our GCN per-
forms the following computation, yielding a soft-
max distribution over the 3 classes in the dataset
for each of the nodes:

O = softmaz (A ReLU (AF WM ) w®)

We set the input feature vectors in F' to be the
binary bag-of-words representations of the nodes
(following Kipf and Welling 2017); for author
nodes, these representations are constructed over
the entire set of their respective tweets. Note
that F' is row-normalized prior to being fed to the
GCN. We set the number of hidden units in the
first convolutional layer to 200 in order to extract
200-dimensional embeddings for author nodes so
that they are directly comparable with those from
node2vec . The number of hidden units in the sec-
ond convolutional layer is set to 3 for the output
O € R™*3 of the GCN to be a softmax distribution
over the 3 classes in the data.

The GCN is trained by minimizing the cross-
entropy loss with respect to the labeled nodes of
the graph. Once the model is trained, we extract
200-dimensional embeddings £ = AFW®
from the first layer (i.e., the layer’s output without
activation). This contains embeddings for author
nodes as well as tweet nodes. For our experiments
on author profiles, we make use of the former.

2Stacking more layers does not improve results on the val-
idation set further.

4.3 Classification methods

We experiment with five different supervised clas-
sification methods for tweets in the dataset. The
first three (LR, LR+AUTH, LR+EXTD) serve as our
baselines,? and the last two with GCNs* are the
methods we propose.

LR. This method is adopted from Waseem and
Hovy (2016) wherein they train a logistic regres-
sion classifier on character n-grams (up to 4-
grams) of the tweets. Character n-grams have been
shown to be highly effective for abuse detection
due to their robustness to spelling variations.

LR + AUTH. This is the state of the art method
(Mishra et al., 2018a) for the dataset we are us-
ing. For each tweet, the profile of its author (gen-
erated by node2vec from the community graph) is
appended onto the tweet’s character n-gram repre-
sentation for training the LR classifier as above.

LR + EXTD. This method is identical to LR +
AUTH, except that we now run node2vec on the
extended graph to generate author profiles. Intu-
itively, since node2vec treats both author and tweet
nodes as the same and does not take into account
the labels of tweets, the author profiles generated
should exhibit the same properties as those gener-
ated from the community graph.

GCN. Here, we simply assign a label to each tweet
based on the highest score from the softmax distri-
bution provided by our GCN model for the (tweet)
nodes of the extended graph.

LR + GCN. Identical to LR + EXTD, except that
we replace the author profiles from node2vec with
those extracted by our GCN approach.

5 Experiments and results

5.1 Experimental setup

We run every method 10 times with random ini-
tializations and stratified train—test splits. Specif-
ically, in each run, the dataset is split into a
randomly-sampled train set (90%) and test set
(10%) with identical distributions of the 3 classes
in each. In methods involving our GCN, a small
part of the train set is held out as validation data
to prevent over-fitting using early-stopping regu-
larization. When training the GCN, we only have

3The implementations of the baselines are taken
from https://github.com/pushkarmishra/
AuthorProfilingAbuseDetection.

“The code we use for our GCN models can be found at
https://github.com/tkipf/gcn.
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Method Racism Sexism Overall
P R F1 P R Fq P R F1
LR 80.59 | 70.62 | 75.28 | 83.12 | 62.54 | 71.38 | 83.18 | 75.62 | 78.75
LR + AUTH | 77.95 | 78.35 | 78.15 | 87.28 | 78.41 | 82.61 | 85.26 | 83.28 | 84.18
LR + EXTD | 77.95 | 78.35 | 78.15 | 87.02 | 78.73 | 82.67 | 85.17 | 83.33 | 84.17
GCNT 74.12 | 64.95 | 69.23 | 82.48 | 82.22 | 82.35 | 81.90 | 79.42 | 80.56
LR + GCNT | 79.08 | 79.90 | 79.49 | 88.24 | 80.95 | 84.44 | 86.23 | 84.73 | 85.42

Table 1: The baselines (LR, LR + AUTH/EXTD) vs. our GCN approaches (*) on the racism and sexism classes.
Overall shows the macro-averaged metrics computed over the 3 classes: sexism, racism, and clean.

labeled tweet nodes for those tweets in the ex-
tended graph that are part of the train set. Our
GCN is trained using the parameters from the orig-
inal paper (Kipf and Welling, 2017): Glorot ini-
tialization (Glorot and Bengio, 2010), ADAM opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.01, dropout regularization (Srivastava et al.,
2014) rate of 0.5, 200 training epochs with an
early-stopping patience of 10 epochs.

5.2 Results and analysis

In Table 1, we report the mean precision, recall,
and F; on the racism and sexism classes over
the 10 runs. We further report the mean macro-
averaged precision, recall, and F; for each method
(‘Overall’) to investigate their overall performance
on the data. LR + GCN significantly (p < 0.05
on paired t-test) outperforms all other methods.
The author profiles from node2vec only capture
the structural and community information of the
authors; however, those from the GCN also take
into account the (abusive) nature of the tweets
composed by the authors. As a result, tweets like
“#MKR #mkr2015 Who is gonna win the peoples
choice?” that are misclassified as sexist by LR +
AUTH (because their author is surrounded by oth-
ers producing sexist tweets) are correctly classi-
fied as clean by LR + GCN.

GCN on its own achieves a high performance,
particularly on the sexism class where its perfor-
mance is typical of a community-based profil-
ing approach, i.e., high recall at the expense of
precision. However, on the racism class, its re-
call is hindered by the same factor that Mishra et
al. (2018a) highlighted for their node2vec-only
method, i.e., that racist tweets come from 5 unique
authors only who have also contributed sexist or
clean tweets. The racist activity of these authors is
therefore eclipsed, leading to misclassifications of
their tweets. LR + GCN alleviates this problem by
incorporating character n-gram representations of
the tweets, hence not relying solely on the linguis-

tic behavior of their authors.

Figure 1 shows the t-SNE (van der Maaten and
Hinton, 2008) visualizations of node2vec author
profiles from the community and extended graphs.
Both visualizations show that some authors be-
long to densely-connected communities while oth-
ers are part of more sparse ones. The results from
LR + AUTH and LR + EXTD have insignificant dif-
ferences, further confirming that their author pro-
files have similar properties. In essence, node2vec
is unable to gain anything more from the extended
graph than what it does from the community graph.

(b) Author profiles from the extended graph

Figure 1: Visualizations of the node2vec author profiles
from the community and extended graphs.

Figure 2 shows a t-SNE visualization of the au-
thor profiles generated using our GCN approach.
Red dots denote the authors who are abusive (sex-
ist or racist) according to our model (i.e., as per
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Figure 2: Visualization of the author profiles extracted

from our GCN. Red dots represent the authors who are
deemed abusive (racist or sexist) by the GCN.

the softmax outputs for the author nodes).” The
red dots are mostly clustered in a small portion of
the visualization, which corroborates the notion of
homophily amongst abusive authors.

Despite the addition of improved author pro-
files, several abusive tweets remain misclassified.
As per our analysis, many of these tend to con-
tain URLS to abusive content but not the content it-
self, e.g., “@MENTION: Logic in the world of Is-
lam http://t.co/6nALv2HPc3” and “@MENTION
Yes. http://t.co/ixbtOuc7HN”. Since Twitter short-
ens all URLs into a standard format, there is no
indication of what they refer to. One possible
way to address this limitation could be to append
the content of the URL to the tweet; however this
can lead to misclassifications in cases where the
tweet is disagreeing with the URL. Another fac-
tor in misclassifications is the deliberate obfusca-
tion of words and phrases by authors in order to
evade detection, e.g., “Kat, a massive c*nt. The
biggest ever on #mkr #cuntandandre”. Mishra
et al. (2018b) demonstrate in their work that
character-based word composition models can be
useful in dealing with this aspect.

6 Conclusions

In this paper, we built on the work of Mishra et
al. (2018a) that introduces community-based pro-
filing of authors for abusive language detection.
We proposed an approach based on graph convo-
lutional networks to show that author profiles that
directly capture the linguistic behavior of authors
along with the structural traits of their community
significantly advance the current state of the art.

5Note that there are no such gold labels for authors in the
dataset itself.
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