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Abstract

The Winograd Schema Challenge is a popular
alternative Turing test, comprising a binary-
choice coreference-resolution task that re-
quires significant common-sense and world
knowledge to solve. In this paper, we pro-
pose a novel framework that successfully re-
solves many Winograd questions while im-
posing minimal restrictions on their form and
difficulty. Our method works by (i) gen-
erating queries from a parsed representation
of a Winograd question, (ii) acquiring rele-
vant knowledge using Information Retrieval,
and (iii) reasoning on the gathered knowledge.
Our approach improves the F1 performance
by 0.16 over previous works, without task-
specific supervised training.

1 Introduction

The Winograd Schema Challenge (WSC) has
emerged as a popular alternative to the Turing test
as a means to measure progress towards human-
like artificial intelligence (Levesque et al., 2011).
WSC problems are short passages containing a tar-
get pronoun that must be correctly resolved to one
of two possible antecedents. They come in pairs
which differ slightly and result in different correct
resolutions. As an example:

(1) a. Jim yelled at Kevin because he was so
upset. (Answer: Jim)

b. Jim comforted Kevin because he was
so upset. (Answer: Kevin)

WSC problem pairs (“twins,” using the termi-
nology of Hirst (1988)) are carefully controlled
such that heuristics involving syntactic salience,
the number and gender of the antecedent, or other
simple syntactic and semantic cues are ineffec-
tive. This distinguishes the task from the standard
coreference resolution problem. Performant sys-
tems must make common-sense inferences; i.e.,

that someone who yells is likely to be upset, and
that someone who is upset tends to be comforted.
Additional examples are shown in Table 1.

WSC problems are simple for people to
solve but difficult for automatic systems because
common-sense reasoning encompasses many
types of reasoning (causal, spatio-temporal, etc.)
and requires a wide breadth of knowledge. There
have been efforts to encode such knowledge di-
rectly, using logical formalisms (Bailey et al.,
2015) or by using deep learning models (Liu et al.,
2016a); however, these approaches have so far
solved only restricted subsets of WSC questions
with high precision, and show limited ability to
generalize to new instances. Other work aims
to develop a repository of common-sense knowl-
edge (e.g., Cyc (Lenat, 1995), ConceptNet (Liu
and Singh, 2004)) using semi-automatic methods.
These knowledge bases are necessarily incomplete
and further processing is required to retrieve the
entries relevant to a given WSC context. Even
given the appropriate entries, further reasoning op-
erations must usually be performed as in Liu et al.
(2016b); Huang and Luo (2017).

In this work we propose a three-stage knowl-
edge hunting method for solving the WSC. We hy-
pothesize that on-the-fly, large-scale processing of
textual data can complement knowledge engineer-
ing efforts to automate common-sense reasoning.
In this view, information that appears in natural
text can act as implicit or explicit evidence for the
truth of candidate WSC resolutions.

There are several challenges inherent to such an
approach. First, WSC instances are explicitly de-
signed to be robust to the type of statistical corre-
lations that underpin modern distributional lexical
semantics. In the example above, yelled at and
comforted are both similar to upset, so it is diffi-
cult to distinguish the two cases by lexical simi-
larity. Also, common sense involves background
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1 a) The man couldn’t lift his son because he was so weak. (Answer: the man)
1 b) The man couldn’t lift his son because he was so heavy. (Answer: son)
2 a) The older students were bullying the younger ones, so we punished them. (Answer: the older students)
2 a) The older students were bullying the younger ones, so we rescued them. (Answer: the younger ones)

3 a) Sam tried to paint a picture of shepherds with sheep, but they ended up looking more like golfers.
(Answer: shepherds)

3 b) Sam tried to paint a picture of shepherds with sheep, but they ended up looking more like dogs.
(Answer: sheep)

Table 1: Examples of Winograd Questions.

knowledge that is, by definition, shared by most
readers. Common sense is thus assumed knowl-
edge that is rarely stated explicitly in naturally
occurring text. As such, even modern NLP cor-
pora composed of billions of word tokens, like
Gigaword (Graff and Cieri, 2003) and Google
News (http://news.google.com), are unlikely to of-
fer good coverage – or if they do, instances of spe-
cific knowledge are likely to be diffuse and rare
(“long tail”).

Information Retrieval (IR) techniques can
sidestep some of these issues by using the entire
indexed Internet as an input corpus. In particu-
lar, our method of knowledge hunting aims to re-
trieve scenarios that are similar to a given WSC
question but where the ambiguities built into the
question are absent. For example, to solve (1a),
the following search result contains the relevant
knowledge without the matching ambiguity:

(2) I got really upset with her and I started to
yell at her because...

Here, the same entity I is the subject of both upset
and yell at, which is strong evidence for resolv-
ing the original ambiguity. This information can
be extracted from a syntactic parse of the passage
using standard NLP tools.

Previous work on end-to-end knowledge-
hunting mechanisms for the WSC includes a re-
cent framework that compares query counts of
evidence retrieved online for the competing an-
tecedents (Sharma et al., 2015). That frame-
work’s coverage is restricted to a small subset of
the Winograd instances based on knowledge con-
straints. In contrast, our approach covers a much
larger subset of WSC passages and is impartial to
knowledge constraints. Our framework adopts a
novel representation schema that achieves signifi-
cant coverage on Winograd instances, as well as an
antecedent selection process that considers the evi-
dence strength of the knowledge retrieved to make
a more precise coreference decision.

Our method achieves a balanced F1 of 0.46 on

the WSC, which significantly improves over the
previous state-of-the-art of 0.3. We will also dis-
cuss the importance of F1 as a basis for comparing
systems on the WSC, since it prevents overspeci-
fying systems to perform well on certain WSC in-
stances (boosting precision at the cost of recall).

2 Knowledge Hunting Framework

Our framework takes as input a Winograd sen-
tence and processes it through three stages that
culminate in the final coreference decision. First,
it fits the sentence to a semantic representation
schema and generates a set of queries that capture
the predicates in the sentence’s clauses. The query
set is then sent to a search engine to retrieve text
snippets that closely match the schema. Finally,
returned snippets are resolved to their respective
antecedents and the results are mapped to a best
guess for the original Winograd question’s resolu-
tion. We detail these stages below.

2.1 Semantic Representation Schema
The first step of our system is to perform a par-
tial parse of each sentence into a shallow semantic
representation; that is, a general skeleton of each
of the important semantic components in the order
that they appear.

In general, Winograd questions can be sepa-
rated into a context clause, which introduces the
two competing antecedents, and a query clause,
which contains the target pronoun to be resolved.
We use the following notation to define the com-
ponents in our representation schema:

E1, E2 the candidate antecedents

PredC the context predicate

+ discourse connective

P the target pronoun

PredQ the query predicate

E1 and E2 are noun phrases in the sentence.
In the WSC, these two are specified and can be
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identified without ambiguity. PredC is the con-
text predicate composed of the verb phrase relat-
ing both antecedents to some event. The context
contains E1, E2, and the context predicate PredC .
The context and the query clauses are often con-
nected by a discourse connective +. The query
contains the target pronoun, P , which is also spec-
ified unambiguously. In addition, preceding or
succeeding P is the query predicate, PredQ, a
verb phrase involving the target pronoun. Table 2
shows sentence pairs in terms of each of these
components.

2.2 Query Generation

In query generation, we aim to generate queries
to send to a search engine in order to extract text
snippets that resemble the original Winograd sen-
tence. Queries are of the form:
+TermC +TermQ −“Winograd”−E1

We assume here that the search queries are com-
posed of two fundamental components, TermC

and TermQ, which are strings that represent the
events occurring in the first (context) and second
(query) clause of the sentence, respectively. In ad-
dition, by excluding search results that may con-
tain Winograd or E1, we ensure that we do not
retrieve some rewording of the original Winograd
sentence itself.

The task then is to construct the two query
sets, C and Q, whose elements are possible en-
tries for TermC and TermQ, respectively. We
achieve this by identifying the root verbs along
with any modifying adjective in the context and
query clauses, using Stanford CoreNLP’s depen-
dency parse of the sentence. We then add the
root verbs and adjectives into the sets C and Q
along with their broader verb phrases (again iden-
tified directly using the dependency tree). These
extracted queries serve as event information that
will be used in the subsequent modules. Bean
and Riloff (2004) also learn extraction patterns to
support coreference, but unlike our method, their
method relies on a static domain and constructs an
explicit probabilistic model of the narrative chains
learned.

Augmenting the query set with WordNet We
use WordNet (Kilgarriff, 2000) to construct an
augmented query set that contains synonyms for
the verbs or adjectives involved in a representa-
tion. In particular, we include the synonyms listed
for the top synset of the same part of speech as the

extracted verb or adjective.

Manual query construction To understand the
impact of the query generation step, we also man-
ually extracted representations for all Winograd
questions. We limited the size of these sets to
five to prevent a blowing-up of search space during
knowledge extraction.

In Table 3 we show examples of generated
queries for C and Q using the various techniques.

2.3 Extracting Knowledge from Search
Results

From the search results, we obtain a set of text
snippets that sufficiently resemble the original
Winograd sentence, as follows. First, TermC

and TermQ are restricted to occur in the same
snippet, but are allowed to occur in any order. We
filter the resulting sentences further to ensure that
they contain at least two entities that corefer to
one another. These sentences may be structured
as follows:

E′
1 Pred′C E′

2 + E′
3 Pred′Q

E′
1 Pred′C E′

2 + Pred′Q E′
3

E′
1 Pred′C + E′

3 Pred′Q
E′

1 Pred′C + Pred′Q E′
3

We call these evidence sentences. They exhibit
a structure similar to the corresponding Winograd
question, but with different entities and event or-
der. In particular, Pred′C and Pred′Q (result-
ing from the queries TermC and TermQ, resp.)
should ideally be similar if not identical to PredC
and PredQ from the original Winograd sentence.
Note, however, that E′

1, E′
2, and E′

3 may not all
have the same semantic type, potentially simplify-
ing their coreference resolution and implying the
correct resolution of their Winograd counterpart.

A sentence for which E′
3 refers to E′

1 is sub-
sequently called an evidence-agent, and one for
which E′

3 refers to E′
2 an evidence-patient. The

exception to this rule is when an event occurs in
the passive voice (e.g., was called), which reverses
the conventional order of the agent and patient:
where in active voice, the agent precedes the pred-
icate, in passive voice, it succeeds it. Another
exception is in the case of causative alternation,
where a verb can be used both transitively and in-
transitively. The latter case can also reverse the
conventional order of the agent and patient (e.g.,
he opened the door versus the door opened).

As an example of the previously mentioned
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Pair PredC E1 E2 PredQ P Alternating Word (POS)

1 couldn’t lift the man his son was so heavy he weak/heavy (adjective)
2 were bullying the older students the younger ones punished them punished/rescued (verb)
3 tried to paint shepherds sheep ended up .. like they golfers/dogs (noun)

Table 2: Winograd sentence pairs from Table 1.

Sentence: The trophy doesn’t fit into the brown suitcase because it is too large.

Query Generation Method C Q

Automatic {“doesn’t fit into”, “brown”, “fit” } {“large”, “is too large”}
Automatic, with synonyms {“doesn’t fit into”, “brown”, “accommodate”, “fit”, “suit” } {“large”, “big”, “is too large” }
Manual {“doesn’t fit into”, “fit into”,“doesn’t fit” } {“is too large”, “too large”}

Table 3: Query generation techniques on an example Winograd sentences, where C and Q represent the
sets of queries that capture the context and query clauses of the sentence, respectively.

coreference simplification, a valid evidence sen-
tence is: He tried to call her but she wasn’t avail-
able. Here, the sentence can be resolved simply
on the basis of the gender of the antecedents; E′

3

– in this case, the pronoun she – refers to the pa-
tient, E′

2. Accordingly, the sentence is considered
an evidence-patient.

2.4 Antecedent Selection

We collect and reason about the set of sentences
acquired through knowledge extraction using a se-
lection process that a) resolves E′

3 in each of these
sentences to either E′

1 or E′
2 (rendering them ei-

ther evidence-agent or evidence-patient), by direct
use of CoreNLP’s coreference resolution module;
and b) uses both the count and individual fea-
tures of the evidence sentences to resolve a given
Winograd sentence. For example, the more simi-
lar evidence-agents there are for the sentence Paul
tried to call George on the phone, but he wasn’t
successful, the more likely it is that the process
would guess Paul, the agent, to be the correct ref-
erent of the target pronoun.

To map each sentence to either an evidence-
agent or evidence-patient, we developed a rule-
based algorithm that uses the syntactic parse of
an input sentence. This algorithm outputs an ev-
idence label along with a list of features.

The features indicate: which two entities co-
refer according to Stanford CoreNLP’s resolver,
and to which category of E′

1, E′
2, or E′

3 each be-
long; the token length of the sentence’s search
terms, TermC and TermQ; the order of the sen-
tence’s search terms; whether the sentence is in ac-

tive or passive voice; and whether or not the verb
is causative alternating. Some of these features are
straightforward to extract (like token length and
order, and coreferring entities given by CoreNLP),
while others require various heuristics. To map
each coreferring entity in the snippet to E′

1, E′
2,

or E′
3 (corresponding loosely to context subject,

context object, and query entity, respectively), we
consider their position relative to the predicates
in the original Winograd question. That is, E′

1

precedes TermC , E′
2 succeeds TermC , and E′

3

may precede or succeed TermQ depending on
the Winograd question. To determine the voice,
we use a list of auxiliary verbs and verb phrases
(e.g., was, had been, is, are being) that switch the
voice from active to passive (e.g., “they are being
bullied” vs “they bullied”) whenever one of these
precedes TermC or TermQ (if they are verbs).
Similarly, to identify causative alternation, we use
a list of causative alternating verbs (e.g., break,
open, shut) to identify the phenomenon whenever
TermC or TermQ is used intransitively.

These features determine the evidence label,
evidence-agent (EA) or evidence-patient (EP), ac-
cording to the following rules:

Label(e) =





EA, if E′
3 refers to E′

1, active (1)
EA, if E′

3 refers to E′
2, passive (2)

EP, if E′
3 refers to E′

2, active (3)
EP, if E′

3 refers to E′
1, passive (4)

EP, if E′
1 refers to E′

3, causative (5)

The exceptions, (2), (4), and (5), can be illus-
trated with the following examples:
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• The weight couldn’t be lifted by me, because
I was so weak. Here, because of the passive
voice, E′

2 plays the agent role, while syntacti-
cally being the object. Using rule (2), the sen-
tence is correctly reversed to evidence-agent.

• The weight couldn’t be lifted by me, because
it was so heavy. For similar reasons, the sen-
tence is correctly reversed to evidence-patient
by rule (4).

• The weight lifted. It was heavy. This is re-
versed to evidence-patient, since ’lift’ is a
causative alternating verb by rule (5).

In addition to determining the evidence label,
the features are also used in a heuristic that gen-
erates scores we call evidence strengths for each
evidence sentence, as follows:

Strength(e) = LengthScore(e)+OrderScore(e)

LengthScore(e) =





2, if len(TermQ) > 1

2, if len(TermC) > 1

1, otherwise

OrderScore(e) =

{
2, if TermC ≺ TermQ

1, if TermQ ≺ TermC

The final stage of our framework runs the above
processes on all snippets retrieved for a Winograd
sentence. The sum of strengths for the evidence-
agents are compared to that of the evidence-
patients to make a resolution decision.

3 Experiments

We tested three versions of our framework (vary-
ing in the method of query generation: automatic
vs. automatic with synonyms vs. manual) on the
original 273 Winograd sentences (135 pairs and
one triple). We compared these systems with pre-
vious work on the basis of Precision (P), Recall
(R), and F1, where precision is the fraction of
correctly answered instances among answered in-
stances, recall is the fraction of correctly answered
instances among all instances, and

F1 = 2 ∗ P ∗R/(P +R).

We used Stanford CoreNLP’s coreference re-
solver (Raghunathan et al., 2010) during query
generation to identify the predicates from the syn-
tactic parse, as well as during antecedent selection

to retrieve the coreference chain of a candidate ev-
idence sentence. Python’s Selenium package was
used for web-scraping and Bing-USA and Google
(top two pages per result) were the search engines
(we unioned all results). The search results com-
prise a list of document snippets that contain the
queries (for example, “yelled at” and “upset”). We
then extract the sentence/s within each snippet that
contain the query terms (with the added restriction
that the terms should be within 70 characters of
each other to ensure relevance). For example, for
the queries “yelled at” and “upset”, one snippet is:
“Once the football players left the car, she testified
that she yelled at the girl because she was upset
with her actions from the night before.”

In the next section we compare the performance
of our framework with the most recent automatic
system that tackles the original WSC (Sharma
et al., 2015) (S2015). In addition to P/R/F1,
we also compare systems’ evidence coverage, by
which we mean the number of Winograd questions
for which evidence sentences are retrieved by the
search engine. This should not be conflated with
the schemal coverage of our system, by which
we mean the number of Winograd questions that
syntactically obey Class A (85% of the Winograd
questions). Our system is designed specifically to
resolve these Class A questions. We nevertheless
test on the remaining 15% in our experiments.

Although other systems for the WSC exist out-
side of S2015, their results are not directly com-
parable to ours for one or more of the following
reasons: a) they are directed towards solving the
larger, easier dataset; b) they are not entirely auto-
matic; or c) they are designed for a much smaller,
author-selected subset of the WSC. We elaborate
on this point in Section 5.

4 Results

Table 4 shows the precision, recall, and F1 of
our framework’s variants, automatically generated
queries (AGQ), automatically generated queries
with synonyms (AGQS), and manually generated
queries (MGQ), and compares these to the sys-
tems of Sharma et al. (2015) (S2015) and Liu et al.
(2016b) (L2016). The system developed by Liu
et al. (2016b) uses elements extracted manually
from the problem instances, so is most closely
comparable to our MGQ method. Our best au-
tomated framework, AGQS, outperforms S2015
by 0.16 F1, achieving much higher recall (0.39 vs
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# Correct P R F1
AGQ 73 0.53 0.27 0.36
AGQS 106 0.56 0.39 0.46
S2015 49 0.92 0.18 0.30
Systems with manual information:
L2016 43 0.61 0.15 0.25
MGQ 118 0.60 0.43 0.50

Table 4: Coverage and performance on the
Winograd Challenge (273 sentences). The best

system on each measure is shown in bold.

0.18). Our results show that the framework using
manually generated queries (MGQ) performs best,
with an F1 of 0.50. We emphasize here that the
promise of our approach lies mainly in its general-
ity, shown in its improved coverage of the original
problem set: it produces an answer for 70% of the
instances. This coverage surpasses previous meth-
ods, which only admit specific instance types, by
nearly 50%.

The random baseline on this task achieves a
P/R/F1 of .5. We could artificially raise the F1
performance of all systems to be above .5 by ran-
domly guessing an answer in cases where the sys-
tem makes no decision. We chose not to do this so
that automatic systems are compared transparently
based on when they decide to make a prediction.

5 Related work

All the IR approaches to date that have tackled
the Winograd Schema Problem have done so in
one of two ways. On the one hand, some sys-
tems have been developed exclusively for Rah-
man and Ng’s expanded Winograd corpus, achiev-
ing performance much higher than baseline. Bean
and Riloff (2004) learn domain-specific narra-
tive chains by bootstrapping from a small set of
coreferent noun pairs. Conversely, other systems
are directed towards the original, more difficult
Winograd questions. These systems demonstrate
higher-than-baseline performance but only on a
small, author-selected sub-set, where the selec-
tion is based often on some knowledge-type con-
straints.

Systems directed exclusively towards the ex-
panded Winograd corpus include Rahman and
Ng’s system itself (Rahman and Ng, 2012), report-
ing 73% accuracy on Winograd-like sentences,
and Peng et al.’s system that improves accuracy
to 76% (Peng et al., 2015). Another system uses

sentence alignment of web query snippets to re-
solve the Winograd-like instances, reporting 70%
accuracy on a small subset of the test sentences
in the expanded corpus (Kruengkrai et al., 2014).
Unfortunately, the passages in the original WSC
confound these systems by ensuring that the an-
tecedents themselves do not reveal the coreference
answer. Many sentences in the expanded corpus
can be resolved using similarity/association be-
tween candidate antecedents and the query pred-
icate. One such sentence is “Lions eat zebras be-
cause they are predators.” Many of the above sys-
tems simply query “Lions are predators” versus
“zebras are predators” to make a decision.

This kind of exploitation is often the top con-
tributor to such systems’ overall accuracy (Rah-
man and Ng, 2012), but fails to hold for the major-
ity (if not all of) the original Winograd questions.
In these questions one vital property is enforced:
that the question should not be “Google-able.” Our
work seeks to alleviate this issue by generating
search queries that are based exclusively on the
predicates of the Winograd sentence, and not the
antecedents, as well as considering the strength of
the evidence sentences.

The systems directed towars the Original Wino-
grad questions include Schüller (2014), who use
principles from relevance theory to show correct
disambiguation of 4 of the Winograd instances;
Sharma et al. (2015)’s knowledge-hunting mod-
ule aimed at a subset of 71 instances that ex-
hibit causal relationships; Liu et al. (2016a)’s neu-
ral association model, aimed at a similar causal
subset of 70 Winograd instances, and for which
events were extracted manually; and finally, a re-
cent system by Huang and Luo (2017) directed
at 49 selected Winograd questions. While these
approaches demonstrate that difficult coreference
problems can be resolved when they adhere to cer-
tain knowledge or structural constraints, we be-
lieve that such systems will fail to generalize to
the majority of other coreference problems. This
important factor often goes unnoticed in the liter-
ature when systems are compared only in terms of
precision; accordingly, we propose and utilize F1-
driven comparison that does not enable boosting
precision at the cost of recall.

6 Conclusion

We developed a knowledge-hunting framework
to tackle the Winograd Schema Challenge. Our
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system involves a novel semantic representation
schema and an antecedent selection process acting
on web-search results. We evaluated the perfor-
mance of our framework on the original problem
set, demonstrating performance competitive with
the state-of-the-art. Through analysis, we deter-
mined our query generation module to be a critical
component of the framework.

Our query generation and antecedent selection
processes could likely be enhanced by various Ma-
chine Learning approaches. This would require
developing datasets that involve schema identifi-
cation, query extraction, and knowledge acquisi-
tion for the purpose of training. As future work,
we consider using the extensive set of sentences
extracted by our knowledge hunting framework in
order to develop a large-scale, Winograd-like cor-
pus. In addition, we are currently working to de-
velop deep neural network models that perform
both knowledge acquisition and antecedent selec-
tion procedures in an end-to-end fashion.
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