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Abstract
A typical workflow to document clinical en-
counters entails dictating a summary, run-
ning speech recognition, and post-processing
the resulting text into a formatted letter.
Post-processing entails a host of transforma-
tions including punctuation restoration, true-
casing, marking sections and headers, convert-
ing dates and numerical expressions, parsing
lists, etc. In conventional implementations,
most of these tasks are accomplished by indi-
vidual modules. We introduce a novel holis-
tic approach to post-processing that relies on
machine callytranslation. We show how this
technique outperforms an alternative conven-
tional system—even learning to correct speech
recognition errors during post-processing—
while being much simpler to maintain.

1 Introduction

Medical dictation is one of the most common
ways of documenting clinical encounters (Rosen-
bloom et al., 2010). The dictated material needs
to be transformed into a textual representation
to be printed as a clinical letter or inserted into
electronic medical record (EMR) systems. This
can be done using one of the following tech-
niques (Alapetite et al., 2009):

1) the speech recording is manually transcribed
by a third party and returned to the physician
for sign-off at a later point in time;

2) the recording is processed by a medical
speech recognizer, controlled and corrected
by a quality assurance team (mostly an ex-
ternal entity), and returned to the physician;

3) while the physician is dictating, a medical
speech recognizer transforms the speech into
text which is subject to immediate correction
and sign-off by the physician.

∗Patent pending.

this is doctor mike miller dictating

a maximum medical improvement slash

impairment rating evaluation for

john j o h n doe d o e social one

two three four five six seven eight

nine service i d one two three four

five six seven eight nine service

date august eight two thousand

and seventeen subjective and

treatment to date the examinee is

a thirty nine year old golf course

maintenance worker with the apache

harding park who was injured on

eight seven two thousand seventeen

Figure 1: Raw output of a medical speech recognizer.

In this paper, we focus on the text processing
that follows the application of automated speech
recognition (ASR) in Techniques 2 and 3. The
role of ASR is simply to transform spoken words
into plain text, as exemplified in the excerpt of a
medical dictation in Figure 1: ASR output is typi
case insensitive and contains only alphabetic char-
acters, transcribed verbatim including command
words, repetitions, grammatical errors, etc.

In contrast, clinical letters follow rigorous for-
matting standards which require a sophisticated
post-processor to transform the ASR output into
a full-fledged letter. Major responsibilities of
the post-processor include: truecasing, punctua-
tion restoration, carrying out dictated commands
(e.g., ‘new paragraph’, ‘scratch that’), converting
numerical and temporal expressions, formatting
acronyms and abbreviations, numbering itemized
lists, separating sections and section headers, and
inserting physician “normals” (sections of boiler-
plate text or templates).

Figure 2 shows a post-processed version of the
raw ASR output of Figure 1. This example makes
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clear that many of the tokens of the ASR output
need to be altered in order to create a properly for-
matted output document. In fact, informal exper-
iments indicated that, on average, more than half
of spoken tokens are subject to modification when
preparing a clinical report from a dictation.

Conventional implementations of post-
processors comprise a multitude of predominantly
rule-based techniques (Sistrom et al., 2001; Liu
et al., 2006; Frankel and Santisteban, 2011),
mostly covering subsets of the operations listed
above. There has been a fair amount of machine
learning research on punctuation restoration (PR),
which does constitute a significant component
of post-processing, over the last two decades
(Beeferman et al., 1998; Peitz et al., 2011).
PR has even been addressed for medical ASR
specifically, using methods such as finite state
models for punctuation insertion (Deoras and
Fritsch, 2008), or identifying punctuated tokens
using recurrent neural networks (Salloum et al.,
2017b).

Of course, PR is only one necessary module
of a post-processing system. Typical modular ap-
proaches, especially those that are predominantly
rule based, are subject to serious disadvantages
in practical use. For one, the task may grow in
complexity over time through the introduction of
specific rules for certain hospitals or physicians.
Another issue is that these systems must follow
an ASR stage, where unforeseen errors (Johnson
et al., 2014; Hodgson and Coiera, 2016; Edwards
et al., 2017) may interfere destructively with post-
processing, for which rules or models are typically
designed or trained for idealized transcriptions.

In this paper, we present a holistic, data-driven
approach to post-processing which makes use of
recent advances in statistical machine translation,
covering most of the aforementioned operations
in a single shot and exhibiting accuracy superior
to an existing modular system. After a brief in-
troduction to machine translation in Section 2, we
describe methods, data sets, and evaluation in Sec-
tion 3 and experimental results in Section 4.

2 Machine translation

We approach the post-processing problem as a
case of machine translation (MT), in which the
source language is the raw ASR output as in Fig-
ure 1, and the target language is the final writ-
ten letter from Figure 2—or, more accurately, a

This is Dr Mike Miller dictating a Maximum
Medical Improvement/Impairment Rating
Evaluation for John Doe.
SSN: 123-45-6789
Service ID: 123 456 789
Service Date: 08/08/17

Subjective and Treatment:
To date, the examinee is a 39 year-old golf
course maintenance worker with the Apache
Harding Park who was injured on 08/07/17.

Figure 2: Output of post-processor.

form that can be trivially converted into the fi-
nal text, and in which formatting elements are
represented themselves as words. To our knowl-
edge, ours is the first system to frame ASR post-
processing as MT, and one of very few described
post-processing systems for the medical domain.

Most standard MT approaches require both par-
allel data (bitexts) and an additional quantity of
data in the target language only, which is used to
build a language model; likelihoods from both the
translational and the language model are balanced
during translation (Ney et al., 2000; Koehn et al.,
2003, 2007; Lopez, 2008).

Koehn et al. (2003) introduce a phrase-based
statistical machine translation (SMT) approach.
Their model is defined based on Bayes’ rule and
includes the phrase translation probability, the lan-
guage model for the target, and the distortion prob-
ability of the target language to account for occur-
rences of reordering. The phrase translation model
and the distortion probabilities are trained on the
aligned phrases of source and target language, and
the language model is trained on the target lan-
guage. During decoding, a sequence of translated
phrases is chosen by performing a beam search to
limit the set of phrase candidates.

3 Methods

In this section we describe our methods for prepar-
ing data for training, tuning, and evaluating our
MT methods. To reframe the post-processing
problem as MT is not a trivial matter—it requires
careful attention to how training data is prepared,
due to the requirements for MT and the peculiari-
ties of medical text; we describe our methods for
doing so in 3.2. Crucially, we also explore the inte-
gration of our models within a working production
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Set # Reports # Words

Training 8,775
4,785,986 (Rep.)
5,363,580 (Tra.)
5,681,630 (Hyp.)

Tuning 500
276,551 (Rep.)
311,538 (Tra.)
305,672 (Hyp.)

Development 300
187,472 (Rep.)
211,740 (Tra.)
209,587 (Hyp.)

Test 300
177,756 (Rep.)
198,722 (Tra.)
196,198 (Hyp.)

Table 1: Statistics of the data sets used for training,
tuning, development, and test.

system in 3.4, enabling us to evaluate the contribu-
tion of MT towards improving real-world results.

3.1 Data sources

All models and experiments in this paper use ac-
tual clinical notes. Reports and dictations from
a variety of specialties at two different US hospi-
tals were considered. As required under HIPAA,
EMR.AI has a Business Associate Agreement
with the Covered Entity that supplied the data.

We first identified a set of 9,875 reports for
which we had manual transcriptions and ASR hy-
potheses available. This set was split into four
smaller sets (see Table 3.1 for corpus statistics).
The training set was used to generate source-to-
target alignments and build the phrase and distor-
tion models, as well as to train the monolingual
language model. (The latter was trained on ad-
ditional text as well, for a total of 23,754 reports
and 14,208,546 words.) The tuning set was used
for tuning the relative contribution of the various
models for MT. The development set was used for
evaluation along the way. Finally, we set aside a
blind test set, used solely and exclusively for the
results in this paper.

We also set out to test whether transcriptions or
hypotheses make better training data. As the task
is posed, hypotheses would seem more relevant;
however, they are a noisier source of data than
transcriptions, and it was not guaranteed that the
needed correspondences could be learned through
the noise. Therefore, for both training and tuning,
we tried transcripts, hypotheses, or a combination
of the two (nine separate conditions).

3.2 Finding parallel training samples

Although our data set contains dictations and their
corresponding reports, these do not represent true
bitexts of the type that are typically used for MT,
for several reasons: boilerplate language or meta-
data may be added to the letter; whole sections
may be reordered, or even inserted from prior
notes in the patient’s history; pleasantries, dis-
continuities, or corrections by the speaker will
be omitted. Furthermore, notes can be thou-
sands of words in length, and it is not practical to
learn alignments from such long “sentences” given
computational constraints.

To solve these problems, we developed a
method to extract matching stretches of up to 100
words from the source and target, which can then
be used as training samples. The procedure entails
five major steps.
Text preprocessing. Punctuation, newlines, tabs,
headings, and list items are separated from adja-
cent tokens and converted into dummy tokens. All
digits become their own tokens.
Dynamic alignment. All matches and edits be-
tween source and target are determined using a
dynamic program, similar to that used for Leven-
shtein distance but with key differences: matches
are permitted between non-exact string matches if
they are determined, in a previous run of the al-
gorithm, to be possible substitutions; edits can be
longer than one token; and extending an edit in-
curs a lesser penalty than beginning a new edit.
Merging edits. Short substitutions are merged to-
gether if there is an intervening single-word match
between them, and the entire range is considered
a substitution. The resulting edits allow for longer
stretches of parallel sentence data.
Calculating confidence. For every edit, a score is
calculated based on a mix of statistics (calculated
from a prior run of the dynamic program), and a
heuristic that assigns higher scores to longer sub-
stitutions, to shorter insertions or deletions, and to
edits that are adjacent to other long edits.
Extracting sentences. An iterative algorithm tra-
verses all edits and matches from left to right,
building a parallel source–target “sentence” as it
goes. A sentence ends when an edit of too low
confidence is reached, or once it exceeds 100
words. In the latter case, the next sentence will
start one-third of the way through the previous
one, so sentences may overlap by up to 67 tokens.

Each extracted sentence becomes a training
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Figure 3: Basic design of the MTPP. Stages within the MTPP shaded in orange are responsible for transforming
the MT target language (“tgt”) into properly formatted written language.

sample. Any single-word string matches are also
written as training samples—because this is not a
typical MT problem in that the source and target
“languages” are both English, we want to bias the
system towards simply regurgitating input words
it does not know how to translate. From 8,775 re-
ports, this method generates many training sam-
ples: 4,402,612 for transcripts, 4,385,545 for hy-
potheses, and 8,788,157 for the combined set.

3.3 Model training

For the translation model, we employed typi-
cal statistical MT techniques. Optimal word-to-
word alignments between source and target were
learned using expectation maximization (Och and
Ney, 2003). Subject to these alignments, parallel
phrases of up to seven words in length were ex-
tracted. For the monolingual language model, we
trained a 6-gram model with typical interpolation
and backoff parameters.

The MT training stage yields a phrase substi-
tution model and a distortion model. To deter-
mine the relative contribution of the phrase, distor-
tion, and language models in computing transla-
tion option likelihoods, we tuned using minimum
error rate training (Och, 2003): translate all text
in a held-out tuning set, iteratively adjusting the
weights of each contributing model until conver-
gence on an error metric. We used an interpola-
tion of word error rate (WER) and CDER (Leusch
et al., 2006), which only assesses a single penalty
for “block” movements. We include CDER to re-
duce the impact on tuning when entire sentences
are reordered between the dictation and final let-
ter; note that WER would assess numerous single-
word insertion and deletion penalties in such a
case.

3.4 Integration with medical post-processor

To use the MT system in production, it had to
be integrated into a complete software product,
which we refer to as the machine translation post-
processor (MTPP), responsible for all stages of
transformation between the raw ASR hypothesis
and the generated report. Although the bulk of
the decisions made during this process are handled
by MT, the MTPP is responsible for selecting and
preparing inputs for MT and transforming outputs
into human-readable form. We present a simpli-
fied graphical overview of the MTPP in Figure 3.1.

At the first stage, the “preamble” (spoken meta-
data that is often not present in the final report)
and any commands to insert a template are iso-
lated and not sent to MT. Of the pieces that are
subject to MT, any that exceed 1,000 tokens are
split. The resulting chunks are sent to an MT dae-
mon which has models pre-loaded into memory
and can perform multiple translations in parallel.
To each translated chunk, we apply truecasing and
post-editing: several steps including joining digits,
formatting headings, counting and labeling entries
of numbered lists, etc. Finally, all chunks are uni-
fied and put into the correct order.

The preamble detector is based on a two-class
recurrent neural network (RNN) classifier with
pre-trained word embeddings and long short-term
memory (LSTM) units, which tags tokens as either
in- or out-of-preamble, then finds the split bound-
ary according to a heuristic. The RNN truecaser
has a similar architecture but predicts one of three
classes for each token—all lowercase, first letter
uppercase, or all uppercase—through one layer of
softmax output shared across all time frames. This
classifier was trained on automatically generated
data from 15,635 reports. Truecasing is also sup-
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ported through rule-based decisions as well as lists
of truecased forms compiled from ontologies and
prior reports, which include non-initial capitaliza-
tions (‘pH’, e.g.).

3.5 Evaluation

We assess performance of all models in two text
domains: the MT target domain, which is the text
format described in Section 3.2 in which numer-
als are split into individual digits, headers are sur-
rounded by dummy tokens, and case is ignored;
and the post-processor error rate (PER) domain.
The latter is used to estimate the manual effort re-
quired to correct errors in the hypothesis report.
PER can only be calculated from final outputs of
a post-processor, and thus depends upon the inte-
gration described in Section 3.4.

PER is calculated similarly to WER except
that it considers punctuation, newlines, and tabs
as separate tokens, and it excludes any detected
preamble from consideration (keeping the pream-
ble leads to a slight increase in PER globally).
PER is an especially harsh metric in real-world
use, as it penalizes ASR errors, post-processing
errors, and any other source of distance between
the post-processor’s output and the final letter fol-
lowing multiple rounds of manual review.

We measure PER of the MTPP against a base-
line system, which was also developed internally
within EMR.AI for specific use with clinical dic-
tations. The baseline system employs a modu-
lar pipeline, where each module is responsible for
a particular transformation—for instance, one de-
tects a metadata-heavy “preamble” in the dictation
(Salloum et al., 2017a); another converts spelled-
out numbers to numerals, dates, etc. Some com-
ponents of the system are rule based, while oth-
ers rely on machine learning. This system had
been the focus of significant development previ-
ously and was in regular production use prior to
the advent of the MTPP.

4 Results

In the MT target domain, we present three stan-
dard measures of MT performance: WER, CDER,
and BLEU. Results for all possible configurations
of training and tuning data sources are given in
Table 2. Note that these results are on a filtered
test set: only source texts of 1,000 tokens or fewer
were used (190 out of 300 in the test set), as this
was found to be a point beyond which decoding

Tune
Train

Hyp. Tra. Hyp. + Tra. Metric

Hyp.
0.742 0.746 0.741 BLEU
0.266 0.277 0.262 WER
0.170 0.171 0.170 CDER

Tra.
0.754 0.745 0.747 BLEU
0.259 0.276 0.258 WER
0.164 0.171 0.167 CDER

Hyp. + Tra.
0.751 0.721 0.748 BLEU
0.273 0.317 0.262 WER
0.166 0.167 0.166 CDER

Table 2: Evaluation of test set on different training and
tuning configurations with BLEU, WER, and CDER.

Tune
Train

Hyp. Tra. Hyp. + Tra.

Hyp. 0.322 0.331 0.324
Tra. 0.324 0.338 0.321

Hyp. + Tra. 0.328 0.349 0.323

Table 3: Evaluation of the test set on different training
and tuning configurations in terms of PER.

PER
Method In: hyp. In: tra.

No post-processing 0.619 0.574
Non-MT post-proc. 0.411 0.341

MTPP (best MT model) 0.321 0.271

Table 4: Comparison of PER in several conditions. Re-
sults are reported using ASR hypotheses as input (“In:
hyp.”), as in our other experiments, as well as using
manual transcriptions as input (“In: tra.”).

slowed considerably. Note that all BLEU are well
above 0.7; these may appear to be exceptionally
high scores, but note that our task here is easier
than a “standard” translation task—to give some
idea of a baseline, comparing the totally untrans-
lated dictations in the test set to their matching re-
ports yields a BLEU of 0.318 (as well as WER
0.514, CDER 0.483), which would be quite im-
possible in a case of translating between two dif-
ferent languages.

For the realistic evaluation of the complete sys-
tem, we present PER measurements on final out-
puts of the MTPP in Table 3. Because the MTPP
contains logic for breaking up the translation task
across longer notes, no filtering is necessary and
all 300 notes in the test set can be used. We must
emphasize that these results cannot be compared
with any quantities in Table 2, as they are mea-
sured in different domains entirely.
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Tra. . . . her mother was here and had them gave her ibuprofen as soon as she started . . .
Hyp. . . . her mother was here and have him give her an i v profile missing she started . . .

MTPP . . . her mother was here and gave her ibuprofen missing, she started . . .
Tra. in the meantime comma i will have hospitalist come by and see the patient . . .
Hyp. in the meantime comma i will have our hospital was combine to the patient . . .

MTPP In the meantime, I will have hospitalist was come by and see the patient . . .
Tra. carafate one gram a c and h s venlafaxine e r seventy five milligrams a day
Hyp. carafate one gram a c n h s meloxicam m e r seventy five milligrams a day

MTPP 6. Carafate 1 g before meals and at bedtime. / 7. Venlafaxine ER 75 mg a day.

Table 5: Examples where the MTPP has “corrected” ASR errors. In each set of three lines, the first is the manual
speech transcript, the second is the ASR hypothesis of the same audio, and the third is the output of the MTPP given
the ASR hypothesis. Bolded text shows where the MTPP has generated output closer to the actual speech than
to its input. Note, for the third example, that the abbreviation ‘a.c.’ (ante cibum) indicates to take the medication
before meals, and ‘h.s.’ (hora somni) at bedtime.

The comparison of PER between all nine condi-
tions suggests that the best results are achieved on
training data that includes ASR hypotheses (test
of proportions: χ2 = 533, p < .001, when com-
paring average PER with and without hypotheses
in training). This is not a highly surprising result,
as the evaluation task is to translate hypotheses,
although we had wondered before if hypotheses
were too noisy to constitute good training data.
For tuning data, it appears that either hypotheses
or transcripts yield good results, but a mixed set
is always worse (χ2 = 44.8, p < .001, comparing
average PER when tuned on the mix to PER when
tuned on transcripts).

To quantify the impact of MT on post-
processing accuracy, we also measured PER of
the source hypotheses both before any post-
processing and after passing through our baseline
post-processor. Results are reported in Table 4.
Overall, the MTPP results in a significant decrease
in PER from the previous post-processor: a rela-
tive reduction of 21.9% error rate for hypotheses
(χ2 = 4102, p < .001).

For further context, we also report PER using
manual speech transcriptions as input (the right-
most column of Table 4). This is not a realistic
use case, but we provide the measurements here
to give a sense of the effect ASR errors have on
typical PER measurements. The ASR WER of
our MT test set was 0.142—much greater than the
observed PER difference between hypotheses and
transcripts, indicating that many formatting errors
in PER occur on the same tokens as ASR errors.

4.1 Correcting ASR mistakes

For the MT models that learn from hypotheses, it
was conceivable that they could actually learn to
correct ASR mistakes by identifying common er-
ror patterns and how they are typically corrected in
the final letter. To the MT system, there is no es-
sential difference between, say, inserting format-
ting elements around a section header and replac-
ing an erroneously recognized phrase with the in-
tended phrase from the report; all words, numer-
als, and structural elements are tokens alike.

Indeed, we found several occurrences in our test
set of phrases in MTPP output that were more sim-
ilar to manual transcriptions of these dictations
than to the ASR hypotheses that served as input
to the MTPP. Refer to the examples in Table 5:
each shows a transcript of a segment of speech
(first line), the ASR hypothesis on that same seg-
ment (second line), and the output of the MTPP
when given the ASR hypothesis as input (third
line). In each, the MTPP output contains a bolded
segment that is closer to the transcription than to
the hypothesis. (Although note some incomplete
cases, such as “hospitalist was come by and see” in
the second example.) All of these examples were
taken from the same test set as the other results in
this paper. None of the transcriptions from the test
set were ever seen by any system during training,
tuning, or testing (all previous quantitative results
used ASR hypotheses, not manual transcriptions,
as the source language).

5 Discussion

Using MT for the post-processing task has numer-
ous advantages over other approaches. Most ob-
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viously from our results, it achieves a high level
of accuracy, even roundly outperforming a sys-
tem containing numerous hand-designed rules and
deep learning approaches that were trained on
large amounts of annotated data.

Additionally, MT is a better solution for an
adaptable and improvable system. The core of the
system can be adapted to other dialects of English
or even other languages by retraining the models.
Even in the simplest use case, however, retrain-
ing can be periodically undertaken to improve per-
formance on current data, accounting for possible
changes over time in dictation or report writing
style, as well as any ongoing development of the
associated speech recognizer.

A final advantage is in the cost of maintaining
the system. Although MT training has relatively
high compute and memory requirements, there is
very little cost in human time to retrain new mod-
els. Although our very best results did use tran-
scriptions, our experiments demonstrate that the
entire process can be reproduced fruitfully with-
out them (and may even be subject to less unpre-
dictability). To continuously improve a rule-based
system, direct human intervention is required to
write and validate new rules. For any supervised
machine learning modules of a post-processor, hu-
man annotators may also be required.

6 Conclusion

In this paper we presented an overview of a com-
plete and validated medical ASR post-processing
system that relies on MT, as well as the novel pro-
cessing methods required to ensure that MT is a vi-
able approach for clinical dictations. Our strategy
has multiple significant advantages compared to
traditional rule-based approaches, and even other
machine learning-based ones—not only does the
MT design result in substantially reduced format-
ting errors, achieved in part by its ability to cor-
rect errors made by the speech recognizer in the
first place, but it can also be retrained and im-
proved fully automatically, without the need for
costly manual adjustments.
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