
Proceedings of NAACL-HLT 2019, pages 1634–1647
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1634

Text Processing Like Humans Do:
Visually Attacking and Shielding NLP Systems

Steffen Eger†‡, Gözde Gül Şahin†‡, Andreas Rücklé†, Ji-Ung Lee†‡, Claudia Schulz†‡,
Mohsen Mesgar†‡, Krishnkant Swarnkar†, Edwin Simpson†, Iryna Gurevych†‡

†Ubiquitous Knowledge Processing Lab (UKP-TUDA)
‡Research Training Group AIPHES

Department of Computer Science, Technische Universität Darmstadt
†www.ukp.tu-darmstadt.de

‡www.aiphes.tu-darmstadt.de

Abstract
Visual modifications to text are often used
to obfuscate offensive comments in social
media (e.g., “!d10t”) or as a writing style
(“1337” in “leet speak”), among other scenar-
ios. We consider this as a new type of ad-
versarial attack in NLP, a setting to which hu-
mans are very robust, as our experiments with
both simple and more difficult visual perturba-
tions demonstrate. We investigate the impact
of visual adversarial attacks on current NLP
systems on character-, word-, and sentence-
level tasks, showing that both neural and non-
neural models are, in contrast to humans, ex-
tremely sensitive to such attacks, suffering per-
formance decreases of up to 82%. We then
explore three shielding methods—visual char-
acter embeddings, adversarial training, and
rule-based recovery—which substantially im-
prove the robustness of the models. How-
ever, the shielding methods still fall behind
performances achieved in non-attack scenarios,
which demonstrates the difficulty of dealing
with visual attacks.

1 Introduction
For humans, visual similarity can play a decisive
role for assessing the meaning of characters. Some
evidence for these are: the frequent swapping of
similar looking characters in Internet slang or abu-
sive comments, creative trademark logos, and at-
tack scenarios such as domain name spoofing (see
examples in Table 1).

Recently, some NLP systems have exploited vi-
sual features to capture visual relationships among
characters in compositional writing systems such
as Chinese or Korean (Liu et al., 2017). How-
ever, in more general cases, current neural NLP
systems have no built-in notion of visual charac-
ter similarity. Rather, they either treat characters
as discrete units forming a word or they represent
characters by randomly initialized embeddings and

Internet slang writing style n00b,w!k!p3d!4, 1337
Toxic comments pi§§, ,iggersמּ ḟucking
Trademark logos/artwork
Domain name spoofing http://wíkipedia.org

Table 1: Examples of text in which characters have been
changed to visually similar ones.

update them during training—typically in order
to generate a character-based word representation
that is robust to morphological variation or spelling
mistakes (Ma and Hovy, 2016). Intriguingly, this
marked distinction between human and machine
processing can be exploited as a blind spot of NLP
systems. For example, spammers might send mali-
cious emails or post toxic comments to online dis-
cussion forums (Hosseini et al., 2017) by visually
‘perturbing’ the input text in such a way that it is
still easily recoverable by humans.

The issue of exposing and addressing the weak-
nesses of deep learning models to adversarial in-
puts, i.e., perturbed versions of original input sam-
ples, has recently received considerable attention.
For instance, Goodfellow et al. (2015) showed that
small perturbations in the pixels of an image can
mislead a neural classifier to predict an incorrect
label for the image. In NLP, Jia and Liang (2017)
inserted grammatically correct but semantically ir-
relevant paragraphs to stories to fool neural read-
ing comprehension models. Singh et al. (2018)
showed significant drops in the performance of
neural models for question answering when using
simple paraphrases of the original questions.

Unlike previous NLP attack scenarios, visual at-
tacks, i.e., the exchange of characters in the input
with visually similar alternatives, have the follow-
ing ‘advantages’: 1) They do not require any lin-
guistic knowledge beyond the character level, mak-
ing the attacks straightforwardly applicable across
languages, domains, and tasks. 2) They are al-

1635

legedly less damaging to human perception and un-
derstanding than, e.g., syntax errors or the inser-
tion of negations (Hosseini et al., 2017). 3) They
do not require knowledge of the attacked model’s
parameters or loss function (Ebrahimi et al., 2018).

In this work, we investigate to what extent re-
cent state-of-the-art (SOTA) deep learning models
are sensitive to visual attacks and explore various
shielding techniques. Our contributions are:

• We introduce VIPER, a Visual Perturber that
randomly replaces characters in the input with
their visual nearest neighbors in a visual em-
bedding space.

• We show that the performance of SOTA deep
learning models substantially drops for vari-
ous NLP tasks when attacked by VIPER. On
individual tasks (e.g., Chunking) and attack
scenarios, our observed drops are up to 82%.

• We show that, in contrast to NLP systems, hu-
mans are only mildly or not at all affected by
visual perturbations.

• We explore three methods to shield from
visual attacks, viz., visual character embed-
dings, adversarial training (Goodfellow et al.,
2015), and rule-based recovery. We quantify
to which degree and in which circumstances
these are helpful.

We point out that integrating visual knowledge
with deep learning systems, as our visual character
embeddings do, aims to make NLP models behave
more like humans by taking cues directly from sen-
sory information such as vision.1

2 Related Work
Our work connects to two strands of literature: ad-
versarial attacks and visually informed character
embeddings.

Adversarial Attacks are modifications to a clas-
sifier’s input, that are designed to fool the system
into making an incorrect decision, while the orig-
inal meaning is still understood by a human ob-
server. Different forms of attacks have been stud-
ied in NLP and computer vision (CV), including
at a character, syntactic, semantic and, in CV, the
visual level. Ebrahimi et al. (2018) propose a char-
acter flipping algorithm to generate adversarial ex-
amples and use it to trick a character-level neural

1Code and data available from https://github.com/
UKPLab/naacl2019-like-humans-visual-attacks

classifier. They show that the accuracy decreases
significantly after a few manipulations if certain
characters are swapped. Their character flipping
approach requires very strong knowledge in the
form of the attacked networks’ gradients in a so-
called white box attack setup. Chen et al. (2018)
find that reading comprehension systems often ig-
nore important question terms, thus giving incor-
rect answers when these terms are replaced. Be-
linkov and Bisk (2018) show that neural machine
translation systems break for all kinds of noise to
which humans are robust, such as reordering char-
acters in words, keyboard typos and spelling mis-
takes. Alzantot et al. (2018) replace words by syn-
onyms to fool text classifiers. Iyyer et al. (2018)
reorder sentences syntactically to generate adver-
sarial examples.

In contrast to those related works which perform
attacks on the character level, our attacks allow per-
turbation of any character in a word while poten-
tially minimizing impairment for humans. For ex-
ample, the strongest attack in Belinkov and Bisk
(2018) is random shuffling of all characters, which
is much more difficult to restore for humans.

To cope with adversarial attacks, adversarial
training (Goodfellow et al., 2015) has been pro-
posed as a standard remedy in which training data
is augmented with data that is similar to the data
used to attack the neural classifiers. Rodriguez and
Rojas-Galeano (2018) propose simple rule-based
corrections to address a limited number of attacks,
including obfuscation (e.g., “idiots” to “!d10ts”)
and negation (e.g., “idiots” to “NOT idiots”). Most
other approaches have been explored in the context
of CV, such as adding a stability objective during
training (Zheng et al., 2016) and distillation (Pa-
pernot et al., 2016). However, methods to increase
the robustness in CV have been shown to be less ef-
fective against more sophisticated attacks (Carlini
and Wagner, 2017).

Visual Character Embeddings were originally
proposed to address large character vocabularies
in ‘compositional’ languages like Chinese and
Japanese. Shimada et al. (2016) and Dai and Cai
(2017) employ a convolutional autoencoder to gen-
erate image-based character embeddings (ICE) for
Japanese and Chinese text and show improvement
on author and publisher identification tasks. Sim-
ilarly, Liu et al. (2017) create ICEs from a CNN
and show that ICEs carry more semantic content
and are more suitable for rare characters. However,

1636

existing work on visual character embeddings has
not used visual information to attack NLP systems
or to them.

3 Approach
To investigate the effects of visual attacks and pro-
pose methods for shielding, we introduce 1) a vi-
sual text perturber, 2) three character embedding
spaces, and 3) methods for obtaining word embed-
dings from character embeddings, used as input
representations in some of our experiments.

3.1 Text perturbations
Our visual perturber VIPER disturbs an input text
in such a way that (ideally) it is still readable by
humans but causes NLP systems to fail blatantly.
We parametrize VIPER by a probability p and a
character embedding space, CES:2 For each char-
acter c in the input text a flip decision is made (i.i.d.
Bernoulli distributed with probability p), and if a
replacement takes place, one of up to 20 nearest
neighbors in the CES is chosen.3 Thus, we denote
VIPER as taking two arguments:

VIPER = VIPER(p,CES).

Note that VIPER is a black-box attacker as it does
not require any knowledge of the attacked system.
It would also be possible to design a more intel-
ligent perturber that only disturbs content words
(or “hot” words), similar to Ebrahimi et al. (2018),
but this would increase the difficulty for realizing
VIPER as a black-box attacker because different
types of hot words may be relevant for different
tasks.

3.2 Character Embeddings
We consider three different character embedding
spaces. The first is continuous, assigning each
character a dense 576 dimensional representation,
which allows, e.g., for computing cosine similar-
ities between any two characters as well as near-
est neighbors for each input character. The other
two are discrete and merely used as arguments
to VIPER. Thus, they are only required to spec-
ify nearest neighbors for standard input characters.
For them, each character c in a selected range (e.g.,
standard English alphabet a-zA-Z) is assigned a set

2CES may be any ‘embedding space’ that can be used to
identify the nearest neighbors of characters.

3The probability of choosing one of the 20 neighbors of c
is proportional to its distance to c.

of nearest neighbors, and all nearest neighbors are
equidistant to c. All three CES carry visual infor-
mation, i.e., nearest neighbors are visually similar
to the character in question. For practical reasons,
we limit all our perturbations to the first 30k Uni-
code characters throughout.

Image-based character embedding space
(ICES) provides a continuous image-based char-
acter embedding (ICE) for each Unicode character.
We retrieve a 24×24 image representation of the
character (using Python’s PIL library), then stack
the rows of this matrix (with entries between 0
and 255) to form a 24 · 24 = 576 dimensional
embedding vector.

Description-based character embedding space
(DCES) is based on the textual descriptions of
Unicode characters. We first obtain descriptions of
each character from the Unicode 11.0.0 final names
list (e.g., latin small letter a for the character
‘a’). Then we determine a set of nearest neighbors
by choosing all characters whose descriptions re-
fer to the same letter in the same case, e.g., an al-
ternative to latin small letter a is latin small
letter a with grave as it contains the keywords
small and a.

Easy character embedding space (ECES) pro-
vides manually selected simple visual perturba-
tions. It contains exactly one nearest neighbor for
each of the 52 characters a-zA-Z, chosen as a dia-
critic below or above a character, such as ĉ for the
character c.

Differences between the CESs The three em-
bedding spaces play different roles in our experi-
ments. We use ICES as character representations
in deep learning systems. DCES and ECES are
used as input to VIPER to perturb our test data.4
ECES models a ‘minimal perturbance with maxi-
mal impact’ scenario: we assume that ECES per-
turbations do not or only minimally affect human
perception but may still have a large impact upon
NLP systems. Indeed, we could have chosen an
even simpler embedding space, e.g., by consider-
ing visually identical characters in different alpha-
bets, such as the Cyrillic ‘a’ (Unicode 1072) for a
Latin ‘a’ (Unicode 97). DCES is a more difficult

4We do not attack with ICES because we also shield with
ICES and this would be a (very unrealistic) white box defense
scenario. Besides, ICES is also more difficult to restore for
humans (see below), making it less desirable for an attacker.

1637

test-bed designed for evaluating our approaches un-
der more realistic conditions with more varied and
stronger attacks.

Table 2 exemplifies the differences between
ICES, DCES, and ECES by comparing the nearest
neighbors of a given character. As expected, ICES
contains neighbors of characters which are merely
visually similar without representing the same un-
derlying character (such as Λ as a neighbor of A,
or ⅼ as a neighbor of i). In contrast, DCES some-
times has neighbors with considerable visual dis-
similarity to the original character such as Cyrillic
small letter i (и) which rather resembles a mirror-
inverted n. The overlap between ICES and DCES
is modest: out of 20 neighbors, a character has
on average only four to five common neighbors in
ICES and DCES.

3.3 Word Embeddings
Most neural NLP architectures encode text either
on a character or word level. For the latter, word
embeddings are needed. In this work, we use the
ELMo architecture (Peters et al., 2018) to obtain
(contextualized) word embeddings based on char-
acters, i.e., there exists no fixed vocabulary and
there will be no (word-level) out-of-vocabulary is-
sues due to perturbation. In the following, we out-
line our ELMo variant and a visual extension that
includes visual signals from the input characters.

SELMo: ELMo as proposed by Peters et al.
(2018) first retrieves embeddings for every charac-
ter in the input, which are learned as part of the net-
work. ELMo then infers non-contextualized word
embeddings by applying CNNs over all character
embeddings in a word. Two layers of a deep bidi-
rectional language model further process the word
embeddings in their local sentential context and
output contextualized word embeddings.

We slightly extend ELMo to include character
embeddings for the first 30k Unicode characters
(instead of the default 256). We call this variant
SELMo (“Standard ELMo”). It is worth point-
ing out that the learned character embeddings of
SELMo carry almost no visual information, as il-
lustrated in Table 2. That is, except for a few
very standard cases, nearest neighbors of charac-
ters do not visually resemble the orginal characters,
even when trained on the 1 billion word benchmark
(Chelba et al., 2013).5

5We believe SELMo nearest neighbors are more likely to
be Chinese/Japanese/Korean (CJK) characters because these

VELMo: To obtain a visually informed variant
of ELMo, we replace learned character embed-
dings with the ICEs and keep the character embed-
dings fixed during training. This means that during
training, the ELMo model learns to utilize visual
features of the input, thus potentially being more
robust against visual attacks. We call this variant
VELMo (“Visually-informed ELMo”).

To keep training times of SELMo and VELMo
feasible, we use an output dimensionality of 512
instead of the original ELMo’s 1024d output. Our
detailed hyperparameter setup is given in §A.1.

4 Human annotation experiment
We asked 6 human annotators, university employ-
ees and students with native or near-native English
language skills, to recover the original underlying
English sentences given some perturbed text (data
taken from the POS tagging and Chunking tasks,
see Table 4). We considered different conditions:

(i) clean: VIPER(0,_), i.e., no perturbation;
(ii) VIPER(p, ICES) for p = 0.2,0.4,0.6,0.8;
(iii) VIPER(p,DCES) for p = 0.2,0.4,0.6,0.8;
(iv) easy: VIPER(p,ECES) for p = 0.4,0.8.

For each condition, we used 60-120 sentences,
where at most 20 sentences of one condition were
given to an annotator. Examples of selected con-
ditions are shown in Table 3. Our rationale for in-
cluding this recovery task is to test robustness of
human perception under (our) visual perturbations.
We focus on recovery instead of an extrinsic task
such as POS because the latter would have required
expert/trained annotators.

We evaluate by measuring the normalized edit
distance between the recovered sentence and the
underlying original, averaged over all sequence
pairs and all human annotators. We normalize by
the maximum lengths of the two sequences. In our
case, this metric can be interpreted as the fraction
of characters that have been, on average, wrongly
recovered by human annotators. We refer to the
metric as “error rate”.

Results are shown in Figure 1. In easy, there is
almost no difference between perturbation levels
p = 0.4 and p = 0.8, so we merge the two condi-
tions.

Humans make copy mistakes even when the in-
put is not perturbed, as evidenced by a positive

nearest neighbors are largely random and there are far more
CJK characters in our subset of Unicode.

1638

Input ICES DCES ECES SELMo
e е ẹ ė ȩ є ē ę ḛ ё ë ĕ ɝ ǝ ɜ ē ě ȩ ɛ è ë ê é䟘 ০㣥 ፔ ቼ ҫ↙㈘垀
i і ⅰ ị ӏ ⅼ l ļ ا į ḷ ĭ ѝ ȉ і ī ǐ ɪ й í ĩ î í ⦙嚫檯爗䈁炾娞䐊>䆳
A А Α Ạᾼ Ḁ Ἀ Ἁᾈ Λ Ʌ Ā Ӑ Ǟ А Å Ǎ Ȁ Ⱥ Á Ä Â 椖溷曑呭 ⒏敮瀄 ͅ唋⽤

Table 2: Ten nearest neighbors in our different character spaces. ‘SELMo’ refers to the nearest neighbors of the
trained character embeddings in SELMo.

Condition Sentences (Perturbed / Original)

easy-0.8 Ḿř. Ĉôḟfêê iŝ â ṕřôfêŝsoř âẗ Ĉôᶅǔḿḃîâ Ĺâẘ Ŝcĥôôᶅ .
Mr. Coffee is a professor at Columbia Law School .

ICES-0.6 Tṇẽ sḫսŧḋown a|fёςṱэ Э‚0ð0 wòřkếrs ḁng иllإ ͼũt óũṱpuէ ɓỳ apouț 4⁁ЗẒ0 câŗṣ :
The shutdown affects 3,000 workers and will cut output by about 4,320 cars .

DCES-0.8 Ƭʰe śƫōcƙ ɽeco⒱ɝʶȅd ṡøɯǝẅḩât ᵗö ᶂȋņìṣḣ 1 1/4 ᶪòwɇʶ áƭ 26 1/4 .
The stock recovered somewhat to finish 1 1/4 lower at 26 1/4 .

Table 3: Examples of perturbed sentences and underlying originals.

easy clean .2 .4 .6 .8
Perturbation level p

0

2

4

6

8

Er
ro

r r
at

e
in

 %

DCES
ICES

Figure 1: Human annotation experiment. Error bars in-
dicate std. across annotators. For easy, we merge the
cases p = 0.4/0.8.

error rate in clean. Such mistakes are typically
misspellings or the wrong type of quotation marks
(” vs. “). We observe a slightly higher error rate
in easy than in clean. However, on average 75%
of all sentences are (exactly) correctly recovered in
easy while this number is lower (72.5%) in clean.
By chance, clean contains fewer sentences with
quotation marks than easy, for which a copy mis-
take was more likely. This may explain easy’s
higher error rate.

As we increase the perturbation level, the er-
ror rate increases consistently for DCES/ICES. It
is noteworthy that DCES perturbations are easier
to parse for humans than ICES perturbations. We
think this is because DCES perturbations always
retain a variant of the same character, while ICES

may also disturb one character to another character
(such as h to b). Another explanation is that ICES,
unlike DCES and ECES, also disturbs numbers and
punctuation. Numbers, especially, are more diffi-
cult to recover. However, even at 80% disturbance
level, humans can, on average, correctly recover at
least 93% of all characters in the input text in all
conditions.

In summary, humans appear very good at under-
standing visual perturbations, and are almost per-
fectly robust to the easy perturbations of ECES.
Since adversarial attacks should have minimal im-
pact on humans (Szegedy et al., 2014), the good
performance of humans especially on ECES and
DCES makes these two spaces ideal candidates for
attacks on NLP systems.

5 Computational Experiments
We now evaluate the capabilities of SOTA neural
network models to deal with visual attacks in four
extrinsic evaluation tasks described in §5.1 and il-
lustrated in Table 4. Hyperparameters of all our
models are given in §A.2. We first examine the
robustness of all architectures to visual perturba-
tions in §5.2 and then evaluate different shielding
approaches in §5.3.

5.1 Tasks
G2P: As our first task, we consider the character-
level task of grapheme-to-phoneme (G2P) conver-
sion. It consists of transcribing a character in-
put stream into a phonetic representation. As
our dataset, we choose the Combilex pronuncia-
tion dataset of American English (Richmond et al.,

1639

Task Task Type Input Target / Label(s) Train/Dev/Test
G2P char-lvl ẉṙḛŧϲhȩđlȳ r E < @ d 5 i 5K/1K/1K
POS word-lvl . . . exᴛêŉᶁíng itŝ contraᶝẗ VBG PRP NN . . . 212K/44K/47K
Chunking word-lvl . . . exᴛêŉᶁíng itŝ contraᶝẗ B-VP B-NP I-NP . . . 212K/44K/47K
Toxic Comments sent-lvl Ḟǔĉǩ ôḟḟ , yoǔ âňtî - ŝeḿîẗîĉ ĉǔňẗ . toxic, obscene, insult 149K/10K/64K

Table 4: NLP tasks considered in this work, along with (perturbed) examples and data split statistics.

2009). We frame G2P as a sequence tagging task.
To do so, we first hard-align input and output
sequences using a 1-0,1-1,1-2 alignment scheme
(Schnober et al., 2016) in which an input character
is matched with zero, one, or two output characters.
Once this preprocessing is done, input and output
sequences have equal lengths and we can apply a
standard BiLSTM on character-level to the aligned
sequences (Reimers and Gurevych, 2017).

POS & Chunking: We consider two word-level
tasks. POS tagging associates each token with
its corresponding word class (e.g., noun, adjec-
tive, verb). Chunking groups words into syntac-
tic chunks such as noun and verb phrases (NP
and VP), assigning a unique tag to each word,
which encodes the position and type of the syn-
tactic constituent, e.g., begin-noun-phrase (B-NP).
We use the training, dev and test splits provided by
the CoNLL-2000 shared task (Sang and Buchholz,
2000) and use the same BiLSTM architecture as
above with SELMo/VELMo embeddings.

Toxic comment (TC) classification: A very re-
alistic use case for adversarial attacks is the toxic
comment classification task. One could easily
think of a scenario where a person with malicious
intent explicitly aims to fool automated methods
for detecting toxic comments or insults by obfus-
cating text with non-standard characters that are
still human-readable. We conduct experiments
on the TC classification task provided by Kag-
gle.6 It is a multi-label sentence classification
task with six classes, i.e., toxic, severe toxic, ob-
scene, threat, insult, identity hate. We use average
SELMo/VELMo embeddings as input to an MLP.

5.2 VIPER attacks
In Figure 2, we plot how various SOTA systems de-
grade as we perturb the test data using DCES. We
do not only include our own systems, but also ex-
isting SOTA models: Marmot (Müller et al., 2013)

6https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s∗
(p
)

p

POS
Chunk
G2P
TC

Figure 2: Degradation of SOTA systems for different
perturbation levels when attacked by VIPER(p,DCES).
The colored regions show how the performance of other
SOTA systems relate to ours (i.e., they all suffer from
similar degradation).

and Stanford POS tagger (SPT) (Manning et al.,
2014). Marmot is a feature-based POS tagger and
trained on our data splits. SPT is a bi-directional
dependency network tagger that mostly employs
lexical features. For SPT, we used the pretrained
English model provided by the toolkit. Further, we
include a FastText TC classifier which has achieved
SOTA performance.7 We additionally experiment
with word level dependency embeddings for POS
tagging and TC classification (Komninos and Man-
andhar, 2016).

To compare the performance of different tasks,
Figure 2 shows scores computed by:

s∗(p) =
s(p)
s(0)

,

where p is the perturbation level and s(p) is the
score for each task at p, measured in edit distance
for G2P, accuracy for POS tagging, micro-F1 for
chunking, and AUCROC for TC classification. We
invert the scores g of G2P by 1/g since lower
scores are better for edit distance. Thus, s∗(0) is
always 1 and s∗(p) is the relative performance com-
pared to the clean case of no perturbations.

We see that all systems degrade considerably.
For example, all three POS taggers have a perfor-
mance of below 60% of the clean score when 40%

7https://www.kaggle.com/yekenot/pooled-gru-fasttext

1640

of the input characters are disturbed. Chunking de-
grades even more strongly, and G2P has the highest
drop: 10% perturbation level causes a 40% perfor-
mance deterioration. This may be because G2P is
a character-level task and the perturbation of a sin-
gle character is analogous to perturbing a complete
word in the word-level tasks. Finally, TC classifica-
tion degrades least, i.e., only at p = 0.9 do we see
a degradation of 30% relative to the clean score.
These results appear to suggest that character-level
tasks suffer the most from our VIPER attacks and
sentence-level tasks the least. However, it is worth-
while pointing out that lower-bounds for individual
tasks may depend on the evaluation metric (e.g.,
AUCROC always yields 0.5 for majority class vot-
ing) as well as task-specific idiosyncrasies such as
the size of the label space.

We note that the degradation curves look virtu-
ally identical for both DCES or ECES perturba-
tions (given in §A.3). This is in stark contrast to
human performance, where ECES was much eas-
ier to parse than DCES, indicating the discrepan-
cies between human and machine text processing.

5.3 Shielding
We study four forms of shielding against VIPER
attacks: adversarial training (AT), visual character
embeddings (CE), AT+CE, and rule-based recov-
ery (RBR). For AT, we include visually perturbed
data at train time. We do not augment the training
data, but replace clean examples using VIPER in
the same way as for the test data. Based on pre-
liminary experiments with the G2P task, we ap-
ply VIPER to the training data using ptrain = 0.2.
Higher levels of ptrain did not appear to improve
performance. For CE, we use fixed ICEs, either
fed directly into a model (G2P) or via VELMo (all
other tasks). For AT+CE, we combine adversarial
training with visual embeddings. Finally, for RBR,
we replace each non-standard character in the input
stream with its nearest standard neighbor in ICES,
where we define the standard character set as a-zA-
Z plus punctuation.

Rather than absolute scores, we report differ-
ences between the scores in one of the shielding
treatments and original scores:

∆τ := σ∗(p)− s∗(p), σ∗(p) := σ(p)/s(0)

where σ(p) is the score for each task using a form
of shielding. The value ∆τ denotes the improve-
ment of the scores from shielding method τ over

the original scores without shielding. We normal-
ize σ(p) by the score s(0) of the systems with-
out shielding on clean data. We also note that our
test perturbations are unseen during training for
DCES; for ECES this would not make sense, be-
cause each character has only one nearest neighbor.
In the following, we report results mostly for DCES
and show the ECES results in §A.3. We highlight
marked differences between the results, however.

All tasks typically profit considerably from AT
(Figure 3 left). Chunking scores improve most;
e.g., at p = 0.5, σ∗ is 17 percent points (pp) higher
than s∗. AT does not help for G2P in the DCES
setting but it does help for ECES (see §A.3), where
test perturbations may have been seen during train-
ing. We conjecture that AT makes systems gen-
erally aware that the input can be broken in some
way and forces them to shield against such situa-
tions, an effect similar to dropout. However, such
shielding appears more difficult in character-level
tasks, where a missing token is considerably more
damaging than in word- or sentence-level tasks.

In Figure 3 (right), we observe that CE helps a
lot for G2P, but much less particularly for POS and
Chunking. We believe that for G2P, the visual char-
acter embeddings restore part of the input and thus
have considerable effect. It is surprising, however,
that visual embeddings have no positive effect for
both word-level tasks, and instead lead to small de-
teriorations. A possible explanation is that, as the
character embeddings are fed into the ELMo archi-
tecture, their effect is dampened. Indeed, we per-
formed a sanity check (see §A.5) to test how (co-
sine) similar a word or sentence w is to a perturbed
version w′ of w under both SELMo and VELMo.
We found that VELMo assigns consistently better
similarities but the overall gap is small.

We observe that the combined effect of AT and
CE (AT+CE, Figure 4 left) is always substantially
better than either of the two alone. For instance, at
p = 0.5, POS improves by about 20pp, while AT
alone had an effect of only 12pp and the effect of
CE was even negative. Thus, it appears that AT is
able to kick-start the benefits of CE, especially in
the case when they alone are not effective.

RBR is excellent for ECES (see §A.3). It has
a small negative effect on clean data, meaning
that there is some foreign material in English texts
which gets corrupted by RBR, but for any p > 0
the performance under RBR is almost on the level
of p = 0 for ECES. RBR is also consistently better

1641

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∆ A
T

p

POS
Chunk
TC
G2P

∆ C
E

p

POS
Chunk
TC
G2P

Figure 3: AT (with ICES replacements) and CE tested on DCES perturbed data. The colored regions show AT
(with random replacements).

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∆ A
T
+

C
E

p

POS
Chunk
TC
G2P

∆ R
B

R

p

POS
Chunk
TC
G2P

Figure 4: AT+CE (with ICES replacements) and RBR on DCES perturbed data. The colored regions show AT
(with random replacements).

than CE, even though both depend on ICES: CE in
a ‘soft’ way and RBR in a ‘hard’ way. Our best
explanation is that RBR is analogous to ‘machine
translating’ a foreign text into English and then ap-
plying a trained classifier, while CE is analogous to
a direct transfer approach (McDonald et al., 2011)
which trains in one domain and is then applied to
another. This causes a form of domain shift to
which neural nets are quite vulnerable (Ruder and
Plank, 2018; Eger et al., 2018a).

For DCES, RBR is outperformed by AT+CE,
which better mitigates the domain shift than CE,
except for TC.

We note that even with all our shielding ap-
proaches, the performance of the shielded sys-
tems is still considerably below the performance
on clean data at some perturbation levels. E.g., at
p = 0.9, AT+CE shielded Chunking has a score of
less than 60% of the clean performance. While it
may be partially due to our character embeddings
not being optimal (i.e., they assign low similarity to
major and minor variants of the same letter such as
ˢ and s, which could be improved by size-invariant
CNNs), a main reason for this could be the domain-
shift induced by the perturbations, for which even

AT cannot always help when attacks are unseen
during training. This is another major distinction
between human and machine processing.

6 Discussion
Random AT. We discussed that the effect of AT
may be similar to dropout. If so, AT with random
rather than visual character replacements should be
similarly effective. Indeed, the graphs in Figures 3
and 4 show that injecting random noise generally
improves the robustness, but not to the level of vi-
sually informed AT (exemplarily for POS/TC).

Error analysis. We analyze the cases in which
our perturbation with VIPER changes the predic-
tion to a wrong class. We perform our analysis
for TC as it represents a real-world attack scenario.
We define the toxicity level (TL) of a comment x
for a class y ∈ {1, . . . ,6} and model θ as TL(x) =
∑y θ(x,y), e.g., a comment x which has been clas-
sified as insult (probability 0.8) and obscene (prob-
ability 0.7) gets a TL of 1.5. We consider a suc-
cessful attack to decrease TL after perturbation.
VIPER with DCES and p = 0.1 achieves a suc-
cess rate of 24.1%—i.e., roughly one fourth of the
toxic comments receive a lower TL. In contrast, the

1642

Perturbation (CES) Perturbed Text Toxicity Level No Shielding AT CE AT+CE RBR
clean u are a gigantic faggot 4.00 3.29 3.16 2.93 3.11 3.57
VIPER(p,ECES) u are â gigantic faggoẗ 4.00 0.11 1.05 1.37 2.05 3.57
VIPER(p,DCES) u are a ʛigantic faggoȶ 4.00 0.82 1.18 3.36 3.16 1.69

clean he is also a faggot . 4.00 3.26 3.68 2.81 2.14 3.79
VIPER(p,ECES) ĥe is also a faggot . 4.00 3.39 3.70 2.64 2.23 3.79
VIPER(p,DCES) he is alᶊo a fagᶢoƭ . 4.00 0.48 1.48 1.55 1.78 0.40

Table 5: Two examples of toxic/non-toxic comments that show the effects of the different shielding methods. We
report the averaged sum over the six toxicity classes, e.g., 4.00 is equal to a positive example in four classes. p= 0.1.

impact on non-toxic comments is small—TL in-
creased in only 3.2% of the cases.

Table 5 shows sample comments and their TL
for different shielding and perturbation methods.
As can be seen, perturbing specific words (hot
words for TC) substantially reduces the TL score of
a non-shielded approach (e.g., from 3.29 to 0.11),
while perturbing ‘non-hot’ words like ‘he’ has lit-
tle effect. The shielding approaches help in these
show-cased examples to various degrees and the
shielding with AT+CE is more robust to stronger
attacks (higher visual dissimilarity) than RBR.

This illustrates that a malicious attacker may aim
to increase the success rate of an attack by only
perturbing offensive words (in the TC task). To
test whether VIPER benefits from perturbing such
hot words, we manually compiled a list of 20 hand-
selected offensive words (see §A.6) which we be-
lieve are indicators of toxic comments. We then
analyzed how often a perturbation of a word from
this list co-occurs with a successful attack. We
observe that in 55% of successful attacks, a word
from our list was among the perturbed words of the
comment. As our list is only a small subset of all
possible offensive words, the perturbation of hot
words may have an even stronger effect.

7 Conclusion
In this work, we considered visual modifications
to text as a new type of adversarial attack in NLP
and we showed that humans are able to reliably
recover visually perturbed text. In a number of
experiments on character-, word-, and sentence-
level, we highlighted the fundamental differences
between humans and state-of-the-art NLP systems,
which sometimes blatantly fail under visual at-
tack, showing that visual adversarial attacks can
have maximum impact. This calls for models that
have richer biases than current paradigm types do,
which would allow them to bridge the gaps in infor-
mation processing between humans and machines.

We have explored one such bias, visual encoding,
but our results suggest that further work on such
shielding is necessary in the future.

Our work is also important for system builders,
such as of toxic comment detection models de-
ployed by, e.g., Facebook and Twitter, who regu-
larly face visual attacks, and who might face even
more such attacks once visual character perturba-
tions are easier to insert than via the keyboard.
From the opposite viewpoint, VIPER may help
users retain privacy in online engagements and
when trying to avoid censorship (Hiruncharoen-
vate et al., 2015) by suggesting visually similar
spellings of words.

Finally, our work shows that the ‘brittleness’
(Belinkov and Bisk, 2018) of NLP extends beyond
MT and beyond word reordering or replacements,
a recognition that we hope inspires others to inves-
tigate more ubiquitous shielding techniques.

Acknowledgments
We thank the reviewers for helpful feedback. This
work has been supported by the German Re-
search Foundation (DFG) funded research train-
ing group “Adaptive Preparation of Information
form Heterogeneous Sources” (AIPHES, GRK
1994/1), the DFG-funded projects QA-EduInf (GU
798/18-1, RI 803/12-1), DIP (GU 798/17-1), the
German Federal Ministry of Education and Re-
search (BMBF) under the promotional references
16DHL1040 (FAMULUS) and by the Hessian
research excellence program “Landes-Offensive
zur Entwicklung Wissenschaftlich- Ökonomischer
Exzellenz” (LOEWE) as part of the a! - automated
language instruction project (No. 521/17-03). We
gratefully acknowledge support of NVIDIA Corp.
with the donation of the Tesla K40 GPU used for
this research. Calculations for this research were
also conducted on the Lichtenberg high perfor-
mance cluster of Technical University Darmstadt.

1643

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2890–2896. Association for Compu-
tational Linguistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy,
pages 39–57.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2013. One billion word benchmark for measuring
progress in statistical language modeling. Technical
report, Google.

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi,
and Cho-Jui Hsieh. 2018. Attacking visual language
grounding with adversarial examples: A case study
on neural image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 2587–2597.

Falcon Dai and Zheng Cai. 2017. Glyph-aware em-
bedding of chinese characters. In Proceedings of
the First Workshop on Subword and Character Level
Models in NLP, Copenhagen, Denmark, September
7, 2017, pages 64–69.

Timothy Dozat. 2016. Incorporating nesterov momen-
tum into adam. ICLR Workshop.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial examples
for text classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 2: Short Papers, pages 31–36.

Steffen Eger, Johannes Daxenberger, Christian Stab,
and Iryna Gurevych. 2018a. Cross-lingual argumen-
tation mining: Machine translation (and a bit of pro-
jection) is all you need! In Proceedings of the 27th
International Conference on Computational Linguis-
tics (COLING 2018).

Steffen Eger, Paul Youssef, and Iryna Gurevych. 2018b.
Is it Time to Swish? Comparing Deep Learning Ac-
tivation Functions Across NLP tasks. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4415–4424.
Association for Computational Linguistics.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Chaya Hiruncharoenvate, Zhiyuan Lin, and Eric
Gilbert. 2015. Algorithmically bypassing censor-
ship on sina weibo with nondeterministic homo-
phone substitutions. In Proceedings of the Ninth In-
ternational Conference on Web and Social Media,
ICWSM 2015, University of Oxford, Oxford, UK,
May 26-29, 2015, pages 150–158.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective api built for detecting toxic comments.
arXiv preprint arXiv:1702.08138.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885. Associ-
ation for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 2021–2031.

Alexandros Komninos and Suresh Manandhar. 2016.
Dependency based embeddings for sentence classifi-
cation tasks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1490–1500.

Frederick Liu, Han Lu, Chieh Lo, and Graham Neu-
big. 2017. Learning character-level compositionality
with visual features. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 2059–2068.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074. Association for
Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Ryan T. McDonald, Slav Petrov, and Keith B. Hall.
2011. Multi-source transfer of delexicalized de-
pendency parsers. In Proceedings of the 2011

1644

Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2011, 27-31 July 2011,
John McIntyre Conference Centre, Edinburgh, UK,
A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 62–72.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 322–332, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. 2016. Distillation as a
defense to adversarial perturbations against deep neu-
ral networks. In 2016 IEEE Symposium on Security
and Privacy, pages 582–597.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Report-
ing Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 338–348, Copenhagen, Denmark.

Korin Richmond, Robert A. J. Clark, and Susan Fitt.
2009. Robust LTS rules with the combilex speech
technology lexicon. In INTERSPEECH, pages
1295–1298. ISCA.

Nestor Rodriguez and Sergio Rojas-Galeano. 2018.
Shielding google’s language toxicity model
against adversarial attacks. arXiv preprint
arXiv:1801.01828.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054. Associ-
ation for Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task chunk-
ing. In Fourth Conference on Computational Natu-
ral Language Learning, CoNLL 2000, and the Sec-
ond Learning Language in Logic Workshop, LLL
2000, Held in cooperation with ICGI-2000, Lisbon,
Portugal, September 13-14, 2000, pages 127–132.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string transla-
tion tasks. In Proceedings of COLING 2016, the 26th

International Conference on Computational Linguis-
tics: Technical Papers, pages 1703–1714. The COL-
ING 2016 Organizing Committee.

Daiki Shimada, Ryunosuke Kotani, and Hitoshi Iy-
atomi. 2016. Document classification through
image-based character embedding and wildcard
training. In 2016 IEEE International Conference on
Big Data, BigData 2016, Washington DC, USA, De-
cember 5-8, 2016, pages 3922–3927.

Sameer Singh, Carlos Guestrin, and Marco Túlio
Ribeiro. 2018. Semantically equivalent adversarial
rules for debugging NLP models. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 1: Long Papers,
pages 856–865.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Stephan Zheng, Yang Song, Thomas Leung, and Ian
Goodfellow. 2016. Improving the robustness of deep
neural networks via stability training. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2016), pages 4480–
4488.

A Appendices
A.1 SELMo and VELMo Hyperparameters
Differences to the original ELMo as in (Peters
et al., 2018) are:

• We exclude CNN filters of size 6 and 7.
• The maximum characters per token is 20 (in-

stead of 50).
• The LSTM dimensionality is 2048 (instead of

4096).
• Our projection dimensionality is 256 (instead

of 512).
• We train the models for 5 epochs (instead of

training it for 10 epochs).

A.2 Task Settings
G2P: We randomly draw most hyperparameters
for the sequence tagging BiLSTM architecture
(Reimers and Gurevych, 2017) that we use for G2P,
e.g., those concerning the optimizer used, learn-
ing and dropout rates. We hand-set the number
of hidden recurrent layers to 1, and its size to 50.
We use early stopping and set the maximum num-
ber of epochs for training to 50. As our dataset,
we choose the Combilex pronunciation dataset of
American English (Richmond et al., 2009). We

1645

randomly draw our train/dev/test splits from the
whole corpus. Examples and split sizes are given
in Table 4. We report edit distance between de-
sired pronunciations and predicted pronunciations
as metric. We report the edit distance averaged
across all 1k test strings, averaged over 5 random
initializations of all weight matrices.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s∗
(p
)

p

POS
Chunk
G2P
TC

Figure 5: Degradation of SOTA systems for different
perturbation levels when attacked by VIPER(p,ECES).
The colored regions show how the performance of other
SOTA systems relate to ours.

POS & Chunking: We use the training, dev and
test splits provided by the CoNLL-2000 shared
task (Sang and Buchholz, 2000) for both tasks. We
have used a readily available LSTM-CRF sequence
tagger (Reimers and Gurevych, 2017) as above, but
adapted for ELMo-type input embeddings, with
default hyperparameter settings. We run each ex-
perimental setting 10 times, and report the aver-
age, measured as accuracy for POS and micro-F1
for Chunking. For both tasks, we have used two
stacked BiLSTM-layers with 100 recurrent units
and dropout probability of 0.5. Mini-batch size is
chosen as 32. We used gradient clipping and early
stopping to prevent overfitting. Adam is used as
the optimizer.

Toxic comment classification: We use the train
and test splits provided by the task organizers. For
tuning our models, we split off a development set
of 10k sentences from the training data. As in
POS&Chunking, we train models on clean and per-
turbed data using SELMo and VELMo representa-
tions. We obtain the sentence representation for a
single sentence by averaging ELMo word embed-
dings over all tokens. We then train an MLP which
we tune separately for each SELMo and VELMo
embedding using random grid search with 100 dif-
ferent configurations. We tune the following hy-
perparameters separately for each hidden layer: the

depth of the neural network, i.e., one, two, or three
hidden layers; the size of the hidden layer (128,
256, 512, or 1024); the amount of dropout after
each layer (0.1 - 0.5); the activation functions for
each hidden layer (tanh, sigmoid, or relu) (Eger
et al., 2018b). Both models are trained for 100
epochs with an early stopping after 10 epochs with-
out any substantial improvement and use Nesterov-
accelerated Adaptive Moment Estimation (Dozat,
2016) for optimization. Model performance is
measured as proposed by the task organizers using
the area under the receiver operating characteris-
tics curve (AUCROC).

A.3 ECES Results
Figure 5 shows how the performances of various
SOTA systems degrade on ECES settings. Fig-
ures 6 and 7 show our shielding results on ECES
perturbed data. As indicated in the main paper,
RBR is able to recover ECES data almost perfectly
regardless of the perturbation level. This is be-
cause ECES only perturbs with a single nearest
neighbor, which in addition is visually extremely
similar to the underlying original, and thus, RBR
can almost completely undo the perturbations.

A.4 AT+CE vs. AT or CE
Figure 8 compares AT+CE against either AT or
CE. For this, we compute the difference in the per-
formance decrease normalized by the test perfor-
mance on the clean data. As can be seen, AT+CE
almost constantly outperforms either one of both,
especially on word- and sentence-level tasks.

A.5 Intrinsic Evaluation
To analyze the differences between VELMo and
SELMo, we investigate whether the models learn
similar word embeddings for a clean sentence and
its visually perturbed counterpart. We compare
sentence embeddings which we obtain by averag-
ing over the SELMo or VELMo word embeddings
of a sentence (clean or perturbed).

Setup Given a sentence embedding σ of a clean
sentence and an embedding σ ′ of its visually per-
turbed counterpart, obtained by either averaging
over VELMo (indicated by subscript v) or SELMo
(indicated by subscript s) word embeddings, we
test if the condition

cos(σv,σ ′
v)> cos(σs,σ ′

s) (1)

is met (with cos being the cosine similarity).

1646

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∆ A
T

p

POS
Chunk
TC
G2P

∆ C
E

p

POS
Chunk
TC
G2P

Figure 6: AT (ICES) and CE tested on ECES perturbed data. The colored regions show AT (Random). The y axis
of ∆AT spans −0.15-0.3 for better visualization.

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∆ A
T
+

C
E

p

POS
Chunk
TC
G2P

∆ R
B

R

p

POS
Chunk
TC

Figure 7: AT+CE (ICES) and RBR on ECES perturbed data. The colored regions show AT (Random).

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∆ A
T
+

C
E
−

m
ax
{∆

A
T
,∆

C
E
}

p

DCES

POS
Chunk
TC
G2P

∆ A
T
+

C
E
−

m
ax
{∆

A
T
,∆

C
E
}

p

ECES

POS
Chunk
TC
G2P

Figure 8: AT+CE (ICES) vs max(AT,CE) for DCES and ECES perturbed test data.

1647

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.2 0.4 0.6 0.8 1
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.2 0.4 0.6 0.8 1

R

p

(a)

DCES
ICES co

s(
σ v

,σ
′ v)
−

co
s(

σ s
,σ

′ s)

p

(b)

DCES

co
s(

σ v
,σ

′ v)
−

co
s(

σ s
,σ

′ s)

p

(c)

ICES

Figure 9: Results of the intrinsic evaluation. (a) shows the ratio of cases in which the condition in Eq. (1) is met
(‘R’). (b) and (c) show the average difference of the cosine similarities when sentences are perturbed with (b) DCES
and (c) ICES.

For our experiments, we randomly sample 1000
sentences from the Toxic Comments dataset (see
§5.1) and perturb them with VIPER(p, CES) where
CES ∈ {ICES, DCES}. We then count the number
N of cases in which the above condition is met with
regards to the chosen CES and the value of p, and
report the ratio R = N/1000.

Results The results are given in Figure 9. In
Figure 9(a) we observe that the VELMo embed-
dings of a clean sentence and its perturbed coun-
terpart are in many cases more similar than the
ones of SELMo. For larger values of p, this ra-
tio substantially increases from 70% to 95% (with
ICES), which shows that VELMo is better suited
to capture the similarity to the source sentence, es-
pecially in cases with a strong perturbation.

In Figures 9(b) and (c) we show the (mean)
difference cos(σv,σ ′

v) − cos(σs,σ ′
s). Here, we

only observe a small positive effect in favor of
VELMo, showing that the advantage of VELMo
over SELMo is not substantial. We hypothesize
that this is due to the contextual information which
is utilized throughout the ELMo architecture, al-
lowing SELMo to infer individual characters from
the context of the word and the sentence. However,
our results also show that the advantage of VELMo
over SELMo is consistent.

Differences in similarities can also be affected
by model training or the model architecture—e.g.,
in an extreme case a model could output the same
embedding for every word/sentence. This would
result in a ‘perfect’ cosine similarity, which would
be advantageous in the previous experiment. Thus,
we perform an additional experiment where we ex-
amine if

cos(σv,σ ′
v)> cos(σv,ρv) (2)

DCES ICES
p VELMo SELMo VELMo SELMo

0.1 0.99 0.98 1.00 0.97
0.2 0.98 0.84 0.98 0.77
0.4 0.81 0.38 0.85 0.25
0.6 0.60 0.10 0.63 0.07
0.8 0.42 0.04 0.49 0.03
1.0 0.34 0.01 0.39 0.01

Table 6: Results of the intrinsic evaluation where we
compare clean sentences to their perturbed counterparts
as well as randomly chosen sentences. The numbers
show the ratio of cases where clean sentences are more
similar to their perturbed counterparts than the ran-
domly chosen sentences.

holds, where ρ is a randomly sampled sentence
from the Toxic Comments dataset (with no pertur-
bation). The same experiment is also performed
for SELMo.

The results in Table 6 show that for both models
with p = 0.1 the original sentence is in 97–100%
of the cases more similar to its perturbed counter-
part than the randomly chosen sentence. As the
perturbation probability increases, VELMo has a
clear advantage over SELMo. E.g., if we perturb
all characters in a sentence (p = 1.0), the SELMo
embeddings of the perturbed sentence are in 1%
of the cases more similar to the original sentence
whereas this is the case for more than 34–39% for
VELMo. Thus, VELMo embeddings better cap-
ture similarity between visually similar words.

A.6 List of Hand-selected Curse Words
arrogant, ass, bastard, bitch, dick, die, fag, fat, fuck, gay, hate,
idiot, jerk, kill, nigg*8, shit, stupid, suck, troll, ugly

8Due to several variations in the data, we match against
nigg* instead of the whole word.

