Conversation Model Fine-Tuning for
Classifying Client Utterances in Counseling Dialogues

Sungjoon Park !, Donghyun Kim 2, Alice Oh !
'School of Computing, KAIST, Republic of Korea
2 Trost, Humart Company, Inc., Republic of Korea

sungjoon.park@kaist.ac.kr,

kdhyeon821@gmail.com

alice.oh@kaist.edu

Abstract

The recent surge of text-based online coun-
seling applications enables us to collect and
analyze interactions between counselors and
clients. A dataset of those interactions can
be used to learn to automatically classify
the client utterances into categories that help
counselors in diagnosing client status and pre-
dicting counseling outcome. With proper
anonymization, we collect counselor-client di-
alogues, define meaningful categories of client
utterances with professional counselors, and
develop a novel neural network model for clas-
sifying the client utterances. The central idea
of our model, ConvMFiT, is a pre-trained con-
versation model which consists of a general
language model built from an out-of-domain
corpus and two role-specific language models
built from unlabeled in-domain dialogues. The
classification result shows that ConvMFiT out-
performs state-of-the-art comparison models.
Further, the attention weights in the learned
model confirm that the model finds expected
linguistic patterns for each category.

1 Introduction

Some mental disorders are known to be treated ef-
fectively through psychotherapy. However, people
in need of psychotherapy may find it challenging
to visit traditional counseling services because of
time, money, emotional barriers, and social stigma
(Bearse et al.,, 2013). Recently, technology-
mediated psychotherapy services emerged to alle-
viate these barriers. Mobile-based psychotherapy
programs (Mantani et al., 2017), fully automated
chatbots (Ly et al., 2017; Fitzpatrick et al., 2017),
and intervention through smart devices (Torrado
et al., 2017) are examples. Among them, text-
based online counseling services with professional
counselors are becoming popular because clients
can receive these services without traveling to an

office and with reduced financial burden com-
pared to traditional face-to-face counseling ses-
sions (Hull, 2015).

In text-based counseling, the communication
environment changes from face-to-face counsel-
ing sessions. The counselor cannot read non-
verbal cues from their clients, and the client uses
text messages rather than spoken utterances to
deliver their thoughts and feelings, resulting in
changes of dynamics in the counseling relation-
ship. Previous studies explored computational ap-
proaches to analyzing the dynamic patterns of re-
lationship between the counselor and the client
by focusing on the language of counselors (Imel
et al., 2015; Althoff et al., 2016), clustering topics
of client issues (Dinakar et al., 2014), and look-
ing at therapy outcomes (Howes et al., 2014; Hull,
2015).

Unlike previous studies, we take a computa-
tional approach to analyze client responses from
the counselor’s perspective. Client responses
in counseling are crucial factors for judging the
counseling outcome and for understanding the sta-
tus of the client. So we build a novel catego-
rization scheme of client utterances, and we base
our categorization scheme on the cognitive behav-
ioral theory (CBT), a widely used theory in psy-
chotherapy. Also, in developing the categories, we
consider whether they are adequate for the unique
text-only communication environment, and appro-
priate for the annotation of the dialogues as train-
ing data. Then using the corpus of text-based
counseling sessions annotated according to the
categorization scheme, we build a novel conver-
sation model to classify the client utterances.

This paper presents the following contributions:

e First, we build a novel categorization method
as a labeling scheme for client utterances in
text-based counseling dialogues.
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e Second, we propose a new model, Conversa-
tion Model Fine-Tuning (ConvMFiT) to clas-
sify the utterances. We explicitly integrate
pre-trained language-specific word embed-
dings, language models and a conversation
model to take advantage of the pre-trained
knowledge in our model.

e Third, we empirically evaluate our model in
comparison with other models including a
state-of-the-art neural network text classifica-
tion model. Also, we show typical phrases of
counselors and clients for each category by
investigating the attention layers.

2 Categorization of Client Utterances

Client responses provide essential clues to un-
derstanding the client’s internal status which can
vary throughout counseling sessions. For exam-
ple, client’s responses describing their problems
prevail at the early stage of counseling (Hill, 1978;
E. Hill et al., 1983), but as counseling progresses,
problem descriptions decrease while insights and
discussions of plans continue to increase (Seeman,
1949). Client responses can also help in predicting
counseling outcomes. For example, a higher pro-
portion of insights and plans in client utterances
indicates a high positive effect of counseling (Hill,
1978; E. Hill et al., 1983).

Categorization Objective. Our final aim is to
build a machine learning model to classify the
client utterances. Thus, the categorization of the
utterances should satisfy the following criteria:

e Suitable for the text-only environment: Cate-
gories should be detected only using the text
response of clients.

e Available as a labeling scheme: The num-
ber of categories should be small enough for
manual annotation by counseling experts.

o Meaningful to counselors: Categories should
be meaningful for outcome prediction or
counseling progress tracking.

Previous studies in psychology proposed nine and
fourteen categories for client and counselor verbal
responses, respectively, by analyzing transcrip-
tions from traditional face-to-face counseling ses-
sions (Hill, 1978; Hill et al., 1981). But these cate-
gories were developed for face-to-face spoken in-
teractions, and we found that for online text-only

counseling dialogues, these categories are not di-
rectly applicable. Using text without non-verbal
cues, a client’s responses are inherently differ-
ent from the transcriptions of verbally spoken re-
sponses which include categories such as ‘silence’
(no response for more than 5 seconds) and ‘non-
verbal referent’ (physically pointing at a person).
Another relevant study, derived from text-based
counseling sessions with suicidal adolescents pro-
poses 19 categories which we judged to be too
many to be practical for manual annotation (Kim,
2010).

The last criterion of “meaningful to counselors”
is perhaps the most important. To meet that cri-
terion, we base the categorization process on the
cognitive behavioral theory (CBT) which is the
underlying theory behind psychotherapy counsel-
ing. The details of using CBT for the categoriza-
tion process is explained next.

Categorization Process and Results. In develop-
ing the categories, we follow the Consensual Qual-
itative Research method (Hill et al., 1997). Two
professional counselors with clinical experience
participated in this qualitative research method to
define the categorization.

To begin, we randomly sample ten client cases
considering demographic information including
age, gender, education, job, and previous counsel-
ing experiences. We then start the categorization
process with the fundamental components of the
CBT which are events, thoughts, emotions, and be-
havior (Hill et al., 1981). The professional coun-
selors annotate every client utterance to with those
initial component categories with tags that add de-
tail. For example, if an utterance is annotated as
‘emotion’, we add ‘positive/negative’ or concrete
label such as ‘hope’. If these tags are categorized
to be a new category, we add that category to the
list until it is saturated. When the number of cat-
egories becomes more than 40, we define higher
level categories that cover the existing categories.

In the second stage, annotators discuss and
merge these categories into five high-level cate-
gories. Category 1 is informative responses to
counselors, and category 2 is providing factual in-
formation and experiences. Categories 3 and 4 are
related to the client factors, expressing appealing
problems and psychological changes. The last cat-
egory is about the logistics of the counseling ses-
sions including scheduling the next session. The
categories in detail are as follows:
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Characteristic ‘ Informative ‘ Client Factors Process
Factual Anecdotal Appealing Psychological Counseling
Category . .
Name Information Experience Problem Change Process
(Fact.) (Anec.) (Prob.) (Chan.) (Proc.)
. . . . . Stat t at th Stat t of
Brief mention of | Clients experience Clients factors & em‘en at the a emer? ©
. . o resolution stage counseling
Explanation categorical contributing to the related to the .
information appealing problem | appealing problem of the appealing structure and
PP Ep PP EP problem relationship
e Objective e Experience e Negative e Positive A message to
Fact with others Emotion Prediction counselor
e Living o Comments e Cognitive e Expectation, Gratitude,
Examples conditions from others distortion Determination Greetings
D . . .
° . emogra.lphlc o Trauma e Interpersonal ° Coplng Tlme.
information problems behaviors appointment
e Limited e Interpersonal e Family o Self- Questions about
conditions situations problems awareness the consultation

Table 1: Final Categorization of client utterances. Five categories are discovered, two for informative giving in-
formation to a counselor (Factual information, Anecdotal Experience), two for client factors (appealing problems,
psychological change), and the last one for counseling process.

e Factual information (Fact.) Informative re-
sponses to counselor’s utterances, including
age, gender, occupation, education, family,
previous counseling experience, etc.

o Anecdotal Experience (Anec.) Responses de-
scribing past incidents and current situations
related to the formation of appealing prob-
lems. Responses include traumatic experi-
ences, interactions with other people, com-
ments from other people, and other anecdotal
experiences.

e Appealing Problems (Prob.) Utterances ad-
dressing the main appealing problem which
is yet to be resolved, including client’s inter-
nal factors or their behaviors related to the
problems. Specifically, the utterances include
cognition, emotion, physiological reaction,
and diagnostic features of the problem and
desire to be changed.

e Psychological Change (Chan.) Utterances
describing insights, cognition of small and
big changes in internal factors or behaviors.
That is, an utterance at the point where the
appealing problem is being resolved.

e Counseling Processes (Proc.) Utterances that
include the objective of counseling, requests
to the counselor, plans about the counseling
sessions, and counseling relationship. This

category also covers greetings and making an
appointment for the next session.

We summarize the category explanations and
examples in Table 1.

3 Dataset

In this section, we explain how counseling dia-
logues differ from general dialogues, describe the
dialogues we collected and annotated, and explain
how we preprocessed the data.

3.1 Characteristics of Counseling Dialogues

The counseling dialogues consist of multiple turns
taken by a counselor and a client, and each turn
can contain multiple utterances. Here we de-
scribe two unique characteristics of text-based on-
line counseling conversations compared to general
non-goal oriented conversations.

Distinctive roles of speakers. Counseling con-
versations are goal-oriented with the aim to pro-
duce positive counseling outcomes, and the two
speakers have distinctive roles. The client gives
objective information about themselves and sub-
jective experiences and feelings to the counselor
to appeal the problems they are suffering from.
Then the counselor establishes a therapeutic rela-
tionship with the client and elicits various strate-
gies to induce psychological changes in the client.
These distinct roles of the conversational partic-
ipants distinguish counseling conversations from
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-.] Z It sounds like you want to
be the owner of your life,
Counselor
®
m Why can't you do that?
Counselor
| want to be active in [ )
maintaining my -
relationships, Client
N @
But it just bothers me. -
Client
— money, families, [ )
“Appealing onshi
pans relationships. . -

makes me feel down Client

Figure 1: Translated example conversation between a
counselor and a client. Each turn can have multiple
utterances, and we annotate the client turn at the utter-
ance-level. The first two boxes indicate 1) Counselor’s
utterance and the next two are 2) Client’s context ut-
terance, and the last box is 3) Client’s target utterance.
The annotation for the last client utterance is “appeal-
ing problem”.

non-goal oriented open-domain response genera-
tion modeling.

Multiple utterances in a turn. We define an ut-
terance as a single text bubble. Counselors and
clients can generate multiple utterances in a turn.
Especially in a client turn, various information not
to be missed by a counselor may occur across mul-
tiple utterances. Thus, we treat every utterance
separately, as shown in Fig. 1

3.2 Collected Dataset

Total dialogues. We collect counseling dialogues
of clients with their corresponding professional
counselors from Korean text-based online coun-
seling platform Trost. ' Overall, we use 1,448
counseling dialogues which are anonymized be-
fore researchers obtain access to the data, by re-
moving personally identifiable information in the
dialogues. All meta-data of the dialogues are
not provided to the researchers, and named enti-
ties such as client’s and counselor’s names are re-
placed with random numeric identifiers. The re-
search process including data anonymization and
pre-processing is validated by the KAIST Institu-
tional Review Board (IRB).

Labeled Dialogues. We randomly choose and la-
bel 100 dialogues with the discovered five cate-
gories. Note that we only label client utterances.

'https://www.trost.co.kt/

Based on these categories, five professional coun-
selors annotated their own client’s every utterance
in the conversations, as shown in Fig. 1. Note
that each utterance can have multiple labels if it
includes information across multiple categories.

Table. 2 shows the descriptive statistics of our
labeled dataset. The first two rows present the av-
erage lengths of each utterance of counselors and
clients in terms of words and characters, showing
there is a small difference between the counselor
utterance and the client utterance. On the other
hand, the average number of utterances in a sin-
gle counseling session differs; on average, clients
write more utterances than counselors.

‘ Counselor ‘ Client
‘ Mean ‘ Std. ‘ Mean ‘ Std.
#ofwords | 626 | 625 | 591 14.62

#ofchars | 25.71 | 23.44 | 2431 | 61.10
#ofutters | 163.2 | 236.97 | 238.72 | 578.49

Table 2: Descriptive statistics of labeled counseling di-
alogues.

3.3 Preprocessing

We intentionally leave in punctuations and emo-
jis since they can help to infer the categories of
the client utterances, treating them as separate to-
kens. Then we construct triples from the labeled
dialogues consisting of 1) counselor’s utterances
(blue in Fig. 1), 2) client’s context utterances
(green), and 3) client’s target utterances to be cat-
egorized. (yellow)

We split the dataset into train, validation, and
test sets. Table. 3 shows the number of triples in
each set, showing factual information (Fact.) and
psychological change (Chan.) categories appear
less frequently than the others.

4 Model

We introduce ConvMFiT (Conversation Model
Fine-Tuning), fine-tuning pre-trained seq2seq
based conversation model to classify the client’s
utterances.

Background. Our corpus of 100 labeled conver-
sations is not large enough to fully capture the lin-
guistic patterns of the categories without external
knowledge. The small size of the dataset is dif-
ficult to overcome because the labeling by pro-
fessional counselors is costly. We found a poten-
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Figure 2: ConvMFiT (Conversation Model Fine-Tuning) model architecture. We use a pre-trained conversation
model using seq2seq models. The model is based on pre-trained counselor’s and client’s language models. (lower
colored part) Then, we stack additional task-specific seq2seq layers and classification layers over the conversation
model to learn specific features. Between the two layers, attention layer is added to enhance its interpretability.

‘ Train  Valid Test | # of labels
Fact. 817 140 172 1129
Anec. 5317 1180 1175 7726
Prob. 4728 1004 981 6713
Chan. 887 211 199 1297
Pros. 4570 964 961 6459
#ofiples | 14679 3166 3165 | 21100

Table 3: The number of triples (partner’s utterance,
client’s context utterance, client’s target utterance) and
corresponding labels for each set. Factual information
(Fact.) and psychological change (Chan.) categories
have less number of instances compared to the others.

tially effective solution for a small labeled dataset
by using pre-trained language models for various
NLP tasks (Ramachandran et al., 2017; Howard
and Ruder, 2018). Therefore, we focus on trans-
ferring knowledge from unlabeled in-domain dia-
logues as well as a general out-of-domain corpus.
Overview. We illustrate the overall model archi-
tecture. We first stack pre-trained seq2seq lay-
ers which represent a conversation model (see
Fig. 2, lower colored part). Then we stack addi-
tional seq2seq layers and classification layers over
it to capture task-specific features, and an atten-
tion layer is added between the two to enhance the
model’s interpretability (see Fig. 2, upper white
part).

This approach leverages the advantages of us-

ing a language model based conversation model
for transfer learning. The model can be regarded
as an extended version of ULMFiT (Howard and
Ruder, 2018) with modifications to fit our task.
In ConVMFiT, the model accepts a pre-trained
seq2seq conversation model that requires two pre-
trained language models, like an encoder and a
decoder, learning the dependencies between them
on the seq2seq layers. This approach is shown
to be effective for machine translation, applying
a source language model for the encoder and tar-
get language model for the decoder (Ramachan-
dran et al., 2017).

4.1 Model Components

Word Vectors. Counseling dialogues consist of
natural Korean text which is morphologically rich,
so we train word vectors specifically developed for
the Korean language (Park et al., 2018a). We train
the vectors over a Korean corpus including out-of-
domain general documents, 1) Korean Wikipedia,
2) online news articles, and 3) Sejong Corpus, as
well as in-domain unlabeled counseling dialogues.
The corpus contains 0.13 billion tokens. To vali-
date the trained vector quality, we check perfor-
mance on word similarity task (WS353) for Ko-
rean (Park et al., 2018a). The Spearmans corre-
lation is 0.682, which is comparable to the state-
of-the-art performance. These vectors are used as
inputs (see Fig. 2, ).
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Pre-trained Language Models. We assume that
counselors and clients have different language
models because they have distinctive roles in the
dialogue. Therefore, we train a counselor lan-
guage model and a client language model sepa-
rately. We collect counselor utterances in the total
dialogue dataset, except dialogues in the test set,
to train a counselor language model, and all oth-
ers are used for training a client language model.
Then, We fine-tune the two trained LMs with ut-
terances in the labeled dialogues.

For each model, we train word-level language
models by using multilayer LSTMs. We apply var-
ious regularization techniques, weight tying (Inan
et al., 2017), embedding dropout and variational
dropout (Gal and Ghahramani, 2016), which are
used to regularize LSTM language models (Inan
et al., 2017; Ramachandran et al., 2017; Merity
etal., 2018).

We use a 3-layer LSTM model having 300 hid-
den units for every layer. We set embedding
dropout and output dropout for each layer to 0.2,
0.1, respectively. The pre-trained language models
generate inputs to seq2seq layer of a conversation
model (Fig. 2, blue and red).

Pre-trained Conversation Model. Next, we train
a seq2seq conversation model (Vinyals and Le,
2015). We use the pre-trained counselor lan-
guage model as an encoder, and the client lan-
guage model as a decoder. The dependency of the
decoder on the encoder is trained by seq2seq lay-
ers, stacked over the pre-trained models. (Fig. 2,

)

We stack 2-layer LSTMs over the pre-trained
counselor and client language models, respec-
tively. The final states of the LSTMs on the coun-
selor language model is used as an initial state of
the LSTMs on the client language model. We set
the hidden unit size of 300 for every LSTMs and
set output dropout to 0.05. The outputs of pre-
trained conversation models is used for inputs to
seq2seq layers of the task-specific layers.

During training the conversation model, we reg-
ularize the parameters of the model by adding
cross entropy losses of the pre-trained counselor
and client language models to seq2seq cross en-
tropy loss of the conversation model. Three losses
are weighted equally. This prevents catastrophic
forgetting of the pre-trained language models and
is important to achieve high performance (Ra-
machandran et al., 2017). Also, there is room

for improvement of the architecture of a conversa-
tion model, which integrates pre-trained language
models, to capture dialogue patterns better and
thus leads to higher classification performance.
We will explore the architecture in future work.
Task-specific layers. By leveraging pre-trained
language model based conversation model, we fi-
nally add layers for classification. In order to cap-
ture task-specific features, we first stack seq2seq
layers over the conversation model. Then we add
attention mechanism for document classification
(Yang et al., 2016). Lastly, we use a sigmoid func-
tion as an output layer to predict whether the infor-
mation is included in utterances because multiple
categories can appear in a single utterance. (Fig.
2, gray)

We use a 2-layer LSTM model for the seq2seq
layers. We set 300 hidden units for every LSTMs
and set output dropout to 0.05. The size of atten-
tion layer is set to 500.

4.2 Model Training

Thus the model is trained by three steps: 1)
training word vectors and two language models,
2) training seq2seq conversation model with pre-
trained LMs, and 3) fine-tuning task-specific clas-
sification layers, after removing softmax of the
conversation model. In the last step, we com-
pute binary logistic loss between predicted prob-
ability for each category and label as a loss func-
tion. We use Adam with default parameters for
the optimizer, in order to train language models,
conversation model, and fine-tuning the classifier.
Also, gradual unfreezing is applied while training
the model, starting updating parameters from the
task-specific layers and unfreezing the next lower
frozen layer for each epoch. We unfreeze layers
every other epoch until all layers are tuned, and
we stop training when the validation loss is min-
imized. All hyperparameters are tuned over the
development set.

5 Experiments

5.1 Comparison Models

We compare our model with baseline models in
Table 4. Models 1-5 are classifiers which only use
the target client utterance to classify it, and models
6-8 are conversation model-based classifiers con-
sidering counselor’s utterances and client’s con-
text utterances. All models use the same pre-
trained word vectors for a fair comparison.
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(1) Random Forest, (2) SVM with RBF kernel.
We represent an utterance by an average of all
word vectors in it, then feed it to the classifier in-
put.

(3) CNN for text classification (Kim, 2014). In
the convolution layer, we set the filter size to 1-10,
and 30 filters each, then we apply max-over-time
pooling. Then, a dense layer and sigmoid activa-
tion is applied over the layer.

(4) RNN Bidirectional LSTM is used where the
final states for each direction are concatenated to
represent the utterances. Then, a dense layer and a
sigmoid activation are stacked.

(5) ULMFiT. A pre-trained client language model
is used as a universal language model. Details are
the same as described in Section 5.3. In addition,
2-LSTM layers and dense layer with sigmoid ac-
tivations are stacked over the LM for classifica-
tion. Gradual unfreezing is applied during training
(Howard and Ruder, 2018).

(6) Seq2Seq. Like encoder-decoder based con-
versation model (Vinyals and Le, 2015), three
LSTMs are assigned for each Counselor’s ut-
terances, client’s context/target utterances. The
initial states of the client language models are
set to the final states of preceding utterances.
Then dense & sigmoid layers for classification are
stacked over the final state of the client’s target ut-
terances.

(7) HRED. Hierarchical encoder-decoder model
(HRED) is used as a conversation model (Serban
et al., 2016). For the encoder RNN, counselor’s
utterances and client’s context utterances are given
as inputs, and their information is stored in context
RNN, which delivers it to the decoder accepting
client’s target utterances. Like (6) Seq2Seq, dense
& sigmoid layers for classification are stacked
over the final state of the client’s target utterances.

5.2 Ablation Study

We conduct an ablation study to investigate the ef-
fect of the pre-trained models in Table 5.

(1-4) Adding pre-trained models. Model 1-4
have the same architecture as ConvMFiT, which
is Model (8) in Table. 4. Model (1) in Table. 5
initializes every parameter randomly. Model (2)
starts training only with pre-trained word vectors.
Model (3) leverages counselor and client language
models as well, and Model (4) shows the perfor-
mance of ConvMFiT. As Model (3) and (4) use
more than two pre-trained components, gradual

unfreezing in applied, unfreezing shallower layers
first during training.

(4-1) Task-specific Seq2Seq Layers. Model (4-
1) removes task-specific Seq2Seq layers in the
model, which leaves only attention and dense layer
to capture task-specific features. It may result in
an insufficient model capacity to capture relevant
features for the task.

(4-2) Effect of Gradual Unfreezing. Model (4-2)
is trained without gradual unfreezing, allowing the
parameters of every layer in the model change by
the gradients from the first epoch.

6 Results

6.1 Classification Performance

We show the performance of our model and com-
parison models in Table. 4. (1) Random Forests
and (2) Support Vector Machines underperform
to classify utterances correctly which belong to
rarely occurred classes. Compared to (1) and (2),
(3) CNN and (4) RNN show better performance
since they look at the sequence of words (.416,
431, respectively). RNN shows slightly better
performance than CNN. (6) ULMFiT outperforms
the others by using a pre-trained client language
models (.455).

The client target utterances have their context,
and they also depend on the counselor’s preced-
ing utterances, so using the preceding counselor
utterance as well as the client context utterances
helps to improve the classification performance.
When integrating the information using simple (6)
seq2seq model, it shows better performance (.530)
than (5) ULMFiT. (7) HRED adds a higher-level
RNN to seq2seq models, but we find there is little
performance gain (.001) which makes the model
overfit easily.

(8) ConvMFiT employs pre-trained conversa-
tion model based on pre-trained LMs and so out-
performs all other baseline models (.642). This is
because ConvMFiT integrates conversational con-
texts and the counselor language model, which
helps to capture the patterns of client’s language
better. Also, the improvement is higher for the
class (Fact.) and (Chan.) which have small num-
bers of examples since the ConvMFiT could lever-
age pre-trained knowledge to classify them.

6.2 Effect of Pre-trained Components

With an ablation study applying pre-trained com-
ponents step by step to our model, we show the
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No. | Dep. Model F1 F1 F1 F1 F1 Macro Macro | Macro
(Fact.) (Anec.) (Prob.) (Chan.) (Proc.) | Prec Rec F1
1 X | RF .000 564 420 .000 723 476 .269 341
2 X | SVM(rbf) .012 .683 457 .000 .766 .602 385 384
3 X | CNN 211 528 .506 128 .706 450 397 416
4 X | RNN .193 574 570 .046 770 .607 375 431
5 X | ULMFiT .205 .641 591 .057 784 .613 413 455
6 O | Seq2Seq 263 .662 .678 226 .823 .695 472 .530
7 O | HRED 261 .706 .675 .193 .820 .680 475 531
8 O | ConvMFiT 441 761 726 447 835 716 .602 642

Table 4: Classification results. Among the models 1-6 which only use client’s utterances to predict categories, (6)
ULMEFIT show better performance to the others. Models 7-9 are classifiers based on the conversation model, and

ConvMFiT outperforms the others (.642).

N Emb Conv. Grad. Task. F1 F1 F1 F1 F1 Macro Macro Macro
o - seq2seq  Unf.  seq2seq | (Fact) (Anec)  (Prob)  (Chan)  (Proc.) Prec Rec F1
1 X X X - (0] 032 706 602 222 711 418 575 455
2 o X X - o .043 758 661 258 748 459 .662 494
3 (0} (0} X (0] (0] 425 782 727 365 831 .587 719 .626
4 o (0] (0] o o 441 761 726 447 835 .602 716 642
4-1 (0} (0} (0} (0] X 307 738 666 304 .802 S13 .687 .563
4-2 (6] (6] (6] X (¢ 417 768 721 399 824 591 .695 .626
4 (0} o (0} (0] (0] 441 761 726 447 835 .602 716 642

Table 5: Ablation study results. All models use the same architecture of ConvMFiT. Adding pre-trained word
vectors (2), counselor and client language models (3), seq2seq layers of conversation model (4) results in a per-
formance improvement. Also, adding task-specific seq2seq layers to ensure the model’s sufficient capacity for
capturing relevant features (4-1), and applying gradual unfreezing lead to performance improvement (4-2).

sources of performance improvement in Table 5.
Model (1) uses the same architecture but no pre-
trained models are applied, showing poor perfor-
mance due to overfitting (.455). The f1 score
is lower than that of the simple seq2seq model.
Model (2) only uses pre-trained word vectors, and
it helps to increase the performance slightly (.494).
Also, Model (3) adds two pre-trained LMs with
gradual unfreezing, resulting in a substantial per-
formance increase (.626.), so we find pre-trained
LMs are essential to the improvement. Lastly,
Model (4) adds the dependency between two lan-
guage models to fully leverage the pre-trained con-
versation model. This also helps classify utter-
ances better (.642).

In addition, we find only adding attention and
dense layers are not sufficient to learn task-specific
features, so providing the model more capacity
helps improving the performance. Without task-
specific seq2seq layers, model (4-1) shows de-
creased f1 score (.563). Meanwhile, model (4-2)
shows careful training scheme affects to the per-

formance as well.

6.3 Qualitative Results

To investigate how linguistic patterns of coun-
selors and clients differ in the various categories,
we report qualitative results based on the activa-
tion values of the attention layer. To protect the
anonymity of the clients, we explore key phrases
from utterances rather than publish parts of the
conversation in any form.

To this end, we compute the relative importance
of n-grams. For any n of n-gram in an utterance of
length N where n < N, the relative importance r
is computed as follows:

([Tai— Ny /(yny @
i=1

where a; is corresponding attention value of a
word, [[;", a; is the product of the values for ev-
ery words in the n-gram, normalized by the ex-
pected attention weights (1/N)™. The normaliza-
tion term considers the length of utterance since a
word in short utterances tends to have high atten-
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tion value because of 3" a; = 1.

We name this measure ‘relative importance’ r
meaning that the degree of the n-gram is how
much it is attended to compared to the expecta-
tion. Based on this, we select examples from 100
top-ranked key phrases for each category and the
results are presented in Appendix (Table. 6). All
of the presented key phrases are translated to En-
glish from Korean.

Factual Information. Clients provide demo-
graphic information and previous experience of
visits to counselors or psychiatrists. In some case,
clients talk more about the motivation of counsel-
ing. Since this information is explored in an early
stage of counseling sessions, we also find coun-
selor greetings with client’s names.

Anecdotal Experience. Clients describe their ex-
periences by using past tense verbs. Usually, ut-
terances include phrases such as ‘I thought that’,
‘I was totally wrong’. Counselors show simple re-
sponses ‘well..’, and reflections.

Appealing Problem. Like anecdotal experience,
clients describe their problems, but with using the
present tense of verbs. They are appealing their
thinking and emotions. Counselors also show sim-
ple responses or reflections. Since some clients
immediately start pouring out their problems right
after counseling sessions starts, so greetings from
counselor appear in key phrases.

Psychological Change. Clients obviously report
their change of feelings, emotions or thoughts. It
includes looking back on the past and then deter-
mining to change in the future. Counselors give
supportive responses and empathetic understand-
ing.

Counseling Process. Clients and counselors ex-
change greetings with each other. Also, they dis-
cuss making an appointment for the next session.
In some cases, counselors respond to client’s ques-
tions about the logistics of the sessions.

7 Related Work

Researchers have explored psycho-linguistic pat-
terns of people with mental health problems
(Gkotsis et al., 2016), depression (Resnik et al.,
2015), Asperger’s and autism (Ji et al., 2014) and
Alzheimer’s disease (Orimaye et al., 2014). In ad-
dition, these linguistic patterns can be quantified,
for example, overall mental health (Loveys et al.,
2017; Coppersmith et al., 2014), and schizophre-
nia (Mitchell et al., 2015).

To aid people with those mental issues, large
portion of studies are dedicated to detecting
those issues from natural language. Depression
(Morales et al., 2017; Jamil et al., 2017; Fraser
et al., 2016), anxiety (Shen and Rudzicz, 2017),
distress (Desmet et al., 2016), and self-harm risk
(Yates et al., 2017) can be effectively detected
from narratives or social media postings.

8 Discussion and Conclusion

In this paper, we developed five categories of
client utterances and built a labeled corpus of
counseling dialogue. Then we developed the Con-
VvMFIT for classifying the client utterances into
the five categories, leveraging a pre-trained con-
versation model. Our model outperformed com-
parison models, and this is because of transferring
knowledge from the pre-trained models. We also
explored and showed typical linguistic patterns of
counselors and clients for each category.

Our ConvMFiT model will be useful in other
classification tasks based on dialogues. ConvM-
FiT is a seq2seq model for counselor-client con-
versation, however, another approach would be
to model with existing non-goal oriented conver-
sation models incorporating Variational Autoen-
coder (VAE) (Serban et al.,, 2017; Park et al.,
2018b; Du et al., 2018). We plan to attempt these
models in future work.

We expect to apply our trained model to various
text-based psychotherapy applications, such as ex-
tracting and summarizing counseling dialogues or
using the information to build a model addressing
the privacy issue of training data. We hope our
categorization scheme and our ConvMFiT model
become a stepping stone for future computational
psychotherapy research.
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A Appendices

Factual Information

nice to meet you
of course first

I see. now

. . [clients name]s
well . .

Counselor

never visited neuropsychiatry

female , worker

never received psychological counseling
motivation of counseling

age #, female

Client

Anecdotal Experience

might be left behind

be in a peer relationships

I see. actually

well . .

I understand what you mean

Counselor

too hard

didnt get along
seem to be

I thought that

I was totally wrong

Client

Appealing Problem

right . all

but now the relationship is
nice to meet you

you told me well

more comfortable?

Counselor

sick and sad

have many thoughts
keep thinking

I think I did it

no future and frustrating

Client
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Psychological Change

Counselor

right . and

if you do that someday
suddenly I did

I hope so

question arises

Client

did not think so but

I was so shocked

it could have been longer
but looking back

I think I will

Counseling Process

Counselor

hard to express but
counseling proceeds
Hello ? [clients name] ,
lets talk at #

yes the counseling time is

Client

how are you ?

what do you think ?
thank you for listening
hello counselor

time is not enough

Table 6: Representative phrases in utterances of both
conversational parties, extracted based on the relative
importance of the phrase in terms of classification by
using attention weights.
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