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Abstract

Beam search optimization (Wiseman and
Rush, 2016) resolves many issues in neural
machine translation. However, this method
lacks principled stopping criteria and does not
learn how to stop during training, and the
model naturally prefers longer hypotheses dur-
ing the testing time in practice since they use
the raw score instead of the probability-based
score. We propose a novel ranking method
which enables an optimal beam search stop-
ping criteria. We further introduce a struc-
tured prediction loss function which penalizes
suboptimal finished candidates produced by
beam search during training. Experiments of
neural machine translation on both synthetic
data and real languages (German→English
and Chinese→English) demonstrate our pro-
posed methods lead to better length and BLEU
score.

1 Introduction

Sequence-to-sequence (seq2seq) models based on
RNNs (Sutskever et al., 2014; Bahdanau et al.,
2014), CNNs (Gehring et al., 2017) and self-
attention (Vaswani et al., 2017) have achieved
great successes in Neural Machine Translation
(NMT). The above family of models encode the
source sentence and predict the next word in an
autoregressive fashion at each decoding time step.
The classical “cross-entropy” training objective of
seq2seq models is to maximize the likelihood of
each word in the translation reference given the
source sentence and all previous words in that ref-
erence. This word-level loss ensures efficient and
scalable training of seq2seq models.

However, this word-level training objective suf-
fers from a few crucial limitations, namely the la-
bel bias, the exposure bias, and the loss-evaluation
mismatch (Lafferty et al., 2001; Bengio et al.,
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Figure 1: The BLEU score of BSO decreases after
beam size 3 as results of increasing length ratio1in
German→English translation. Our model gets higher
BLEU with larger beam.

2015a; Venkatraman et al., 2015). In addition,
more importantly, at decoding time, beam search
is universally adopted to improve the search qual-
ity, while training is fundamentally local and
greedy. Several researchers have proposed differ-
ent approaches to alleviate above problems, such
as reinforcement learning-based methods (Ran-
zato et al., 2016; Rennie et al., 2017; Zheng et al.,
2018b), training with alternative references (Shen
et al., 2016; Zheng et al., 2018a). Recently, Wise-
man and Rush (2016) attempt to address these
issues with a structured training method, Beam
Search Optimization (BSO). While BSO outper-
forms other proposed methods on German-to-
English translation, it also brings a different set
of problems as partially discussed in (Ma, 2018)
which we present with details below.

1There are two types of “length ratios” in this paper: (a)
target to reference ratio (|y|/|y∗|), which is used in BLEU,
and (b) target to source ratio (|y|/|x|). By default, the term
“length ratio” in this paper refers to the former.
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BSO relies on unnormalized raw scores instead
of locally-normalized probabilities to get rid of the
label bias problem. However, since the raw score
can be either positive or negative, the optimal stop-
ping criteria (Huang et al., 2017) no longer holds,
e.g., one extra decoding step would increase the
entire unfinished hypothesis’s model score when
we have positive word score. This leads to two
consequences: we do not know when to stop the
beam search and it could return overlength trans-
lations (Fig. 1) or underlength translations (Fig. 3)
in practice. As shown in Fig. 1, the BLEU score
of BSO drops significantly when beam size gets
larger as a result of overlong translations (as ev-
idenced by length ratios larger than 1). Further-
more, BSO performs poorly (shown in Section 4)
on hard translation pairs, e.g., Chinese→English
(Zh→En) translation, when the target / source ra-
tio is more diverse (Table 1).

To overcome the above issues, we propose to
use the sigmoid function instead of the raw score
at each time step to rank candidates. In this way,
the model still has probability properties to hold
optimal stopping criteria without label bias effects.
Moreover, we also encourage the model to gener-
ate the hypothesis which is more similar to gold
reference in length. Compared with length reward-
based methods (Huang et al., 2017; Yang et al.,
2018), our model does not need to tune the pre-
dicted length and per-word reward. Experiments
on both synthetic and real language translations
(De→En and Zh→En) demonstrate significant im-
provements in BLEU score over strong baselines
and other methods.

2 Preliminaries: NMT and BSO

Here we briefly review the conventional NMT and
BSO (Wiseman and Rush, 2016) to set up the no-
tations. For simplicity, we choose to use RNN-
based model but our methods can be easily applied
to other designs of seq2seq model as well.

Regardless of the particular design of different
seq2seq models, generally speaking, the decoder
always has the following form:

p(y | x) =
∏|y|

t=1 p(yt | x, y<t) (1)

where x ∈ RN×D represents the D-dimension
hidden states from encoder with N words and y<t

denotes the gold prefix (y1, ..., y(t−1)) before t.
The conventional NMT model is locally trained to
maximize the above probability.

Instead of maximizing each gold word’s proba-
bility, BSO tries to promote the non-probabilistic
scores of gold sequence within a certain beam size
b. BSO removes the softmax layer and directly
uses the raw score after hidden-to-vocabulary
layer, and the non-probabilistic scoring function
fx(yt | y<t) represents the score of word yt given
gold prefix y<t and x. Similarly, fx(ŷbt | ŷb

<t)
is the bth sequence with beam size b at time step
t. Then, we have the following loss function to
penalize the bth candidate and promote gold se-
quence:

L =

|y|∑
t=1

∆(ŷb
≤t)(1 + fx(ŷbt | ŷb

<t)− fx(yt | y<t))
+ (2)

where ∆(ŷb
≤t) is defined as (1−BLEU(ŷb

≤t,y≤t))
which scales the loss according to BLEU score be-
tween gold and bth hypothesis in the beam. The
notation (·)+ represents a max function between
any value and 0, i.e., z+ = max(0, z).

When Eq. 1 equals to 0 at time step t, then the
gold sequence’s score is higher than the last hy-
pothesis in the beam by 1, and a positive num-
ber otherwise. Finally, at the end of beam search
(t = |y|), BSO requires the score of y exceed the
score of the highest incorrect hypothesis by 1.

Note that the above non-probabilistic score
function fx(·) is not bounded as probabilistic
score in conventional NMT. In practice, when we
have positive word score, then the unfinished can-
didates always get higher model scores with one
extra decoding step and the optimal stopping cri-
teria 2 (Huang et al., 2017) is no longer hold. BSO
implements a similar “shrinking beam” strategy
which duplicates top unfinished candidate to re-
place finished hypotheses and terminates the beam
search when there are only </eos> in the beam.
Non-probabilistic score function works well in
parsing and Statical MT where we know when to
stop beam search. However, in the NMT scenario,
without optimal stopping criteria, we don’t know
when to stop beam search.

3 Learning to Stop

We propose two major improvements to BSO.

3.1 Sigmoid Scoring Function
As mentioned in Section 2, BSO relies on raw
score function to eliminate label bias effects.

2Beam search stops when the score of the top unfin-
ished hypothesis is lower than any finished hypothesis, or the
</eos> is the highest score candidate in the beam.
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Figure 2: Training illustration with beam size b = 3
and gold reference “a brown dog runs with the wolves”.
The gold reference is highlighted in blue solid boxes.
We penalize the under-length translation (short) hy-
potheses by expelling out the early </eos> out of beam
(red dashed boxes). The beam search restarts with gold
when gold falls off the beam (at step 5).

However, without using locally-normalized score
does not mean that we should stop using the prob-
abilistic value function. Similar with multi-label
classification in (Ma et al., 2017), instead of us-
ing locally normalized softmax-based score and
non-probabilistic raw scores, we propose to use
another form of probabilistic scoring function, sig-
moid function, which is defined as follows:

gx(yt | y<t) = (1 + ew·fx(yt|y<t))−1 (3)

where w is a trainable scalar parameter which
shifts the return value of fx(yt | y<t) into a non-
saturated value region of sigmoid function. Eq. 3
measures the probability of each word indepen-
dently which is different from locally-normalized
softmax function. Similar to the scenario in multi-
label classification, gx(yt | y<t) only promotes
the words which are preferred by gold reference
and does not degrade other words. Eq. 3 enables
the model to keep the probability nature of scor-
ing function without introducing label bias effects.
After the model regain probability-based scoring
function, the optimal stopping criteria can be used
in testing time decoding.

3.2 Early Stopping Penalties
Similar to Eq. 1, testing time decoder multiplies
the new word’s probabilistic score with prefix’s
score when there is a new word appends to an un-
finished hypothesis. Though the new word’s prob-
abilistic score is upper bounded by 1, in practice,
the score usually far less than one. As described in
(Huang et al., 2017; Yang et al., 2018), decoder al-
ways prefers short sentence when we use the prob-
abilistic score function.

To overcome the above so-called “beam search
curse”, we propose to penalize early-stopped hy-
pothesis within the beam during training. The pro-
cedure during training is illustrated in Fig. 2.

Data Split |x| σ(|x|) ( |y||x|)
σ( |y||x|) # sents

Synthetic
Train 9.47 5.45 3.0 0.52 5K
Valid 9.54 5.42 3.0 0.53 1K
Test 9.51 5.49 3.0 0.52 1K

De→En
Train 17.53 9.93 1.07 0.16 153K
Valid 17.55 9.97 1.07 0.16 7K
Test∗ 18.89 12.82 1.06 0.16 6.5K

Zh→En
Train 23.21 13.44 1.30 0.33 1M
Valid 29.53 16.62 1.34 0.22 0.6K
Test 26.53 15.99 1.4 0.24 0.7K

Table 1: Dataset statistics of source sentence length and
the ratio between target and source sentences. σ is stan-
dard deviation. ∗shows statistics of cleaned test set.

Different from BSO, to penalize the under-
length finished translation hypotheses, we include
additional violations when there is an </eos> within
the beam before the gold reference finishes and we
force the score of that </eos> lower than the b + 1
candidate by a margin. This underlength transla-
tion violation is formally defined as follows:

Ls =

|y|∑
t=1

b∑
j=1

1(ŷjt = </eos>) ·Q(ŷjt , ŷ
b+1
t ) ,

Q(ŷjt , ŷ
b+1
t ) = (1 + fx(ŷjt | ŷ

j
<t)− fx(ŷb+1

t | ŷb+1
<t ))+

(4)

where notation 1 is identification function which
only equals to 1 when ith candidate in beam ŷjt is
</eos>, e.g. in Fig. 2. We only have non-zero loss
when the model score of underlength translation
candidates are greater than the b+ 1 candidate by
a margin. In this way, we penalize all the short
hypotheses during training time. Note that during
both training and testing time, the decoder stops
beam search when it satisfies the optimal stopping
criteria (Huang et al., 2017). Therefore, we do not
need to penalize the overlength translations since
we have already promoted the gold reference to
the top of the beam at time step |y| during training.

4 Experiments

We showcase the performance comparisons over
three different datasets. We implement seq2seq
model, BSO and our proposed model based on
PyTorch-based OpenNMT (Klein et al., 2017). We
use a two-layer bidirectional LSTM as the encoder
and a two layer LSTM as the decoder. We train
Seq2seq model for 20 epochs to minimize per-
plexity on the training dataset, with a batch size
of 64, word embedding size of 512, the learning
rate of 0.1, learning rate decay of 0.5 and dropout
rate of 0.2. Following Wiseman and Rush (2016),
we then train BSO and our model based on the
previous Seq2seq model with the learning rate of
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Figure 3: Length ratio on synthetic test dataset.

0.01 and learning rate decay of 0.75, batch size
of 40. Note that our pretrained model is softmax-
based, and we only replace the softmax layer with
the sigmoid layer for later training for simplicity.
The performance will have another boost when
our pretrained model is sigmoid-based. We use
Adagrad (Duchi et al., 2011) as the optimizer.

In Zh→En task, we employ BPE (Sennrich
et al., 2015) which reduces the source and target
language vocabulary sizes to 18k and 10k. Follow-
ing BSO, we set the decoding beam size smaller
than the training beam size by 1.

4.1 Synthetic Task
Table 1 shows the statistics of source sentence
length and the ratio between target and source sen-
tences. The synthetic dataset is a simple trans-
lation task which generates target sentences from
this grammar: {a → x, b → x x, c → x x x, d →
x x x x, e→ x x x x x}. For example:

1. source sentence [b c a] will generate the target
sentence [x x x x x x] (2 x from b, 3 x from
c and 1 x from a).

2. source sentence [a, b, c, d, e] will be trans-
lated into [x x x x x x x x x x x x x x x]
in target side (1 x from a, 2 x from b, 3 x
from c, 4 x from d and 5 x from e).

This dataset is designed to evaluate the length
prediction ability of different models. Fig. 3 shows
the length ratio of different models on the test set.
Only our model can predict target sentence length
correctly with all beam sizes which shows a better
ability to learn target length.

4.2 De→En Translation
The De→En dataset is previously used in BSO
and MIXER (Ranzato et al., 2016), which is from
IWSLT 2014 machine translation evaluation cam-
paign (Cettolo et al., 2014) 3.

3The test set of De→En involves some mismatched
source-reference pairs. We have cleaned this test set and re-
port the statistics based on the cleaned version.

Decode Seq2seq† Train BSO† This work
Beam BLEU Len. Beam BLEU Len. BLEU Len.

1 30.65 1.00 2 29.79 0.95 31.01 0.95
3 31.38 0.97 4 31.79 1.01 32.26 0.96
5 31.38 0.97 6 31.28 1.03 32.54 0.96
7 31.42 0.96 8 30.59 1.04 32.51 0.96
9 31.44 0.96 10 29.81 1.06 32.55 0.97

Table 2: BLEU and length ratio on the De→En valida-
tion set. †indicates our own implementation.

Model BLEU Len.
This work (full model) 32.54 0.96
This work w/ softmax 32.29 0.98
This work w/o scale augment 31.97 0.95
This work w/o early stopping loss 31.19 0.93

Table 3: Ablation study on the De→En validation set
with training beam size b = 6.

This work

BSO

BSO

This work

Figure 4: BLEU and length ratio of models with train-
ing beam size b = 6 and decode with different beam
size on De→En dataset.

Table 2 shows the BLEU score and length ratio
of different models on dev-set. Similar to seq2seq,
our proposed model achieves better BLEU score
with larger beam size and outperforms the best
BSO b = 4 model with 0.76 BLEU. The ab-
lation study in Table 3 shows that the model
produces shorter sentence without scale augment
(term ∆(ŷb≤t) in Eq. 2) and early stopping loss.
The model also performs worse when replacing
softmax to sigmoid because of the label bias prob-
lem. Fig. 4 shows BLEU score and length ratio of
BSO and our models trained with beam size b = 6
with different decoding beam size. Compared
with BSO, whose BLEU score degrades dramat-
ically when increasing beam size, our model per-
forms much more stable. Moreover, BSO achieves
much better BLEU score with decoding beam b =
3 while trained with b = 6 because of a better
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Model
Original Test Set Cleaned Test Set
BLEU Len. BLEU Len.

BSO‡ 26.35 - -
DAD‡ 22.40 - -
MIXER‡ 21.83 - -
Seq2seq† 29.54 0.97 30.08 0.97
BSO† 29.63 1.02 30.08 1.02
This work 30.29 0.98 30.85 0.98

Table 4: BLEU and length ratio on the De→En test
set. †indicates our own implementation. ‡results from
(Wiseman and Rush, 2016).

BSO

This work

Seq2seq w/ Len. reward

Seq2seq

Figure 5: Length ratio of examples on Zh→En dev-set
with different source sentence length.

length ratio, this is inconsistent with their claim
that decoding beam size should smaller than train-
ing beam size by 1.

Table 4 shows better accuracy of our proposed
model than not only published test results of BSO
(Wiseman and Rush, 2016), DAD (Bengio et al.,
2015b) and MIXER (Ranzato et al., 2016), but
also our implemented seq2seq and BSO model.

4.3 Zh→En Translation

Model
Train Decode

BLEU Len.
Beam Beam

Seq2Seq† - 7 37.74 0.96
w/ Len. reward† - 7 38.28 0.99

BSO† 4 3 36.91 1.03
BSO† 8 7 35.57 1.07
This work 4 3 38.41 1.00
This work 8 7 39.51 1.00

Table 5: BLEU and length ratio of models on Zh→En
validation set. †indicates our own implementation.

We also perform experiments on NIST Zh→En

Model BLEU Len.
Seq2Seq† 34.19 0.95
w/ Len. reward† 34.60 0.99

BSO† 31.78 1.04
This work 35.40 0.99

Table 6: BLEU and length ratio of models on Zh→En
test set. †indicates our own implementation.

translation dataset. We use the NIST 06 and 08
dataset with 4 references as the validation and
test set respectively. Table 1 shows that the char-
acteristic of Zh→En translation is very different
from De→En in source length and variance in tar-
get/source length ratio.

We compare our model with seq2seq, BSO and
seq2seq with length reward (Huang et al., 2017)
which involves hyper-parameter to solve neural
model’s tendency for shorter hypotheses (our pro-
posed method does not require tuning of hyper-
parameter). Fig. 5 shows that BSO prefers over-
length hypotheses in short source sentences and
underlength hypotheses when the source sentences
are long. This phenomenon degrades the BLEU
score in dev-set from Table 5. Our proposed model
comparatively achieves better length ratio on al-
most all source sentence length in dev-set.

5 Future Works and Conclusions

Our proposed methods are general techniques
which also can be applied to the Transformer
(Vaswani et al., 2017). As part of our future works,
we plan to adapt our techniques to the Transformer
to further evaluate our model’s performance.

There are some scenarios that decoding time
beam search is not applicable, such as the simul-
taneous translation system proposed by Ma et al.
(2018) which does not allow for adjusting the
committed words, the training time beam search
still will be helpful to the greedy decoding perfor-
mance. We plan to further investigate the perfor-
mance of testing time greedy decoding with beam
search optimization during training.

We propose two modifications to BSO to pro-
vide better scoring function and under-translation
penalties, which improves the accuracy in De-En
and Zh-En by 0.8 and 3.7 in BLEU respectively.
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