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Abstract

In the principles-and-parameters framework,
the structural features of languages depend
on parameters that may be toggled on or off,
with a single parameter often dictating the
status of multiple features. The implied co-
variance between features inspires our prob-
abilisation of this line of linguistic inquiry—
we develop a generative model of language
based on exponential-family matrix factorisa-
tion. By modelling all languages and fea-
tures within the same architecture, we show
how structural similarities between languages
can be exploited to predict typological features
with near-perfect accuracy, outperforming sev-
eral baselines on the task of predicting held-
out features. Furthermore, we show that lan-
guage embeddings pre-trained on monolingual
text allow for generalisation to unobserved lan-
guages. This finding has clear practical and
also theoretical implications: the results con-
firm what linguists have hypothesised, i.e. that
there are significant correlations between typo-
logical features and languages.

1 Introduction

Linguistic typologists dissect and analyse lan-
guages in terms of their structural properties (Croft,
2002). For instance, consider the phonological
property of word-final obstruent decoding: Ger-
man devoices word-final obstruents (Zug is pro-
nounced /zuk/), whereas English does not (dog is
pronounced /d6g/). In the tradition of generative
linguistics, one line of typological analysis is the
principles-and-parameters framework (Chomsky,
1981), which posits the existence of a set of univer-
sal parameters, switches as it were, that languages
toggle. One arrives at a kind of factorial typol-
ogy, to borrow terminology from optimality theory
(Prince and Smolensky, 2008), through different
settings of the parameters. Within the principle-
and-parameters research program, then, the goal is

Figure 1: Correlations between selected typological
parameters. Feature values are classified according
to head-directionality (head-initial +, head-final -, no
dominant order o). For instance, ++ under Affixation
means strongly suffixing.

to identify the parameters that serve as axes, along
which languages may vary.

It is not enough, however, to simply write down
the set of parameters available to language. In-
deed, one of the most interesting facets of typol-
ogy is that different parameters are correlated. To
illustrate this point, we show a heatmap in Fig-
ure 1 that shows the correlation between the values
of selected parameters taken from a typological
knowledge base (KB). Notice how head-final word
order, for example, highly correlates with strong
suffixation. The primary contribution of this work
is a probabilisation of typology inspired by the
principles-and-parameters framework. We assume
a given set of typological parameters and develop a
generative model of a language’s parameters, cast-
ing the problem as a form of exponential-family ma-
trix factorisation. We observe a binary matrix that
encodes the settings of each parameter for each lan-
guage. For example, the Manchu head-final entry
of this matrix would be set to 1, because Manchu
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is a head-final language. The goal of our model is
to explain each entry of matrix as arising through
the dot product of a language embedding and a
parameter embedding passed through a sigmoid.

We test our model on The World Atlas of
Language Structures (WALS), the largest available
knowledge base of typological parameters at the
lexical, phonological, syntactic and semantic
level. Our contributions are: (i) We develop
a probabilisation of typology inspired by the
principles-and-parameters framework. (ii) We in-
troduce the novel task of typological collaborative
filtering, where we observe some of a language’s
parameters, but hold some out. At evaluation time,
we predict the held-out parameters using the gen-
erative model. (iii) We develop a semi-supervised
extension, in which we incorporate language
embeddings output by a neural language model,
thus improving performance with unlabelled data.
Indeed, when we partially observe some of the
typological parameters of a language, we achieve
near-perfect (97%) accuracy on the prediction of
held-out parameters. (iv) We perform an extensive
qualitative and quantitative analysis of our method.

2 Typology in Generative Grammar

What we will present in this paper is a generative
model that corresponds to a generative tradition
of research in linguistic typology. We first outline
the technical linguistic background necessary for
the model’s exposition. Chomsky famously argued
that the human brain contains a prior, as it were,
over possible linguistic structures, which he termed
universal grammar (Chomsky, 1965). The con-
nection between Chomsky’s Universal Grammar
and the Bayesian prior is an intuitive one, but the
earliest citation we know for the connection is
Eisner (2002, §2). As a theory, universal grammar
holds great promise in explaining the typological
variation of human language. Cross-linguistic
similarities and differences may be explained
by the influence universal grammar exerts over
language acquisition and change. While universal
grammar arose early on in the writtings of
Chomsky, early work in generative grammar
focused primarily on English (Harris, 1995).
Indeed, Chomsky’s Syntactic Structures contains
exclusively examples in English (Chomsky, 1957).
As the generative grammarians turned their focus
to a wider selection of languages, the principles
and parameters framework for syntactic analysis

rose to prominence. Given the tight relationship
between the theory of universal grammar and
typology, principles and parameters offers a fruitful
manner in which to research typological variation.

The principles and parameters takes a parametric
view of linguistic typology. The structure of hu-
man language is governed by a series of principles,
which are hard constraints on human language. A
common example of a principle is the requirement
that every sentence has a subject, even if one that
is not pronounced; see the discussion on the pro-
drop parameter in Carnie (2013). Principles are
universally true for all languages. On the other
hand, languages are also governed by parameters.
Unlike principles, parameters are the parts of lin-
guistic structure that are allowed to vary. It is useful
to think of parameters as attributes that can take
on a variety of values. As Chomsky (2000) him-
self writes “we can think of the initial state of the
faculty of language as a fixed network connected
to a switch box; the network is constituted of the
principles of language, while the switches are the
options to be determined by experience. When the
switches are set one way, we have Swahili; when
they are set another way, we have Japanese. Each
possible human language is identified as a particu-
lar setting of the switches-a setting of parameters,
in technical terminology.”

What are possible parameters? Here, in our for-
malisation of the parameter aspect of the principles-
and-parameters framework, we take a catholic view
of parameters, encompassing all areas of linguis-
tics, rather than just syntax. For example, as we
saw before, consider the switch of devoicing word-
final obstruents a parameter. We note that while
principle-and-parameters typology has primarily
been applied to syntax, there are also interesting ap-
plications to non-syntactic domains. For instance,
van Oostendorp (2015) applies a parametric ap-
proach to metrical stress in phonology; this is in
line with our view. In the field of linguistic ty-
pology, there is a vibrant line of research, which
fits into the tradition of viewing typological param-
eters through the lens of principles and parame-
ters. Indeed, while earlier work due to Chomsky
focused on what have come to be called macro-
parameters, many linguists now focus on micro-
parameters, which are very close to the features
found in the WALS dataset that we will be mod-
elling (Baker, 2008; Nicolis and Biberauer, 2008;
Biberauer et al., 2009). This justifies our viewing
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` SOV · · · SVO Str. Pref. · · · Str. Suff.



eng 1 0 0 0 0 1

nld 0 1 0 0 0 1

deu 0 1 0 0 0 1
· · · · · · · · ·
vie 0 0 1 0 1 0

tur 0 1 0 0 0 1

mrd 1 0 0 − − −

Figure 2: Example of training and evaluation por-
tions of a feature matrix, with word order features
(81A, SOV, · · · ,SVO) and affixation features (26A,
Strongly Prefixing, · · · ,Strongly Suffixing). We train
on the examples highlighted in blue, evaluate on the ex-
amples highlighted in red, and ignore those which are
not covered in WALS highlighted in green.

WALS through the lens of principles and parame-
ters, even though the authors of WALS adher to the
functional-typological school.1

Notationally, we will represent the parameters
as a vector π = [π1, . . . , πn]. Each typological
parameter πi is a binary variable; for instance, does
the language admit word-final voiced obstruents?

3 A Generative Model of Typology

We now seek a probabilistic formalisation of the
linguistic theory presented in §2; specifically, for
every language `, we seek to explain the observed
binary vector of parameters π`: π`i = 1 indicates
that the ith parameter is “on” in language `. The
heart of our model will be quite simple: every lan-
guage ` will have a language embedding λ` ∈ Rd
and every parameter will have a parameter embed-
ding eπi ∈ Rd. Now, π`i ∼ sigmoid(e>πiλ

`).
This model also takes inspiration from work in

relation extraction (Riedel et al., 2013). Writing
the joint distribution over the entire binary vector
of parameters, we arrive at

p(π` | λ`) =
|π|∏
i=1

p(π`i | λ`) (1)

=

|π|∏
i=1

sigmoid
(
e>πiλ

`
)

(2)

=

|π|∏
i=1

1

1 + exp(−e>πiλ
`)

(3)

1For an overview of differences between these schools, we
refer the reader to Haspelmath (2008).

We define the the prior over language embeddings:

p(λ`) = N
(
0;σ2I

)
(4)

where µ is the mean of the Gaussian whose co-
variance is fixed at I . Now, give a collection of
languages L, we arrive at the joint distribution∏

`∈L
p(π`,λ`) =

∏
`∈L

p(π` | λ`) · p(λ`) (5)

Note that p(λ`) is, spiritually at least, a universal
grammar: it is the prior over what sort of languages
can exist, albeit encoded as a real vector. In the
parlance of principles and parameters, the prior
represents the principles.

Then our model parameters are Θ =
{eπ1 , . . . , eπ|π| ,λ

1, . . . ,λ|L|}. Note that for the re-
mainder of the paper, we will never shorten ‘model
parameters’ to simply ‘parameters’ to avoid am-
biguity. We will, however, refer to ‘typological
parameters’ as simply ‘parameters.’

We can view this model as a form of exponential-
family matrix factorisation (Collins et al., 2001).
Specifically, our model seeks to explain a binary
matrix of parameters. We consider such matrices
as the one in Figure 2, which depicts some of the bi-
narised feature values for word order and affixation
for English, Dutch, German, Vietnamese, Turkish,
and Marind. We will have some parameters seen
during training (highlighted in blue), some we use
for evaluation (highlighted in red), and some which
are unknown due to the nature of WALS (high-
lighted in green). Crucially, the model in eq. (5)
allows us to learn the correlations between typolog-
ical parameters, as illustrated in Figure 1. We train
the model over 10 epochs with a batch size of 64,
using the Adam optimiser (Kingma and Ba, 2014)
and L2 regularisation (0.1), which corresponds to
the Gaussian prior with variance σ2 = 10.

4 A Semi-Supervised Extension

A natural question we might ask is if our model can
exploit unlabelled monolingual data to improve its
performance. We explain how we can induce lan-
guage embeddings from unlabelled data below and
then incorporate these into our model through the
prior eq. (4). This results in a semi-supervised
model, as we incorporate an unsupervised pre-
training step. This is motivated by the fact that
related languages tend to exhibit correlations be-
tween each other. Figure 3 shows the distribution



1532

Figure 3: Distribution of feature values across three of
the biggest language families in WALS. The represen-
tation of feature values is described in Figure 1.

of a few features within the Semitic, Oceanic, and
Indic language branches. Notice, for instance, the
skewed distribution of feature values within the
Indic branch: languages in that branch are almost
exclusively head-initial with respect to word order,
order of adposition and noun, and affixation.

4.1 Distributional Language Embeddings

Words can be represented by distributed word rep-
resentations, currently often in the form of word
embeddings. Similarly to how words can be em-
bedded, so can languages, by associating each lan-
guage with a real-valued vector known as a lan-
guage embedding. Training such representations
as a part of a multilingual model allows us to in-
fer similarities between languages. This is due to
the fact that in order for multilingual parameter
sharing to be successful in this setting, the neural
network needs to use the language embeddings to
encode features of the languages. Previous work
has explored this type of representation learning in
various tasks, such as NMT (Malaviya et al., 2017),
language modelling (Tsvetkov et al., 2016; Östling
and Tiedemann, 2017), and tasks representing mor-
phological, phonological, and syntactic linguistic
levels (Bjerva and Augenstein, 2018a).

In the context of computational typology, rep-
resentations obtained through language modelling
have been the most successful (Östling and Tiede-
mann, 2017). This approach is particularly inter-
esting since unlabelled data is available for a large
portion of the world’s languages, meaning that high
quality language embeddings can be obtained for
more than 1,000 of the world’s languages.

Figure 4: Char LSTM LM with language embeddings
concatenated to char embeddings at every time step.

4.2 Language Embeddings through LMs
In this work, we use a language modelling objec-
tive to pre-train language embeddings; we train a
character-level neural language model with a dis-
tributed language embedding of language `. Specif-
ically, we use the model of Östling and Tiedemann
(2017), visualised in Figure 4. The model is a
stacked character-based LSTM (Hochreiter and
Schmidhuber, 1997) with two layers, followed by
a softmax output layer. In order to accommodate
the language embeddings, this relatively standard
model is modified such that language embeddings
are concatenated to the character embeddings at
each time step. This method returns a language
embedding, which we denote λ̃

`
to distinguish it

from the language embeddings λ` discussed in the
previous section. We use the same hyperparame-
ter settings as Östling and Tiedemann (2017), with
1024-dimensional LSTMs, 128-dimensional char-
acter embeddings, and 64-dimensional language
embeddings. Training is done with Adam (Kingma
and Ba, 2014), and using early stopping.

In the semi-supervised regime, we use the esti-
mated language embedding λ̃

`
from the language

model and define the model as follows

p(π` | λ̃`) =
|π|∏
i=1

sigmoid(e>πiλ̃
`
) (6)

omitting the learned language embedding λ in the
matrix factorisation. The likelihood of this model
is now convex in the parameter embeddings. In
contrast to the full matrix factorisation setting, here,
all language-specific knowledge must come from
an external source, namely, the unlabelled text.

5 A Novel Task: Typological
Collaborative Filtering

In this section, we introduce a novel task for linguis-
tic typology, which we term typological collabo-
rative filtering. Typological KBs such as WALS
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are known to be incomplete. In other words, not
all parameters π`i are observed for all languages.
Thus, a natural question we may ask how well our
models can predict unobserved (or held-out) pa-
rameters. We view this problem as analogous to
collaborative filtering (CF). Our task is similar to
knowledge base population or completion in that
we start off with a partly populated KB which we
aim to complete, but differs in the aspect that we
attempt to infer values from correlations between
features and similarities between languages, rather
than inferring these from a collection of texts.

CF is a common technique for recommender sys-
tems (see §9). Consider the task of recommending
a new movie to a customer. Given which movies
different users have liked (equivalent to a typolog-
ical parameter being ‘on’) and which movies the
user has disliked (equivalent to the typological pa-
rameter being ‘off’), a CF model tries to figure out
the (latent) preferences of each user and the latent
genre of each movie. In our setting, the languages
are analogous to users and movies are analogous
to parameters. Our model in eq. (5) seeks to learn
what latent properties of languages and what latent
properties of parameters explain their correlations.

6 Data

WALS. The World Atlas of Language Structures
(WALS) is a large knowledge base of typological
properties at the lexical, phonological, syntactic
and semantic level on which we will run our exper-
iments. The documentation of linguistic structure
is spread throughout a wide variety of academic
works, ranging from field linguistics to grammars
describing the nuances of individual grammatical
uses. KB creation is a laborious tasks as it in-
volves distilling knowledge into a single, standard-
ised resource, which, naturally, will be incomplete,
prompting the need for methods to complete them
(Min et al., 2013). In the case of WALS, few lan-
guages have all values annotated for all of the prop-
erties. In this section, we offer a formalisation of
typological KBs to allow for our development of
a probabilistic model over vectors of properties.
WALS, for instance, contains n = 202 different
parameters (Dryer and Haspelmath, 2013).

Binarisation of WALS. Many common typolog-
ical KBs, including WALS, the one studied here,
contain binary as well as non-binary parameters.
To deal with this, we binarise the KB as follows:
Whenever there is a typological parameter that

takes ≥ 3 values, e.g., ‘Feature 81A: Order of
Subject, Object and Verb’ which takes the 7 values
‘SOV’, ‘SVO’, ‘VSO’, ‘VOS’, ‘OVS’, ‘OSV’,
‘No dominant order’, we introduce that many
binary parameters. At test time, we get non-binary
predictions by using a simple decoder that returns
the arg max over the predicted probabilities for the
binary features.

As each typological parameter with n ≥ 3 fea-
ture values is coded as a one-hot binary vector of
length n, we need to make sure that we do not mix
a single typological parameter for a language into
the training and test sets. This is visualised in Fig-
ure 2, where we train on the blue squares, i.e., the
binarised 81A feature for for English, and the 26A
feature for Dutch, as well as all features for all non-
Germanic languages. The model is then evaluated
on the held-out features for Germanic highlighted
in red, i.e., 26A for English, 81A for Dutch, and
both of these for German. This is important, as
knowing that a language is SVO would make it
trivial to infer that it is not, e.g., SOV.

Unlabelled multilingual data. To induce
language embeddings, we need a considerable
amount of multilingual unlabelled data. We use
an in-house version of the massively multilingual
Bible corpus, so as to have comparable data
for all languages, although parallel data is not
a strict necessity for our method.2 We train the
multilingual language model on a collection of
975 languages, each with approximately 200,000
tokens available. We only train on languages
for which the symbol size is relatively modest, a
criterion which we fulfil by only using translations
with Latin, Cyrillic, and Greek alphabets.

Language used in the bible differs substantially
from most modern language use, which would be a
challenge if one were interested in transferring the
language model itself. Here, we are only interested
in the distributed language embeddings for each
language `. It is safe to assume that the typolog-
ical features underlying the texts we use will be
representative of those coded in WALS, hence the
domain should not matter much and the method
should work equally well given any domain of in-
put texts for the unsupervised training of language
embeddings.

2Some languages available via http://homepages.
inf.ed.ac.uk/s0787820/bible/
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Figure 5: F1 score for feature prediction separated by
macroarea with varying in-branch training data.

7 Experiments

7.1 General Experimental Setup

As described in §6, we binarise WALS. In order
to compare directly with our semi-supervised
extension, we limit our evaluation to the subset
of languages which is the intersection of the
languages for which we have Bible data, and the
languages which are present in WALS. Finally,
we observe that some languages have very few
features encoded, and some features are encoded
for very few languages. For instance, feature 10B
(Nasal Vowels in West Africa), is only encoded for
a total of 40 languages, and only one feature value
appears for more than 10 languages. Because of
this, we restrict our evaluation to languages and
feature values which occur at least 10 times. Note
that we evaluate on the original parameters, and
not the binarised ones.

Our general experimental set-up is as follows.
We first split the languages in WALS into each lan-
guage branch (genus using WALS terminology).
This gives us, e.g., a set of Germanic languages,
a set of Romance languages, a set of Berber lan-
guages, and so on. (We note that this does not
correspond to the notion of a language family, e.g.,
the Indo-European language family.) We wish to
evaluate on this type of held-out set, as it is both rel-
atively challenging: If we know the parameters of
Portuguese, predicting the parameters for Spanish
is a much easier task. This setup will both give us
a critical estimate of how well we can predict fea-
tures overall, in addition to mimicking a scenario
in which we either have a poorly covered language
or branch, which we wish to add to WALS.

7.2 Typological Collaborative Filtering

We evaluate our method for typological collabo-
rative filtering on each language branch in WALS
in a series of experiments. Given a branch B (a
set of languages), we randomly select 80% of the
feature-language combinations from the languages
` ∈ B, which we use for evaluation (e.g. those
highlighted in red in Figure 2). The remaining 20%
is either not considered, or (partially) used for train-
ing, as we run experiments in which we train on
(0, 1, 5, 10, 20)% relative of the held-out data. The
idea behind this is that it should be very difficult
to predict features if nothing is known for a lan-
guage at all, whereas knowing a few features of
a language, or of related languages, should allow
the model to take advantage of the strong corre-
lations between features (Figure 1) and between
languages (Figure 3). We train on all data in WALS
for languages which are not in the current evalua-
tion branch under consideration.

Each experiment is then an evaluation of how
well we can predict features for a completely or
relatively unseen language family. Evaluation is
done across the branches in WALS with more than
four languages represented, after filtering away lan-
guages for which we have fewer than 10 features
available. This amounts to a total of 36 branches,
and 448 languages. We repeat each experiment 5
times per language branch, for each proportion of
in-branch training data in (0, 1, 5, 10, 20)%, yield-
ing a total of 900 experiment runs. The results
reported are the mean across these runs.

Figure 5 shows the micro F1 score we obtain
averaged across macroareas. The bars indicate
95% confidence intervals. We can see that, with
access to 20% of the in-branch training data, we
can predict features at above 90% F1 score regard-
less of macroarea. Prediction generally is more
challenging for languages in the macroarea Africa.
This can be explained by, e.g., contrasting with the
Eurasian macroarea. Whereas the latter includes
branches which are relatively uncontroversial, such
as Germanic and Slavic languages, this is not the
case with the former. One such example is Bongo-
Bagirmi (one of the evaluation branches, spoken in
Central Africa), for which there is poor agreement
in terms of classification (Bender, 2000).

7.3 Semi-supervised extension

We next evaluate the semi-supervised extension,
which requires unlabelled texts for a large amount
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Figure 6: F1 scores across all held-out language fami-
lies, comparing pretraining with no pretraining.

of languages, although the domain of these texts
should not matter much. This allows us to take ad-
vantage of correlations between similar languages
to point the model in the right direction. Even with
1% training data, it may be very useful for a model
to know that, e.g., German and Dutch are grammat-
ically very similar. Hence, if the 1% training data
contains features for Dutch, it should be quite easy
for the model to learn to transfer these to German.

Figure 6 shows results with pre-training. With-
out any in-branch training data, using pretrained
embeddings does not offer any improvement in
prediction power. This can be explained by the fact
language embeddings are updated during training,
which leads to a drift in the representations present
in the training material. This was chosen since
not updating the representations yielded poor
performance in all settings explored. We hypoth-
esise that this is because, although a language
modelling objective offers a good starting point
in terms of encoding typological features, it is not
sufficient to explain the typological diversity of
languages. For instance, a language model should
hardly care about the phonological nature of a
language. This is in line with previous work which
shows that the linguistic nature of the target task
is important when predicting typological features
with language embeddings (Bjerva and Augenstein,
2018a). However, once we have access to > 5%
of in-branch training data, language embeddings
offers a substantial improvement, e.g. an F1 error
reduction of more than 50% with access to 10%
of the in-branch data (see Table 1 and Table 3 for
per-branch results in the appendix). This shows
that we can partially aid a typologist’s work by
utilising unannotated data.

In-branch train % Freq. F1 Indiv. pred. F1 T-CF F1 SemiSup F1

0.00 0.2950 0.2990 0.3998 0.3916
0.01 0.2949 0.2976 0.4578 0.5263
0.05 0.2947 0.2970 0.6552 0.7641
0.10 0.2945 0.2971 0.7807 0.9040
0.20 0.2938 0.2973 0.8835 0.9767

Table 1: Aggregate results w. 0-20% relative use
of in-branch training data. Columns show: most fre-
quent class (Freq.), individual prediction per feature
with language-embeddings (Individual pred.), typolog-
ical collaborative filtering (T-CF), semi-supervised ex-
tension (SemiSup). For standard deviations across runs
and per-branch results, see appendix.

7.4 Quantitative comparison

In addition to evaluating our method of typologi-
cal CF, we compare to some baselines drawn from
earlier work. First, we report a most frequent value
baseline. As many typological features are heavily
skewed, this is quite high already. For instance, de-
faulting to the most frequent value for word order
(i.e. SVO) would yield an accuracy of 41% (Freq.
in Table 1). A more involved baseline is Bjerva
and Augenstein (2018a), who use pre-trained lan-
guage embeddings in a k-NN classifier trained on
individual WALS features (Individual pred. in
Table 1). For the baseline reported here, we only
use one nearest neighbour for this prediction. The
scores we obtain here are quite low compared to
Bjerva and Augenstein (2018a), which is explained
by the fact that we have access to very little training
data in the current setting, and highlights the impor-
tance of taking advantage of correlations between
languages and features, and not simply looking
at these factors in isolation. Finally, we compare
our typological collaborative filtering approach, as
well as our semi-supervised extension (T-CF and
SemiSup in Table 1).

8 Analysis

Accuracy for several experimental settings is visu-
alised in Figure 7, broken down by the linguistic
category of the predicted features. Since results
change little between the 5% in-branch setting and
higher percentages, we only look at 0%, 1% and
5% here. We also visualise accuracy without (Fig-
ure 7, left) and with our semi-supervised extension
(Figure 7, right) in each setting.
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8.1 Typological collaborative filtering with
variable amounts of data

Focussing on Figure 7 (left) alone first we observe
an expected pattern: using increasingly more in-
branch data boosts performance across all feature
groups. This increase in accuracy can be attributed
to the model having more knowledge about each
query language in itself and about how languages
relate to one another, based on similarities in their
parameter configurations.

Making a prediction about the order of adposi-
tion and noun phrase in a given language, lacking
any other information about that language, is basi-
cally a shot in the dark. In-branch training data, in
our experiments, includes in-language training data,
too. Having one piece of information about the
word order of that language, its ordering of relative
clause and noun, or even its affixational properties,
immediately makes the prediction informed rather
than random: in many other languages within and
outside this particular language family the model
would have likely observed a strong correlation be-
tween these features and the order of adposition
and noun phrase, which are all subject to the more
general headedness parameter.

Certain features and feature configurations may
not be as abundant cross-linguistically as the set
of headedness features. In those cases, access to
in-branch data is crucial. Consider e.g. the fea-
ture 10B Nasal Vowels in West Africa: a handful
of language branches exhibit this feature and at
least one of its values, no nasal vs. oral vowel
contrast, is characteristic predominantly of Niger-
Congo languages. Without any in-branch training
data, the model’s knowledge of this feature value
is extremely limited, making its correct prediction
for a Niger-Congo language virtually impossible.
A small amount of in-branch training data thus
increases the chance of a correct prediction greatly.

8.2 Semi-supervised extension

Comparing Figure 7 to Figure 6 reveals a crucial
finding. While we see very little improvement from
pretraining for 0% in-branch training overall, for
individual linguistic categories, it mostly benefits
prediction: seven out of nine feature groups are
predicted more accurately with pretraining. Phono-
logical and morphological predictions experience
moderate deterioration, however, counterbalanc-
ing much of the improvement in other categories,
which leads to the overall result of seemingly lit-

Language Genus Fixed Stress Location Weight-Sensitive Stress

English Germanic ? Right-oriented
Icelandic Germanic Initial Fixed stress

Table 2: In-branch training data in example scenario

tle improvement from pretraining. The limited ef-
fect of pretraining on prediction of phonological
and morphological features can be explained with
reference to the richness and complexity of these
linguistic domains, which makes for data sparsity
and generally makes them harder to learn based
on distributional information alone. Moreover, a
number of phonological features refer to aspects
of language that may not be reflected in writing,
such as stress and devoicing. All other categories
concern syntactic and semantic information, which
is known to be learnable from word distribution,
and therefore benefit from the knowledge carried
by language embeddings.

Figure 7 (right) shows an unsteady interaction
between pretraining and the addition of increasing
amounts of in-branch data. While pretraining alone
helps for predicting most features, as pointed out
above, an extra 1% of in-branch data in the pre-
trained setting has a rather variable impact across
feature groups. For a few groups it helps, as is ex-
pected, for a few it has no effect and for two groups,
‘Word Order’ and ‘Simple Clauses’, it makes for
quite a drop in accuracy. We speculate that this
effect, while negative, is indicative of the general
power of language embeddings in associating re-
lated languages. Consider the test query ‘Fixed
Stress Location’ in English, where the 1% of in-
branch training data contains the information in Ta-
ble 2. Based on feature correlation alone, the model
should predict ‘No fixed stress’ for English, since
this value always co-occurs with ‘Right-oriented
stress’. Yet, due to the proximity in the English
and Icelandic embeddings, the model may copy
the value of Icelandic and falsely predict ‘Initial
stress’ for English, too. The risk of this happening
decreases with more in-branch training data, since
the model can generalise over more in-branch fea-
tures.

Lastly, notice that accuracy for phonological fea-
tures remains low even with 5% of in-branch data,
and it is lower in the pretrained setting compared
to the no-pretraining one. This brings us to the con-
clusion that using pretrained embeddings which
are fine-tuned for specific tasks which encode dif-
ferent linguistic levels, as in Bjerva and Augen-
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Figure 7: Accuracy per feature group (Germanic).

stein (2018a), might also be useful in our semi-
supervised extension of typological collaborative
filtering.

9 Related Work

Computational Typology The availability of un-
labelled datasets for hundreds of languages per-
mits inferring linguistic properties and categories
(Östling, 2015; Asgari and Schütze, 2017). Indi-
vidual prediction of typological features has been
attempted in conjunction with several NLP tasks
(Malaviya et al., 2017; Bjerva and Augenstein,
2018a,b). Our work is most similar to Murawaki
(2017), who presents a Bayesian approach to util-
ising relations between features and languages for
feature prediction. However, our work differs on
several important counts, as we (i) include lan-
guage information obtained through unsupervised
learning, which allows us to take advantage of raw
data and predict features for completely unanno-
tated languages, (ii) analyse the effects of varying
amounts of known features, especially in situations
with and without in-branch training data, and (iii)
view the problem of typological features through
the lens of parameters from principles and param-
eters (Chomsky, 2000). Deep generative models
have also been explored previously for modelling
phonology (Cotterell and Eisner, 2017). Our work
builds on these research directions, by (i) develop-
ing a deep generative model which (ii) takes advan-
tage of correlations, rather than predicting features
individually, and (iii) exploits unlabelled data. This
work is also related to linguistic representations
encoded in neural models (Kádár et al., 2017) and
language embeddings (Bjerva et al., 2019), multi-
lingual relations between languages in various rep-

resentational levels (Beinborn and Choenni, 2019),
as well as the related problem of phylogenetic in-
ference (Farach et al., 1995; Nichols and Warnow,
2008). For a survey of typology in NLP, see Ponti
et al. (2018).

Matrix Factorisation Collaborative Filtering
was popularised in the early 1990s as a technique
for recommender systems with applications such
as mail filtering (Goldberg et al., 1992), and article
(Resnick et al., 1994) and movie recommendation
(Dahlen et al., 1998). Model-based algorithms soon
became popular (Breese et al., 1998) to overcome
the cold start problem arising for unseen users or
items at test time. The most successful one of
these, in turn, is matrix factorisation, as applied
in this paper, which represents users and items as
(dense) vectors in the same latent feature space and
measures their compatibility by taking the dot prod-
uct between the two representations (Koren et al.,
2009; Bokde et al., 2015). Beyond recommender
systems, matrix factorisation has shown successes
in a wide variety of subareas of NLP (Riedel et al.,
2013; Rocktäschel et al., 2015; Levy and Goldberg,
2014; Lei et al., 2014; Augenstein et al., 2018).

10 Conclusion

We introduce a generative model inspired by the
principles-and-parameters framework, drawing on
the correlations between typological features of
languages to solve the novel task of typological
collaborative filtering. We further show that raw
text can be utilised to infer similarities between
languages, thus allowing for extending the method
with semi-supervised language embeddings.
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Macroarea Branch In-branch training (%) Freq. F1 Individual pred. F1 T-CF F1 SemiSup F1

Africa Bantoid

0.00 0.3510 (0.0042) 0.3540 (0.0057) 0.3527 (0.0260) 0.3287 (0.0292)
0.01 0.3510 (0.0042) 0.3643 (0.0077) 0.4100 (0.0196) 0.4013 (0.0260)
0.05 0.3510 (0.0036) 0.3523 (0.0053) 0.4997 (0.0446) 0.5467 (0.0266)
0.10 0.3507 (0.0031) 0.3570 (0.0029) 0.5687 (0.1065) 0.6107 (0.0963)
0.20 0.3480 (0.0057) 0.3450 (0.0071) 0.8397 (0.0475) 0.8620 (0.0645)

Papunesia Chimbu

0.00 0.2860 (0.0182) 0.2940 (0.0142) 0.3460 (0.0771) 0.3357 (0.0708)
0.01 0.2860 (0.0182) 0.2887 (0.0120) 0.3600 (0.0805) 0.2773 (0.0890)
0.05 0.2850 (0.0171) 0.2990 (0.0236) 0.3833 (0.1012) 0.4560 (0.2013)
0.10 0.2850 (0.0171) 0.2937 (0.0161) 0.6140 (0.0884) 0.6950 (0.0318)
0.20 0.2873 (0.0181) 0.2893 (0.0135) 0.7800 (0.1181) 0.8267 (0.1605)

Africa Kwa

0.00 0.2417 (0.0111) 0.2540 (0.0099) 0.3163 (0.0381) 0.2720 (0.0490)
0.01 0.2407 (0.0104) 0.2550 (0.0051) 0.3807 (0.0775) 0.3843 (0.0796)
0.05 0.2417 (0.0111) 0.2597 (0.0095) 0.4927 (0.1181) 0.5290 (0.0978)
0.10 0.2417 (0.0111) 0.2453 (0.0076) 0.6827 (0.1092) 0.6827 (0.1092)
0.20 0.2417 (0.0111) 0.2443 (0.0033) 0.9960 (0.0057) 0.9960 (0.0057)

North America Mixtecan

0.00 0.3507 (0.0076) 0.3427 (0.0047) 0.4387 (0.1244) 0.4747 (0.0766)
0.01 0.3507 (0.0076) 0.3360 (0.0065) 0.4593 (0.0514) 0.5010 (0.0304)
0.05 0.3500 (0.0083) 0.3460 (0.0065) 0.6867 (0.2274) 0.7803 (0.0988)
0.10 0.3490 (0.0094) 0.3400 (0.0114) 0.8610 (0.1288) 0.8830 (0.1441)
0.20 0.3490 (0.0094) 0.3383 (0.0130) 0.9883 (0.0165) 1.0000 (0.0000)

Papunesia Oceanic

0.00 0.3837 (0.0048) 0.4030 (0.0096) 0.3677 (0.0416) 0.3663 (0.0433)
0.01 0.3837 (0.0048) 0.3957 (0.0066) 0.3783 (0.0324) 0.4047 (0.0217)
0.05 0.3833 (0.0041) 0.3993 (0.0068) 0.6193 (0.0382) 0.6753 (0.0838)
0.10 0.3830 (0.0051) 0.3983 (0.0071) 0.7243 (0.1116) 0.7337 (0.1245)
0.20 0.3817 (0.0034) 0.4057 (0.0113) 0.8393 (0.0662) 0.9200 (0.0641)

All All

0.00 0.2950 (0.0453) 0.2990 (0.0448) 0.3998 (0.1095) 0.3916 (0.1077)
0.01 0.2949 (0.0453) 0.2976 (0.0457) 0.4578 (0.1298) 0.5263 (0.1605)
0.05 0.2947 (0.0452) 0.2970 (0.0436) 0.6552 (0.1726) 0.7641 (0.1572)
0.10 0.2945 (0.0451) 0.2971 (0.0434) 0.7807 (0.1782) 0.9040 (0.1324)
0.20 0.2938 (0.0446) 0.2973 (0.0451) 0.8835 (0.1278) 0.9767 (0.0464)

Table 3: Aggregate results with 0-20% relative use of in-branch training data. The columns indicate the most
frequent class (Freq.), individual prediction per feature with language-embeddings (Individual pred.), typological
collaborative filtering (T-CF), semi-supervised extension (SemiSup).


