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Abstract

Serial recall experiments study the ability of
humans to recall words in the order in which
they occurred. The following serial recall ef-
fects are generally investigated in studies with
humans: word length and frequency, primacy
and recency, semantic confusion, repetition,
and transposition effects. In this research, we
investigate LSTM language models in the con-
text of these serial recall effects. Our work pro-
vides a framework to better understand and an-
alyze neural language models and opens a new
window to develop accurate language models.

1 Introduction

The goal of language modeling is to estimate the
probability of a sequence of words in natural lan-
guage, typically allowing one to make probabilis-
tic predictions of the next word given preced-
ing ones (Bahl et al., 1983; Berger et al., 1996).
For several years now, Long Short-Term Mem-
ory (LSTM) (Graves, 2013) language models have
demonstrated state-of-the-art performance (Melis
et al., 2018; Merity et al., 2018a; Sundermeyer
et al., 2012). Recent studies have begun to shed
light on the information encoded by LSTM net-
works. These models can effectively use distant
history (about 200 tokens of context) and are sensi-
tive to word order, replacement, or removal (Khan-
delwal et al., 2018), can learn function words much
better than content words (Ford et al., 2018), can re-
member sentence lengths, word identity, and word
order (Adi et al., 2017), can capture syntactic struc-
tures (Kuncoro et al., 2018) such as subject-verb
agreement (Linzen et al., 2016). These characteris-
tics are often attributed to LSTM’s ability in over-
coming the curse of dimensionality–by associating
a distributed feature vector to each word (Hinton

et al., 1986; Neubig, 2017)–and modeling long-
range dependencies in faraway context (Khandel-
wal et al., 2018).

The goal of our research is to complement the
prior work to provide a richer understanding about
how LSTM language models use prior linguistic
context. Inspired by investigations in cognitive
psychology about serial recall in humans (Avons
et al., 1994; Henson, 1998; Polišenská et al., 2015)–
where participants are asked to recall a sequence
of items in order in which they were presented, we
investigate how word length or frequency (word-
frequency effect), word position (primacy, recency,
and transposition effects), word similarity (seman-
tic confusion effect), and word repetition (repeti-
tion effect) influence learning in LSTM language
models. Our investigation provides a framework
to better understand and analyze language models
at a considerably finer-grained level than previous
studies, and opens a new window to develop more
accurate language models.

We find that LSTM language models (a) can
learn frequent/shorter words considerably better
than infrequent/longer ones, (b) can learn recent
words in sequences better than words in earlier po-
sitions,1 (c) have a tendency to predict words that
are semantically similar to target words - indicat-
ing that these networks have a tendency to group
semantically similar words while suggesting one
specific word as target based on prior context, (d)
predict as output the words that are observed in
prior context, i.e. repeat words from prior context,
and (e) may transpose (switch adjacent) words in
output depending on word syntactic function.

1Rats and humans recall the first and last items of se-
quences best and the middle ones worst (Bolhuis and Van Kam-
pen, 1988; Ebbinghaus, 1913).



689

2 Serial Recall Effects

Language models estimate the probability of a se-
quence as P (wn

1 ) =
∏n

i=1 P (wi|wi−1
1 ), where wi

is the ith word and wj
i indicates the sub-sequence

from wi to wj . These models minimize their predic-
tion error against words in context, using e.g. the
negative log likelihood loss function, during train-
ing: L = − 1

nΣn
i=1 logP (wi|wi−1

1 ). In this paper,
we show the loss of a model against sequence s and
word wi ∈ s by L(s) and L(s)[wi] respectively.

We use the LSTM language model developed
in (Merity et al., 2018b) for our experiments. Given
a sequence of words wi−1

1 as context, this model
predicts the next word in sequence. We refer
to wi and ŵi as target and predicted words re-
spectively; given the global vocabulary V , ŵi =
arg maxwj∈V Pr(wj |wi−1

1 ). We study this LSTM
in the context of serial recall effects.

2.1 Word-Frequency Effect
What is the effect of word frequency/length2 on the
performance of LSTM language models? For this
effect, we report the average loss for each word
frequency as follows:

LkWF = 1/|Sk|
∑

s∈Sk,wi∈s
L(s)[wi], (1)

where Sk is the set of sequences that, at least, have
one target word with term frequency of k, andLkWF

is the overall loss for target words of frequency k
which sheds light on the expected frequency of
words for accurate language modeling.

2.2 Primacy and Recency Effect
What is the effect of word position on the perfor-
mance of LSTM language models? To analyze this
effect, we compute the average loss of network with
respect to the position of target words as follows:

LiPR = 1/Z
∑
s

L(s)[wi], (2)

where wi is the target word in sequence s, Z is the
number of sequences as normalization factor, and
LiPR is the average of loss at position i. This ef-
fect will shed light on network performance at spe-
cific positions in texts which can help rationalizing
the need for new language modeling architectures,
such as bidirectional LSTMs (Schuster and Paliwal,
1997), or the order by which input data should be
processed (Sutskever et al., 2014).

2Note that word length and frequency are directly corre-
lated (Bell et al., 2009).

2.3 Semantic Confusion Effect

Are predicted words semantically similar to the
target ones in case of incorrect predictions? For this
analysis, we report the average semantic similarity
between target (wi) and predicted (ŵi) words as
follows:

SC = 1/Z
∑

s,wi∈s,wi 6=ŵi

sim(wi, ŵi), (3)

where the function sim(., .) computes word sim-
ilarity either through WordNet (Miller, 1998) or
cosine similarity of the corresponding embed-
dings of its arguments. This effect will shed
light on how effective LSTMs are in disentangling
semantically-similar concepts. This gives us a pow-
erful metric to compare networks semantically, es-
pecially, in case of equal loss/perplexity.

2.4 Repetition Effect

This effect refers to prediction of a word that al-
ready exists in context, i.e. in an earlier position
in the sequence. Here, for each target wn, we com-
pute the probability that, instead of wn, any of
wn−1
1 words is predicted as output and report aver-

age across all samples:

Pr(REi) = (4)

1/Z
∑
s

Pr(wi ∈ wn−1
1 , wi 6= wn|wn−1

1 ).

This effect will shed light on the extent to which
network repeats/predicts observed words as possi-
ble responses. Given that words rarely repeat in
sentences, the above metric can be used as a good
regularizer for language modeling.

2.5 Transposition Effect

This effect refers to word prediction in transposed
positions, i.e. the case where the word pair wi+1

i in
an original sequence is more likely to be predicted
by the network as wi+1wi in output. Here, for each
pair wi+1

i in target sequence, we count the number
of times in which wi+1 is more probable to be
predicted at position i (as compared to wi) and wi

is more probable to be predicted at position i+1 (as
compared to wi+1). We report the average number
of transposition occurrences for all samples at each
word position. This effect will shed light on how
network learn nearby grammatical orders such as
conjunction and adjective order.
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be predicted at position i + 1 than wi+1, and wi+1

is more probable to be predicted at position i than
wi. We report the average number of transposition
occurrences for all samples at each word position.

This effect will shed light on how network learn
nearby grammatical orders such as conjunction and
adjective order.

3 Experiments

In this section we investigate serial recall effects
on a standard LSTM language model (Merity et al.,
2018b) with its default parameter set mentioned in
its original paper. In addition, for all experiments
the average of results from three models trained
with different random seeds is reported. Unless it
is mentioned, we chose sequence 100 to visualize
the results for the sake of readability. However, we
test different sequence lengths in range 5 to 2003.
Our code is publically available 4.

In this study, we report network performance in
terms of loss on development set which is equiva-
lent to relative performance in terms of perplexity.

3.1 Dataset and Settings

Our experiments are conducted on two benchmark
language modeling datasets: Penn Treebank (PTB)
and WikiText-2 (WT2). The PTB dataset (Marcus
et al., 1993; Mikolov et al., 2010) contains Wall
Street Journal articles with 10,000 vocabulary.
The WT2 dataset introduced in (Merity et al.,
2017) is composed of 720 Wikipedia verified
articles. It contains 2M, 217K and 245K tokens
in train, development and test sets respectively
and its vocabulary size is 33,278. WT2 is over
two times larger than PTB. For experiments in
part-of-speech tags level, we use the annotated
version of these datasets publicly provided by
Khandelwal (Urvashi Khandelwal, 2018). Given
the parts-of-speech of each word, content words
are nouns (NN), verbs (VB), adjectives (JJ) and
adverbs (RB), and others would be considered as
function words. More details about the datasets in
POS level are presented in Table ??.

3.2 Results

Short words are recalled more accurately than
longer words. We observed word-length effect

3Number of samples are equal for different sequence
lengths.

4https://github.com/hassan_hajipoor/

PTB WT2
#tokens #words #tokens #words

NN 21k 3k 55k 8k
VB 10k 1.7k 25k 3k
RB 2.6k 286 5k 0.5k
JJ 4.9k 0.9k 12k 1.8k
Func 34.9k 0.2k 118k 0.9k

since increasing the target word length leads to in-
crease in loss. Figures 1a and Figures 1b show
this effect in POS level for both PTB and WT2. It
shows the strong correlation between word length
and loss in content words while function words are
not so affected. We discovered the reason in cor-
relation between word frequency and loss. Figure
1c reveals the strong negative correlation between
word frequency and loss such that increase in word
frequency leads to decrease in loss. From another
viewpoint, Figure 1d shows that the frequency of
content words decrease while their length increase
but Figure 1e shows frequency of function words is
independent of their length. The fact that function
words are closed class and we can not extend them
with shorter words can be the reason. It is also re-
ported in (Bell et al., 2009) that content words are
shorter when more frequent while function words
are not so. Therefore, word length effect is strongly
exists in content words but is weak in function
words.
Also, from Figure 1c and the fact that average fre-
quency in function words is much higher than con-
tent words ( 10k in compare to 58 in PTB dataset),
it is now clear that why loss of function words are
significantly lower than content words.

Tokens later in the sequence have better
recall. We examine primacy and recency effect by
comparing the loss values in different positions of
the sequence. Figure 2 shows the loss decreases
(i.e. the network has better recall) as we approach
the end of the sequence.

Recalling words in transposed positions are
fairly rare. To figure out the transposition effect,
we count how many times words recall in trans-
posed positions. Table 1 shows the number of trans-
positions normalized over sequence length. It re-
veals that number of transpositions do not increase
while the sequence length increases. Moreover,
transposition occurs rarely. For example, in se-
quence of length 100, from 99 candidates of trans-
position only 0.72 transposed on average. Figure 3
shows the number of transposition occurrences in
each position of this sequence. It shows that trans-

(a) Dataset statistics
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Figure 1: (a) Dataset statistics, (b): Word-frequency effect, network learns frequent words better than infrequent
ones, (c): Primacy and Recency effect, loss decreases for target words that appear at the end of sequences.

3 Experiments

Datasets. We use two benchmark language mod-
eling datasets: Penn Treebank (PTB) (Marcus
et al., 1993; Mikolov et al., 2010) and WikiText-2
(WT2) (Merity et al., 2017). PTB and WT2 have
vocabulary sizes of 10K and 33K respectively. We
use the POS-tagged versions of these datasets pro-
vided by Khandelwal et al. (2018), and treat nouns
(NN), verbs (VB), adjectives (JJ), and adverbs (RB)
as content words, and others word classes as func-
tion words, see details in Figure 1a.
Settings. We set LSTM’s parameters as suggested
in (Merity et al., 2018b) for PTB and follow its
suggested parameter tuning procedure for WT2.
For both datasets, we set context size to n = 100
obtained from {5, 20, 50, 100, 200} and validation
data; note that the number of samples are equal for
different sequence lengths.

3.1 Results

We report LSTM performance in terms of predic-
tion loss on development sets for all experiments.

Word-Frequency Effect: More frequent target
words are predicted (learned) more accurately than
less frequent ones. Figure 1b shows strong inverse
correlation between word frequency and LSTM
prediction loss. This is expected as neural models
learn better with more data. In addition, although
the overall loss of function words is considerably
lower than that of content words (because of their
overall higher frequency), Figure 1b shows that,
for the same word frequency, content words are
learned better than function words.

Primacy and Recency Effects: Target words
that appear later in sequences are predicted con-
siderably better than those at earlier positions. Fig-
ure 1c shows that prediction loss considerably de-
creases for target words that appear toward the end
of the sequences. The results are consistent across
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(a) Semantic confusion effect in PTB.
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(b) Semantic confusion effect in WT2.

Figure 2: We report semantic similarity between pre-
dicted and target words, random and target words
(lower bound), and nearest neighbor and target words
(upper bound).

both datasets. This effect can explain why bidirec-
tional LSTMs which read input from opposite direc-
tions usually work better in NLP applications such
as machine translation (Firat et al., 2016; Domhan,
2018). A remaining question that is worth investi-
gating is whether bidirectional LSTMs learn first
and last few words of sequences better than those
in the middle, and if yes, how can we make these
models more robust against word position.

Semantic Confusion Effect. There is signifi-
cant tendency to predict words that resemble (are
semantically-similar to) target words. Figure 2
shows the average WordNet and Embedding simi-
larity between target and predicted words in PTB
and WT2 across loss values. The results indicate
high similarity between predicted and target words
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Figure 3: Semantic confusion effect. (a) The chance of neighbors of target is equal to chance of other words. (b)
When the neighbours size is set to 150, the probability of target neighbouring group became equal to the probability
of target. Neighbours size of 600, leads to equal chance for predicted token.
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Figure 4: (a, b): Repetition effect across POS tag classes in PTB and WT2 and (c): Repetition probability decreases
as a function of word occurrences in prior context.

for smaller loss values. However, confusion consis-
tently increases as prediction loss increases. The
upper bound similarity (obtained by treating the
nearest neighbor of each target word as predicted
word) indicates there exists better candidates which
LSTM fails to predict. Our further analyses show
that LSTM has a tendency to group semantically
similar words and then suggest one of them. We
consider most similar words as a group of neigh-
bors and examine how network assigns probabili-
ties to them as compared to others. Figure 3a shows
that the chance of neighbors of target (with size
150) is equal to chance of other words (with size
9849). As Figure 3a shows, the neighbors of pre-
dicted words (with size 600) carry equal chance as
compared to other words (with size 9399). To find
these thresholds, we gradually increase the number
of neighbors and track the trend of approaching
the probability of neighboring group to target. As
shown in Figure 3b, if the size of neighboring group
is set to 150, these probabilities became equal. The
similar way is repeated for finding the appropriate
size for neighbors of predicted words.

Repetition Effect. Repetition probability of
function words is significantly higher than that of

content words. We report repetition effect, see
Eq. (4), at POS tag level (where the predicted word
should have the same POS tag as target word in
prior context). As Figure 4a and 4b show, func-
tion words have higher repetition probability than
content words. This is because function words are
more frequent, and the average distance among
them (i.e. number of intervening words) is consid-
erably smaller than other POS tags (e.g. 2.1 words
vs 28.9 and 12.4 words for RB and JJ respectively).
We also find that repetition probability decreases
as a function of word frequency in prior context,
see Figure 4c. This is because words (especially
NNs and VBs) are often self-contained and their
occurrence in prior context helps LSTM to avoid
“repeating” them. In addition, we find that function
words repeat more frequently than other types and
repetition among NNs and VBs is higher than other
POS tag pairs; Table 1 shows the confusion ma-
trix for repetition across POS tag classes Perhaps,
this could explain the recent language modeling im-
provement obtained in (Ford et al., 2018) through
developing separate yet sequentially connected net-
work architectures with respect to POS tag class.

There are two factors determining the chance of
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Figure 5: Effective context to learn syntax.

NN VB JJ RB Func
NN 0.07 0.00 0.01 0.00 0.24
VB 0.01 0.09 0.00 0.01 0.20
JJ 0.03 0.01 0.01 0.00 0.27
RB 0.01 0.02 0.00 0.03 0.31
Func 0.01 0.01 0.00 0.00 0.52

Table 1: Confusion matrix for repetition effect. Rows
and columns show POS tag classes of target and pre-
dicted words respectively.

repetition of a POS class: First, the average dis-
tance of consecutive tokens of that POS class; Ta-
ble 2 reports the corresponding values from training
set. Second, the accuracy of network in predicting
POS classes which has been shown in Figure 5 and
also reported in (Khandelwal et al., 2018). From
these, the repetition probability of function words
are expected to be higher than content words.

NN VB JJ RB Func
PTB 3.6 7.1 12.4 28.9 2.1
WT2 3.6 8.5 15.8 38.5 1.9

Table 2: Average distance of tokens in POS classes.

Transposition Effect: Transpositions occur
more frequently at the beginning of sequences and
rarely at the end. Figure 6 shows average num-
ber of transpositions at each word position across
datasets. This result is meaningful because miss-
predictions occur more frequently at earlier posi-
tions (see results for primacy and recency effect).
In addition, transpositions are rare at higher posi-
tions because more context information can help
LSTM to make accurate (transposition-free) pre-
diction. In addition, Table 3 shows the percentage
of transpositions across POS tag classes on PTB.
The result show that LSTM mainly transposes ‘RB
NN’ word pairs with ‘NN RB.’ In future, we will
conduct further analyses to understand the reason.

The findings presented in this paper provide in-
sight into how LSTMs model context. This infor-
mation can be useful for improving language mod-
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Figure 6: Transposition effect, transpositions occur
more at the beginning of sequences.

NN VB JJ RB Func
NN 0.025% 0.006% 0.032% 0.015% 0.001%
VB 0.011% 0.001% 0.004% 0.002% 0.001%
JJ 0.021% 0.054% 0.045% 0.036% 0.002%
RB 0.073% 0.017% 0.017% 0.023% 0.012%
Func 0.002% 0.002% 0.002% 0.001% 0.006%

Table 3: Confusion matrix for transpositions in PTB
at POS tag level. LSTM transposes ‘RB NN’ and ‘JJ
VB|JJ|RB,’ more than others pairs.

els. For instance, the discovery that some word
types are repeated in predictions more than others
can help regularizing neural language models by
making them adaptive to the different word types.

4 Conclusion

We investigate LSTM language models in the con-
text of serial recall indicators. We find that frequent
target words and target words that appear later in
sequences are predicted more accurately, predic-
tions often resemble (are semantically similar to)
target words, function words of prior context are
more likely to be predicted as target words, and
word pair transpositions occur more frequently at
the beginning of sequences.
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