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Abstract
Spoken Language Understanding (SLU),
which extracts semantic information from
speech, is not flawless, specially in practical
applications. The reliability of the output of an
SLU system can be evaluated using a semantic
confidence measure. Confidence measures are
a solution to improve the quality of spoken
dialogue systems, by rejecting low-confidence
SLU results. In this study we discuss real-
world applications of confidence scoring
in a customer service scenario. We build
confidence models for three major types of
dialogue states that are considered as different
domains: how may I help you, number cap-
ture, and confirmation. Practical challenges to
train domain-dependent confidence models,
including data limitations, are discussed, and
it is shown that feature engineering plays an
important role to improve performance. We
explore a wide variety of predictor features
based on speech recognition, intent classifica-
tion, and high-level domain knowledge, and
find the combined feature set with the best
rejection performance for each application.

1 Introduction

The purpose of an SLU system is to interpret the
meaning of a speech signal (De Mori et al., 2008).
SLU systems use Automatic Speech Recognition
(ASR) to convert speech signal to the text of what
was spoken (hypothesis), followed by semantic
meaning extraction from the ASR hypothesis us-
ing Natural Language Processing (NLP). Seman-
tic information that can be extracted from an utter-
ance include the intent of speaker, as well as any
entities such as names, products, numbers, places,
etc., where depending on the application, one or
more of these information are of importance.

While SLU systems have achieved considerable
success during the past few decades, errors are in-
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evitable in real applications due to a number of
factors including noisy speech conditions, speaker
variations such as accent, speaking style, inherent
ambiguity of human language, lack of enough in-
domain training data, etc. With the rise of virtual
assistants and their increasing utilization from ev-
eryday voice inquiries on smart phones and voice
commands in smart home scenarios to customer
service applications, it is crucial to keep the accu-
racy of SLU systems above an acceptable thresh-
old. Therefore, to keep the natural flow of conver-
sation between human and automatic agent, using
human agents when automatic system fails to pro-
vide an accurate response improves user satisfac-
tion. However, the question is: “how do we know
that SLU system failed?”

A confidence score is a scalar quantity that mea-
sures the reliability of an automatic system. In
the literature, several studies have applied ASR-
based feature vectors to train statistical models
that predict word and/or utterance level confi-
dence scores for ASR systems (Wessel et al., 2001;
Jiang, 2005; Yu et al., 2011; White et al., 2007;
Williams and Balakrishnan, 2009), and SLU sys-
tems (Hazen et al., 2002). Furthermore, semantic-
based features have been applied in predicting
confidence measures for spoken dialogue systems
(San-Segundo et al., 2001; Sarikaya et al., 2005;
Higashinaka et al., 2006; Jung et al., 2008), as well
as other applications such as machine translation
(Gandrabur et al., 2006).

The purpose of this study, is to show the impor-
tance of confidence modeling in real-world SLU
applications, discuss practical challenges to train
confidence models, and create a guideline to build
efficient confidence models. We build domain-
dependent semantic confidence models to improve
the rejection of unreliable SLU results. Such re-
jection process is designed to maintain a high ac-
curacy, while minimizing the number of rejected
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utterances. Our experiments are based on improv-
ing rejection performance for three different types
of dialogue states in a customer service scenario:
opening (i.e., how may I help you), number cap-
ture (e.g., phone or account number), and confir-
mation (i.e., yes/no).

The contributions of this study are:

1. Building efficient confidence models based
on domain-dependent feature engineering
with limited labeled data for training, which
makes confidence modeling process scalable
for real applications.

2. Proposing an evaluation methodology for
practical applications of rejection confidence
scoring, based on which an operating point
can be selected to balance cost vs. accuracy.

3. Comparing linear and nonlinear confidence
models with limited training data, and
proposing time-efficient nonlinear features
that improve performance.

2 Problem Formulation

In this study we focus on improving confidence
measure for SLU systems, where the input is a
speech waveform and the output is the seman-
tic information extracted from speech. We con-
sider the semantic output of SLU system to be ei-
ther true (i.e., all the relevant information required
for the application is extracted correctly) or false.
Confidence score c ∈ R in this context is a num-
ber associated with every pair of input utterance
x ∈ X and estimated semantic output ŷ ∈ Y,
which computes how likely is the output of SLU
system (ŷ) to be equal to the reference output (y).

When probabilistic models are used, posterior
probability P (y|x) can be applied as confidence
score. However, proper normalization of posterior
probabilities is important to obtain a reliable confi-
dence score (Jiang, 2005). In this study, we define
the SLU confidence measure as P (ŷ = y|x, y).
A statistical model is trained to predict the se-
mantic correctness of SLU system. The posterior
probability from this binary classifier is applied as
confidence measure. While training a confidence
model requires data, it outperforms unsupervised
approaches. The features that are used to train the
confidence model are functions of the input and
output of SLU system: f(x, y).

2.1 System Layout

Figure 1 illustrates the components of SLU system
we used for our experiments including rejection
based on confidence score. The main components
of any SLU system are ASR and NL. However,
we do not accept all the outputs of SLU system. A
confidence model is used to decide wether or not
the extracted semantic information by SLU sys-
tem is accurate. The confidence model produces a
score based on several predictor features including
ASR scores, NL scores, and domain knowledge.
If the confidence score is higher than a threshold,
SLU result is accepted. The semantic information
of rejected (i.e., more challenging) utterances is
extracted by human labelers.

2.2 Evaluation Methodology

The performance of SLU system with an ac-
cept/reject backend, shown in Figure 1, can not
simply be evaluated based on the accuracy of the
output. An essential component of such system,
is rejection confidence scoring, which depends on
both confidence score and confidence threshold.
Confidence modeling can be formulated as a bi-
nary classification problem, and be evaluated us-
ing standard measures such as Receiver Operat-
ing Characteristic (ROC) curve, or area under the
curve (AUC). However, in a practical application,
business objectives have to be considered in per-
formance evaluations. In a virtual intelligent cus-
tomer service scenario, it is important to maximize
customer satisfaction while minimizing the cost.
Customer satisfaction is directly related to the ac-
curacy, and accuracy can be improved by using
higher confidence threshold. Nevertheless, with a
higher confidence threshold, more utterances that
are labeled by the automated system are rejected
and this will increase the cost of manual labeling.
Therefore, there is a trade-off between cost (i.e.,
the number of rejected utterances) and precision
(i.e., the accuracy of accepted utterances).

In this study, we focus on improving the con-
fidence measurement to maintain the accuracy
while reducing the rejection rate. To evaluate dif-
ferent confidence measures, we plot False Accept
(FA) percentage on accepted utterances versus the
rejection percentage. For the remaining of this
study we call these plots FA-Rej. In production
system, confidence threshold is set based on the
required semantic accuracy for each application,
and generally the higher the rejection, the lower is
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Figure 1: Flowchart of SLU system used for our experiments with an accept/reject backend based on confidence
score to ensure the highest accuracy.

the error rate. If a FA-Rej plot has lower rejection
rates at all FA rates compared to another plot, it
shows a performance improvement.

2.3 Practical Challenges

The main challenge to build confidence models
for a real-world application is data limitation. To
train a confidence model, a dataset is required with
true labels for each sample. In a customer service
scenario, semantic information that should be cap-
tured, including intents, products, etc., vary from
one client to the other. Furthermore, there are sev-
eral dialog turns/states for each client with differ-
ent intent sets. Our experiments show that train-
ing domain-dependent confidence models signif-
icantly improves performance. This makes the
data preparation even more challenging, since cre-
ating labeled data for a large number of applica-
tions/clients is expensive. Therefore, in this study
we focus on improving confidence measurement
with minimum data.

We show the importance of feature engineer-
ing to select the best predictive feature set from
a combination of ASR and NLP features, as well
as using domain knowledge to improve perfor-
mance of confidence models for each domain. In
this context, domain is defined as a group of di-
alog states with similar intent types. We show
that with low amounts of training data, Maxi-
mum Entropy (MaxEnt) model with a linear fea-
ture function is the most efficient classifier. We
also apply several other classifiers including neu-
ral networks and random forest and compare per-
formance for different feature sets. However due
to train data limitations, nonlinear classifiers do
not significantly outperform MaxEnt. Another ad-
vantage of MaxEnt is lower runtime, which is very
important in practical applications.

2.4 Data Specification

We present results on three different types of dia-
logue states, which are widely used for customer
service applications in automatic spoken dialogue
systems. Our data is selected from real conver-
sations between enterprise customers and the au-
tomatic agent. The first dialogue state is the re-
sponse to an open-ended question, asking “how
may I help you”. For the remaining of this paper
we call this dataset: “opening”. In this dialogue
state, the user is prompted to explain why they are
calling customer service using natural language.
The second dataset is based on a “number capture”
dialogue state, where the system prompts users to
provide an identification number, such as phone or
account number. The third dataset is a “confirma-
tion” dialogue state, where the user is prompted to
confirm some information.

“Opening”, “number capture”, and “confirma-
tion” datasets include approximately 15k, 11k, and
10k utterances, respectively. We use 10-fold cross
validation for evaluation with a baseline MaxEnt
model. These datasets were labeled manually to
create the reference intents for each utterance. The
“Opening” dataset consists of a large number of
intents due to speakers being allowed to use an
open language. Furthermore, an “opening” utter-
ance might have more than one intent. For in-
stance, if the speaker says: “I would like to talk
to a live agent about my bill”, the intent will be
“live-agent/billing”. In addition to intents, other
semantic information such as products are also ex-
tracted from “opening” utterances.

For “number capture” dataset, if the speaker
provides a number, SLU system is considered ac-
curate if the hypothesized phone or account num-
ber exactly matches the reference number. We
considered a few more intents for when speak-

187



ers do not provide a number, such as “don’t-have”
(i.e., speaker does not have an account number) or
“live-agent” (i.e., speaker would like to talk to a
live agent). The main intents for “confirmation”
dataset are: “true” and “false”. A few other in-
tents such as “live-agent” were also considered for
this dialogue state. We used a statistical language
model and intent classifier for “opening” and
“confirmation” datasets, while a Speech Recogni-
tion Grammar Specification (SRGS), which is a
rule-based language model that also provides the
intent was used for “number capture”. Note that
our objective in this study is to improve rejection
based on confidence modeling without any modi-
fications in the SLU (i.e., ASR and NL) system.

3 Combining ASR and NL Features

During speech recognition, several scores are cre-
ated that can be aggregated at word or utterance
level and be applied to estimate ASR confidence.
Since speech understanding process is a combina-
tion of speech recognition and natural language
understanding of ASR hypothesis, additional se-
mantic information and intent classification scores
can also be used to predict the semantic confidence
measure associated with a spoken utterance.

3.1 ASR Features

Previous studies have used a variety of speech
recognition predictor features, such as posterior
probabilities, acoustic and language model scores,
n-best and lattice related scores, etc., to esti-
mate the ASR confidence for different applica-
tions (Jiang, 2005; Yu et al., 2011; White et al.,
2007; Williams and Balakrishnan, 2009; Hazen
et al., 2002; San-Segundo et al., 2001). We ex-
amined several feature sets to achieve the best per-
formance on rejecting the utterances with inaccu-
rate semantic interpretation for “opening”, “num-
ber capture”, and “confirmation” domains. Partic-
ularly, two groups of ASR predictor features were
applied: scores extracted from Word Confusion
Network (WCN) (i.e., a compact representation of
lattice (Mangu et al., 2000)), and delta scores that
are based on comparing the best path score to an
alternative path. Williams et al. (Williams and
Balakrishnan, 2009) showed the effectiveness of
these two feature types to estimate the probability
of correctness for each item in an ASR n-best list.

The WCN feature set that we used includes
utterance-level best path score, as well as statis-

Feature'Number' Feature'Descrip0on'

F1# WCN#u(erance.level#best#path#score#

F2#–#F4# Mean,#min,#max#of#WCN#word.level#scores#

F5# Total#number#of#paths#in#WCN#

F6# Number#of#WCN#segments#

F7# Average#u(erance.level#gdelta#score#

F8#–#F10# Mean,#min,#max#of#gdelta#word.level#scores#

F11# Average#u(erance.level#udelta#score#

F12#–#F14# Mean,#min,#max#of#udelta#word.level#scores#

F15# Number#of#n.best#

F16# Number#of#Speech#frames#

F17# Total#number#of#frames#

Table 1: List of ASR features

tics of word-level scores such as mean, min, max
(adding standard deviation did not improve the re-
sults), total number of different paths in WCN, and
number of segments in WCN. Delta feature set in-
cludes two categories: gdelta and udelta. Gdelta
score is the log likelihood difference between the
best path and the best path through garbage model
(i.e., a filler model that is trained with non-speech
and extraneous speech), while udelta is the log
likelihood difference between the best path and
best possible path without any language model
constraint (if hopping from phone to phone was
allowed). We used average utterance-level gdelta
and udelta, as well as min, max, and mean of the
word-level gdelta and udelta scores. Our best ASR
feature set is a combination of WCN and delta fea-
ture sets with the addition of a few more features
including number of speech frames, total number
of frames, and number of n-best. Table 1 summa-
rizes the ASR features that were used for confi-
dence modeling in all three domains.

3.2 Semantic Features and NL Scores

As speech recognition errors contribute to seman-
tic inaccuracy, ASR confidence predictor features,
which mainly predict the probability of correct-
ness of speech recognition hypothesis, can be ap-
plied in predicting the semantic confidence. Nev-
ertheless, there are other factors that affect the se-
mantic accuracy, even with an accurate ASR hy-
pothesis. Such factors are related to the mean-
ing interpreted from the text. Therefore, using
semantic and high-level features that include do-
main knowledge can improve the rejection perfor-
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mance for an SLU system, especially with lim-
ited training data. A number of studies have ap-
plied semantic features for confidence prediction
(San-Segundo et al., 2001; Sarikaya et al., 2005;
Higashinaka et al., 2006; Jung et al., 2008). In
this study, we identify domain-dependent features
and show that semantic features based on domain
knowledge for “opening” and “number capture”
domains, as well as using statistical intent classi-
fier scores for “opening” and “confirmation” dia-
logue states considerably improve performance.

Opening Dialogue State: Confidence predic-
tor features based on word distribution and word
identity have been previously studied (Yu et al.,
2011; Huang et al., 2013). In this study, we cre-
ated word distributions using a separate training
dataset. Next, we tested various methods of cre-
ating predictor features based on the most com-
mon words in each application. For “opening”
dataset this type of predictor features improved
performance, and the best results were achieved
by using the occurrence of top 450 words via a
bag of words feature vector. Larger and smaller
number of words were also tested, which deteri-
orated the performance. Furthermore, we tested
using the word scores from WCN instead of bi-
nary occurrence vector, which did not improve the
performance. Features based on significant or top
words did not improve performance for “number
capture” and “confirmation” datasets, which can
be due to more limited vocabulary in those do-
mains compared to “opening”.

We also applied the top three intent scores from
classifier as additional confidence predictor fea-
tures, which significantly improved the results.
For “opening” application, an SVM model was
used to classify intents. Intent scores in this con-
text are the raw scores computed based on clas-
sifier’s decision function. Figure 2 shows the FA-
Rej results of using NL features in addition to ASR
features. As shown, compared to the best perfor-
mance with ASR features, using significant words
feature vector improves the performance. The best
performance is achieved by combining ASR fea-
tures with intent classifier scores. Our experi-
ments show that when intent classification scores
are used, adding the significant word feature vec-
tor deteriorates rejection performance. Figure 2
also shows the result of using the top intent score
as final confidence measure for rejection, which
has better performance than ASR features. How-

Figure 2: FA-Rej plots on“opening” dataset

ever, if intent classification scores are not avail-
able, the combination of ASR features and top
word features obtains the best results.

Number Capture Dialogue State: The impact
of using semantic and high-level features in ad-
dition to ASR features to predict semantic confi-
dence for “number capture” application is shown
in Figure 3. Since a rule-based grammar is used to
perform speech recognition for this dataset, which
also generates the intent (i.e., a sequence of digits
or another intent), there are no intent classification
scores to be applied to predicting the confidence.
The additional feature set that we used as NL fea-
tures include: encoded intent category, digit se-
quence length as a bag of words vector, binary
feature showing the occurrence of the word ‘oh’,
and binary feature comparing the first and second
best intents. Our experiments show that using the
length of digit sequence as a predictor feature vec-
tor improves confidence prediction. We used a 20-
dimensional vector for length feature (the length
of digit sequences in our dataset varied from zero
to nineteen). Encoded intent identity (i.e., number,
live agent, etc.) as another feature improved the
performance for “number capture” domain. The
occurence of the word ‘oh’ was used as another
feature, since it is ambiguous and can mean ‘zero’
in a digit sequence or be used to show exclama-
tion. Finally, the first and second intents based
on the first best and second best ASR hypothe-
ses were compared to generate another semantic
feature that shows the certainty of SLU response.
If both intents were numbers, but the digits did
not exactly match, we set this feature to zero. As
shown in Figure 3, using semantic features based
on domain knowledge significantly improves the
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Figure 3: FA-Rej plots on “number capture” dataset

rejection performance, and performance improve-
ment (i.e., the difference between the number of
utterances that have to be rejected to obtain a spe-
cific FA on accepted utterances) is higher at lower
FA rates. This is especially of importance when
the system is expected to have a high accuracy.

Confirmation Dialogue State: The result of in-
tegrating NL classification scores with ASR scores
for “confirmation” dataset is compared to using
ASR scores in Figure 4. As shown, considerable
improvement is achieved by using intent classifi-
cation scores. Due to the high accuracy of “con-
firmation” domain compared to the other domains,
using other semantic features did not improve the
performance.

Table 2 summarizes effective semantic and NL
features for each domain. Relative performance
improvement using the best semantic feature set in
addition to ASR features at 20% rejection rate (i.e.
when 80% of utterances are accepted based on
confidence score) is shown in Table 3. As shown,
while “confirmation” dialogue state achieves the
highest accuracy compared to other applications,
it has the highest relative improvement by using
NL scores in addition to ASR scores. The differ-
ence in FA rates at 20% rejection when using ASR
features versus using both ASR and NL features is
illustrated by arrows in Figures 2-4.

4 Confidence Models

So far we have explored a variety of features using
MaxEnt classifier with a linear feature function. In
this section, we apply nonlinear feature functions
with MaxEnt, as well as nonlinear models. Pre-
vious studies have shown the success of MaxEnt
models for confidence prediction (Yu et al., 2011;

Figure 4: FA-Rej plots on “confirmation” dataset

Feature(s)* Applica0on(s)*

NL#classifica*on#scores# Opening,#Confirma*on#

Occurrence#of#top#words# Opening#

Intent#category# Number#Capture#

Length#of#digit#sequence# Number#Capture#

Occurrence#of#“oh”# Number#Capture#

Comparing#1st#and#2nd#intents# Number#Capture#

Table 2: List of domain-dependent semantic features

Opening' Number'Capture' Confirma2on'

Performance'
Improvement' 29.98%%% 27.92%%% 72.46%%%

Table 3: Relative performance improvement on ac-
cepted utterances at 20% rejection

White et al., 2007). The principle of maximum
entropy states that given a set of training sam-
ples (xi, yi), the best estimation of the distribu-
tion p(y|x) subject to a set of constraints is the one
with the largest entropy (Jaynes, 1957). A typical
constraint is that the empirical average from the
training samples for each feature function fj(x, y)
should match the expected value. The MaxEnt dis-
tribution with this constraint can be characterized
with a log-linear form (White et al., 2007):

p(y|x) =
exp(

∑
j λjfj(x, y))∑

y exp(
∑

j λjfj(x, y))
(1)

In this study, x is in fact a confidence predictor
feature vector ~x, and y is a binary random vari-
able. The predictor feature vector includes binary,
categorical, and continuous random variables.
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As our baseline classifier, we used MaxEnt with
a linear predictor feature function f . Philips et al.
(Phillips et al., 2006) applied a number of meth-
ods to use nonlinear relations in data to improve
performance of a MaxEnt classifier, from which
we evaluated quadratic function and product of
features. Furthermore, we tested binning, where
bins were defined based on the Cumulative Dis-
tribution Function (CDF) of each continuous fea-
ture, which did not improve performance. In ad-
dition to the nonlinear feature functions proposed
in previous studies, we used a logarithmic func-
tion of predictor features: f(x) = ln(|x| + ε),
where ε is a very small number used to prevent
the log of zero. We also applied nonlinear models
such as Neural Networks (NN) and Random For-
est. The best NN performance was achieved using
a feedforward fully-connected network with one
hidden layer, and Adam (Kingma and Ba, 2014)
optimizer. Due to limited training data, DNN with
larger number of hidden layers did not show any
improvements.

Our experiments showed that performance im-
provement using nonlinear methods is limited due
to data limitation, and depends on the domain
and the feature set. As shown in Figure 5 us-
ing logarithmic function of features that we pro-
posed in this study, in addition to linear features
improves the rejection performance for “number
capture” when ASR features are used. The ad-
vantage of logarithmic features is time efficiency
in both training and runtime compared to previ-
ously used nonlinear features. Figure 6 illustrates
the performance improvement in low FA when ap-
plying nonlinear classifiers on “opening” dataset
with the largest feature dimension (ASR features
combined with top word features described in 3.2).
However, with the best predictor feature set for
each domain, nonlinear methods did not improve
performance.

5 Discussion and Conclusions

The focus of this study was on the practical ap-
plication of confidence measurement in rejecting
unreliable SLU outputs with an important impact
on the quality of spoken dialogue systems by re-
prompting or using human annotations for chal-
lenging (e.g., noisy or vague) utterances. We per-
formed a comprehensive feature engineering to
identify the best set of features to train statisti-
cal semantic confidence models for three com-

Figure 5: FA-Rej plots on “number capture” dataset
with MaxEnt linear and nonlinear features

Figure 6: FA-Rej plots on “opening” dataset with base-
line MaxEnt, random forest, and neural networks

mon types of dialogue states in a customer ser-
vice scenario. It was shown that applying a
combination of ASR confidence scores, NL-based
features and domain-dependent predictors signif-
icantly improves the confidence measure perfor-
mance. Our experiments showed that with a pre-
dictive set of features, MaxEnt is a proper clas-
sifier for confidence estimation in terms of per-
formance and computational efficiency. Due to
practical challenges, such as the limitation of
application-specific supervised data to train confi-
dence models and the importance of real-time re-
jection (and therefore confidence prediction), the
application of more complex models requires a
significant performance improvement.
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