
Proceedings of NAACL-HLT 2018, pages 106–113
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Accelerating NMT Batched Beam Decoding
with LMBR Posteriors for Deployment

Gonzalo Iglesias† William Tambellini† Adrià De Gispert†‡ Eva Hasler† Bill Byrne†‡

†SDL Research
{giglesias|wtambellini|agispert|ehasler|bbyrne}@sdl.com

‡Department of Engineering, University of Cambridge, U.K.

Abstract

We describe a batched beam decoding algo-
rithm for NMT with LMBR n-gram posteri-
ors, showing that LMBR techniques still yield
gains on top of the best recently reported re-
sults with Transformers. We also discuss ac-
celeration strategies for deployment, and the
effect of the beam size and batching on mem-
ory and speed.

1 Introduction

The advent of Neural Machine Translation (NMT)
has revolutionized the market. Objective improve-
ments (Sutskever et al., 2014; Bahdanau et al.,
2015; Sennrich et al., 2016b; Gehring et al., 2017;
Vaswani et al., 2017) and a fair amount of neu-
ral hype have increased the pressure on companies
offering Machine Translation services to shift as
quickly as possible to this new paradigm.

Such a radical change entails non-trivial chal-
lenges for deployment; consumers certainly look
forward to better translation quality, but do not
want to lose all the good features that have been
developed over the years along with SMT tech-
nology. With NMT, real time decoding is chal-
lenging without GPUs, and still an avenue for re-
search (Devlin, 2017). Great speeds have been
reported by Junczys-Dowmunt et al. (2016) on
GPUs, for which batching queries to the neural
model is essential. Disk usage and memory foot-
print of pure neural systems are certainly lower
than that of SMT systems, but at the same time
GPU memory is limited and high-end GPUs are
expensive.

Further to that, consumers still need the abil-
ity to constrain translations; in particular, brand-
related information is often as important for com-
panies as translation quality itself, and is cur-
rently under investigation (Chatterjee et al., 2017;
Hokamp and Liu, 2017; Hasler et al., 2018).
It is also well known that pure neural systems

reach very high fluency, often sacrificing ade-
quacy (Tu et al., 2017; Zhang et al., 2017; Koehn
and Knowles, 2017), and have been reported to
behave badly under noisy conditions (Belinkov
and Bisk, 2018). Stahlberg et al. (2017) show an
effective way to counter these problems by tak-
ing advantage of the higher adequacy inherent to
SMT systems via Lattice Minimum Bayes Risk
(LMBR) decoding (Tromble et al., 2008). This
makes the system more robust to pitfalls, such
as over- and under-generation (Feng et al., 2016;
Meng et al., 2016; Tu et al., 2016) which is impor-
tant for commercial applications.

In this paper, we describe a batched beam de-
coding algorithm that uses NMT models with
LMBR n-gram posterior probabilities (Stahlberg
et al., 2017). Batching in NMT beam decod-
ing has been mentioned or assumed in the litera-
ture, e.g. (Devlin, 2017; Junczys-Dowmunt et al.,
2016), but to the best of our knowledge it has not
been formally described, and there are interesting
aspects for deployment worth taking into consid-
eration.

We also report on the effect of LMBR poste-
riors on state-of-the-art neural systems, for five
translation tasks. Finally, we discuss how to pre-
pare (LMBR-based) NMT systems for deploy-
ment, and how our batching algorithm performs
in terms of memory and speed.

2 Neural Machine Translation and
LMBR

Given a source sentence x, a sequence-to-
sequence NMT model scores a candidate transla-
tion sentence y = yT1 with T words as:

PNMT (yT1 |x) =

T∏

t=1

PNMT (yt|yt−11 ,x) (1)

where PNMT (yt|yt−11 ,x) uses a neural func-
tion fNMT (·). To account for batching B neu-

106

ral queries together, our abstract function takes the
form of fNMT (St−1,yt−1,A) where St−1 is the
previous batch state with B state vectors in rows,
yt−1 is a vector with the B preceding generated
target words, and A is a matrix with the annota-
tions (Bahdanau et al., 2015) of a source sentence.
The model has a vocabulary size V .

The implementation of this function is deter-
mined by the architecture of specific models. The
most successful ones in the literature typically
share in common an attention mechanism that de-
termines which source word to focus on, informed
by A and St−1. Bahdanau et al. (2015) use recur-
rent layers to both compute A and the next target
word yt. Gehring et al. (2017) use convolutional
layers instead, and Vaswani et al. (2017) prescind
from GRU or LSTM layers, relying heavily on
multi-layered attention mechanisms, stateful only
on the translation side. Finally, this function can
also represent an ensemble of neural models.

Lattice Minimum Bayes Risk decoding com-
putes n-gram posterior probabilities from an evi-
dence space and uses them to score a hypothesis
space (Kumar and Byrne, 2004; Tromble et al.,
2008; Blackwood et al., 2010). It improves single
SMT systems, and also lends itself quite nicely to
system combination (Sim et al., 2007; de Gispert
et al., 2009). Stahlberg et al. (2017) have recently
shown a way to use it with NMT decoding: a tra-
ditional SMT system is first used to create an evi-
dence space ϕe, and the NMT space is then scored
left-to-right with both the NMT model(s) and the
n-gram posteriors gathered from ϕe. More for-
mally:

ŷ = arg max
y

T∑

t=1

(

L(yt−1
t−n,yt)︷ ︸︸ ︷

Θ0 +

4∑

n=1

ΘnPLMBR(ytt−n|ϕe)

+λ logPNMT (yt|yt−11 ,x))

(2)

For our purposes L is arranged as a matrix with
each row uniquely associated to an n-gram history
identified in ϕe: each row contains scores for any
word y in the NMT vocabulary.

L can be precomputed very efficiently, and
stored in the GPU memory. The number of distinct
n-gram histories is typically no more than 500 for
our phrase-based decoder producing 200 hypothe-
ses. Notice that such a matrix only containing
PLMBR contributions would be very sparse, but

it turns into a dense matrix with the summation
of Θ0. Both sparse and dense operations can be
performed on the GPU. We have found it more ef-
ficient to compute first all the sparse operations on
CPU, and then upload to the GPU memory and
sum the constant Θ0 in GPU1.

3 NMT batched beam decoding

Algorithm 1 describes NMT decoding with
LMBR posteriors using beam size B equal to the
batch size. Lines 2-5 initialize the decoder; the
number of time steps T is usually a heuristic func-
tion of the source length. q will keep track of the
B best scores per time step, b and y are indices.

Lines 7-16 are the core of the batch decoding
procedure. At each time step t, given St−1, yt−1
and A, fNMT returns two matrices: Pt, with size
B × V , contains log-probabilities for all possible
candidates in the vocabulary givenB live hypothe-
ses. St is the next batch state. Each row in St is
the vector state that corresponds to any candidate
in the same row of Pt (line 8).

Lines 9, 10 add the n-gram posterior scores.
Given the indices in b and y it is straightforward
to read the unique histories for the B open hy-
potheses: the topology of the hypothesis space
is that of a tree because an NMT state represents
the entire live hypothesis from time step 0. Note
that btj < B is the index to access the previ-
ous word in yt−1. In effect, indices in b func-
tion as backpointers, allowing to reconstruct not
only n-grams per time step, but also complete
hypotheses. As discussed for Equation 2, these
histories are associated to rows in our matrix L.
Function GETMATRIXBYROWS(·) simply creates
a new matrix of size B × V by fetching those B
rows from L. This new matrix is summed to Pt

(line 10).
In line 11, we get the indices and scores in

Pt + q′t−1 of the top B hypotheses. These best
hypotheses could come from any row in Pt. For
example, all B best hypotheses could have been
found in row 0. In that case, the new batch state to
be used in the next time step should contain copies
of row 0 in the other B − 1 rows. This is achieved
again with GETMATRIXBYROWS(·) in line 12.

Finally, lines 13-16 identify whether there are
any end-of-sentence (EOS) candidates; the corre-

1 Ideally we would want to keep L as a sparse matrix and
sum Θ0 on-the-fly. However this is not possible with Array-
Fire 3.6.

107

Algorithm 1 Batch decoding with LMBR n-gram posteriors
1: procedure DECODENMT(x, L)
2: T ← Maximum target hypothesis length
3: b,y,q indices and scores, with b0 ← 0,y0 ← 0,q0 ← 0
4: A← Annotations for source sentence x
5: S0 ← Initial decoder state
6: F = {} . Set of EOS survivors
7: for t = 1 to T do
8: Pt,St ← fNMT (St−1,yt−1,A)
9: h← B histories identified through b, y and t

10: Pt ← Pt + GETMATRIXBYROWS(L,h) . Add LMBR contributions
11: bt,yt,qt ← TOPB(Pt + q′t−1)
12: St ← GETMATRIXBYROWS(St,bt)
13: for j = 0 to B − 1 do
14: if ytj = EOS then
15: F ← F ∪ ({t, j, qtj}) . Track indices and score
16: qtj ← −∞ . Mask out to prevent hypothesis extension

17: return GETBESTHYPOTHESIS(F,b,y)

sponding indices and score are pushed into stack
F and these candidates are masked out (i.e. set
to −∞) to prevent further expansion. In line 17,
GETBESTHYPOTHESIS(F) traces backwards the
best hypothesis in F , again using indices in b and
y. Optionally, normalization by hypothesis length
happens in this step.

It is worth noting that:

1. If we drop lines 9, 10 we have a pure left-to-
right NMT batched beam decoder.

2. Applying a constraint (e.g. for lattice rescor-
ing or other user constraints) involves mask-
ing out scores in Pt before line 11.

3. Because the batch size is tied to the beam
size, the memory footprint increases with the
beam.

4. Due to the beam being used for both EOS and
non EOS candidates, it can be argued that this
empoverishes the beam and it could be kept
in addition to non EOS candidates (either by
using a bigger beam, or keeping separately).
Empirically we have found that this does not
affect quality with real models.

5. The opposite, i.e. that EOS candidates never
survive in the beam for T time steps, can
happen, although very infrequently. Several
pragmatic backoff strategies can be applied
in this situation: for example, running the de-
coder for additional time steps, or tracking

all EOS candidates that did not survive in a
separate stack and picking the best hypothe-
sis from there. We chose the latter.

3.1 Extension to Sentence batching
In addition to batching all B queries to the neural
model needed to compute the next time step for
one sentence, we can do sentence batching: this is,
we translateN sentences simultaneously, batching
B ×N queries per time step.

With small modifications, Algorithm 1 can be
easily extended to handle sentence batching. If the
number of sentences is N ,

1. Instead of one set F to store EOS candidates,
we need F1...FN sets.

2. For every time step, bt,yt and qt need to
be matrices instead of vectors, and minor
changes are required in TOPB(·) to fetch the
best candidates per sentence efficiently.

3. Pt and St can remain as matrices, in which
case the new batch size is simply B ·N .

4. The heuristic function used to compute T is
typically sentence specific.

4 Experiments

4.1 Experimental Setup
We report experiments on English-German,
German-English and Chinese-English language

108

WMT17 WAT
ger-eng eng-ger chi-eng eng-jpn jpn-eng

PBMT 28.9 19.6 15.8 33.4 18.0
FNMT 32.8 26.1 20.8 39.1 25.3
LNMT 33.7 26.6 22.0 40.4 26.1
TNMT 35.2 28.9 24.8 44.6 29.4

LTNMT 35.4 29.2 25.4 44.9 30.2
Best submissions 35.1 28.3 26.4 43.3 28.4

Table 1: Quality assessment of our NMT systems with and without LMBR posteriors for GRU-based (FNMT,
LNMT) and Transformer models (TNMT, LTNMT). Cased BLEU scores reported on 5 translation tasks.The exact
PBMT systems used to compute n-gram posteriors for LNMT and LTNMT systems are also reported. The last row
shows scores for the best official submissions to each task.

pairs for the WMT17 task, and Japanese-English
and English-Japanese for the WAT task. For
the German tasks we use news-test2013 as a de-
velopment set, and news-test2017 as a test set;
for Chinese-English, we use news-dev2017 as
a development set, and news-test2017 as a test
set. For Japanese tasks we use the ASPEC cor-
pus (Nakazawa et al., 2016).

We use all available data in each task for
training. In addition, for German we use back-
translation data (Sennrich et al., 2016a). All
training data for neural models is preprocessed
with the byte pair encoding technique described
by Sennrich et al. (2016b). We use Blocks (van
Merriënboer et al., 2015) with Theano (Bastien
et al., 2012) to train attention-based single GRU
layer models (Bahdanau et al., 2015), henceforth
called FNMT. The vocabulary size is 50K. Trans-
former models (Vaswani et al., 2017), called here
TNMT, are trained using the Tensor2Tensor pack-
age2 with a vocabulary size of 30K.

Our proprietary translation system is a mod-
ular homegrown tool that supports pure neural
decoding (FNMT and TNMT) and with LMBR
posteriors (henceforce called LNMT and LT-
NMT respectively), and flexibly uses other com-
ponents (phrase-based decoding, byte pair encod-
ing, etcetera) to seamlessly deploy an end-to-end
translation system.

FNMT/LNMT systems use ensembles of
3 neural models unless specified otherwise;
TNMT/LTNMT systems decode with 1 to 2 mod-
els, each averaging over the last 20 checkpoints.

The Phrase-based decoder (PBMT) uses stan-
dard features with one single 5-gram language

2https://github.com/tensorflow/
tensor2tensor

model (Heafield et al., 2013), and is tuned with
standard MERT (Och, 2003); n-gram posterior
probabilities are computed on-the-fly over rich
translation lattices, with size bounded by the
PBMT stack and distortion limits. The parameter
λ in Equation 2 is set as 0.5 divided by the number
of models in the ensemble. Empirically we have
found this to be a good setting in many tasks.

Unless noted otherwise, the beam size is set to
12 and the NMT beam decoder always batches
queries to the neural model. The beam decoder
relies on an early preview of ArrayFire 3.6 (Yala-
manchili et al., 2015)3, compiled with CUDA 8.0
libraries. For speed measurements, the decoder
uses one single CPU thread. For hardware, we
use an Intel Xeon CPU E5-2640 at 2.60GHz. The
GPU is a GeForce GTX 1080Ti. We report cased
BLEU scores (Papineni et al., 2002), strictly com-
parable to the official scores in each task4.

4.2 The effect of LMBR n-gram posteriors
Table 1 shows contrastive experiments for all five
language pair/tasks. We make the following ob-
servations:

1. LMBR posteriors show consistent gains
on top of the GRU model (LNMT vs
FNMT rows), ranging from +0.5BLEU to
+1.2BLEU. This is consistent with the find-
ings reported by Stahlberg et al. (2017).

2. The TNMT system boasts improvements
across the board, ranging from +1.5BLEU
in German-English to an impressive
+4.2BLEU in English-Japanese WAT

3http://arrayfire.org
4http://matrix.statmt.org/ and

http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

109

Figure 1: Accelerated FNMT and LNMT decoding times for newstest-2017 test set.

(TNMT vs LNMT). This is in line with
findings by Vaswani et al. (2017) and sets
new very strong baselines to improve on.

3. Further, applying LMBR posteriors along
with the Transformer model yields gains
in all tasks (LTNMT vs TNMT), up to
+0.8BLEU in Japanese-English. Interest-
ingly, while we find that rescoring PBMT lat-
tices (Stahlberg et al., 2016) with GRU mod-
els yields similar improvements to those re-
ported by Stahlberg et al. (2017), we did not
find gains when rescoring with the stronger
TNMT models instead.

4.3 Accelerating FNMT and LNMT systems
for deployment

There is no particular constraint on speed for the
research systems reported in Table 1. We now ad-
dress the question of deploying NMT systems so
that MT users get the best quality improvements
at real-time speed and with acceptable memory
footprint. As an example, we analyse in detail
the English-German FNMT and LNMT case and
discuss the main trade-offs if one wanted to ac-
celerate them. Although the actual measurements
vary across all our productised NMT engines, the
trends are similar to the ones reported here.

In this particular case we specify a beam width
of 0.01 for early pruning (Wu et al., 2016; De-
laney et al., 2006) and reduce the beam size to
4. We also shrink the ensemble into one single
big model5 using the data-free shrinking method
described by Stahlberg and Byrne (2017), an in-
expensive way to improve both speed and GPU
memory footprint.

5The file size of each 3 individual models of the ensemble
is 510MB; the size of the shrunken model is 1.2GB.

In addition, for LNMT systems we tune phrase-
based decoder parameters such as the distortion
limit, the number of translations per source phrase
and the stack limit. To compute n-gram posteri-
ors we now only take a 200-best from the phrase-
based translation lattice.

Table 2 shows a contrast of our English-German
WMT17 research systems versus the respective
accelerated ones.

Research Accelerated
BLEU speed BLEU speed

FNMT 26.1 2207 25.2 9449
LNMT 26.6 263 25.7 4927

Table 2: Cased BLEU scores for research vs acceler-
ated English-to-German WMT17 systems. Speed re-
ported in words per minute.

In the process, both accelerated systems have
lost 0.9 BLEU relative to the baseline. As an
example, let us break down the effects of accel-
erating the LNMT system: using only 200-best
hypotheses from the phrase-based translation lat-
tice reduces 0.3 BLEU. Replacing the ensemble
with a data-free shrunken model reduces another
0.2 BLEU and decreasing the beam size reduces
0.4 BLEU. The impact of reducing the beam size
varies from system to system, although often does
not result in substantial quality loss for NMT mod-
els (Britz et al., 2017).

It is worth noting that these two systems share
exactly the same neural model and parameter val-
ues. However, LNMT runs 4500 words per minute
(wpm) slower than FNMT. Figure 1 breaks down
the decoding times for both the accelerated FNMT
and LNMT systems. The LNMT pipeline also re-
quires a phrase-based decoder and the extra com-
ponent to compute the n-gram posterior probabil-

110

Figure 2: Batch beam decoder speed measured over newstest-2017 test set, using the accelerated FNMT system
(25.2 BLEU for beam size = 4).

Figure 3: Batch beam decoder speed measured over newstest-2017 test set, using the accelerated eng-ger-wmt17
FNMT system (26.1 BLEU) with additional sentence batching, up to 7 sentences.

ities. In effect, while both are remarkably fast by
themselves (e.g. the phrase-based decoder is run-
ning at 20000 wpm), these extra contributions ex-
plain most of the speed reduction for the acceler-
ated LNMT system. In addition, the beam decoder
itself is slightly slower for LNMT than for FNMT.
This is mainly due to the computation of L as ex-
plained in Section 2. Finally, the respective GPU
memory footprints for FNMT and LNMT are 4.1
and 4.8 GB.

4.4 Batched beam decoding and beam size

We next discuss the impact of using batch de-
coding and the beam size. To this end we use
the accelerated FNMT system (25.2 BLEU, 9449
wpm) to decode with and without batching; we
also widen the beam. Figure 2 shows the results.

The accelerated system itself with batched
beam decoding and beam size of 4 is 3 times faster
than without batching (3053 wpm). The GPU
memory footprint is 1 GB bigger when batching

(4.1 vs 3.1 GB). As can be expected, widening the
beam decreases the speed of both decoders. The
relative speed-up ratio favours the batch decoder
for wider beams, i.e. it is 5 times faster for beam
size 12. However, because the batch size is tied to
the beam size, this comes at a cost in GPU mem-
ory footprint (under 8 GB).

4.5 Sentence batching

As described in Section 3.1, it is straightforward to
extend beam batching to sentence batching. Fig-
ure 3 shows the effect of sentence batching up to 7
sentences on our accelerated FNMT system.

Whilst the speed-up of our implementation is
sub-linear, when batching 5 sentences the de-
coder runs at almost 21000 wpm, and goes be-
yond 24000 for 7 sentences. Thus, our implemen-
tation of sentence batching is 2.5 times faster on
top of beam batching. Again, this comes at a cost:
the GPU memory footprint increases as we batch
more and more sentences together, up to 11 GB for

111

7 sentences, which approaches the limit of GPU
memory.

Note that sentence batching does not change
translation quality. For example, when translating
7 sentences, we are effectively batching 28 neural
queries per time step. Indeed, each individual sen-
tence is still being translated with a beam size of
4.

Figure 3 also shows the effect of sorting the test
set by sentence length. Because sentences have
similar lengths, less padding is required and hence
we have less wasteful GPU computation. With 7
batched sentences the decoder would run at barely
17000 wpm, this is, 7000 wpm less due to not sort-
ing by sentence length. A similar strategy is com-
mon for neural training (Sutskever et al., 2014;
Morishita et al., 2017).

5 Conclusions

We have described a left-to-right batched beam
NMT decoding algorithm that is transparent to the
neural model and can be combined with LMBR
n-gram posteriors. Our quality assessment with
Transformer models (Vaswani et al., 2017) has
shown that LMBR posteriors can still improve
such a strong baseline in terms of BLEU. Finally,
we have also discussed our acceleration strategy
for deployment and the effect of batching and the
beam size on memory and speed.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. ICLR.

Graeme Blackwood, Adrià Gispert, and William
Byrne. 2010. Efficient path counting transducers for
minimum bayes-risk decoding of statistical machine
translation lattices. In Proceedings of ACL, pages
27–32.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc Le. 2017. Massive exploration of neural ma-
chine translation architectures. In Proceedings of
EMNLP, pages 1442–1451.

Rajen Chatterjee, Matteo Negri, Marco Turchi, Mar-
cello Federico, Lucia Specia, and Frédéric Blain.
2017. Guiding neural machine translation decoding
with external knowledge. In Proceedings of WMT,
pages 157–168.

Brian Delaney, Wade Shen, and Timothy Anderson.
2006. An efficient graph search decoder for phrase-
based statistical machine translation. In Proceed-
ings of IWSLT.

Jacob Devlin. 2017. Sharp models on dull hardware:
Fast and accurate neural machine translation decod-
ing on the cpu. In Proceedings of EMNLP, pages
2820–2825.

Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou,
and Kenny Q. Zhu. 2016. Improving attention mod-
eling with implicit distortion and fertility for ma-
chine translation. In Proceedings of COLING, pages
3082–3092.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR,
abs/1705.03122.

Adrià de Gispert, Sami Virpioja, Mikko Kurimo, and
William Byrne. 2009. Minimum bayes risk com-
bination of translation hypotheses from alternative
morphological decompositions. In Proceedings of
NAACL-HLT, pages 73–76.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation de-
coding with terminology constraints. In Proceed-
ings of NAACL-HLT.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modified
kneser-ney language model estimation. In Proceed-
ings of ACL, pages 690–696.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of ACL, pages 1535–
1546.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready
for deployment? A case study on 30 translation di-
rections. CoRR, abs/1610.01108.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39.

Shankar Kumar and William Byrne. 2004. Minimum
bayes-risk decoding for statistical machine transla-
tion. In Proceedings of NAACL-HLT, pages 169–
176.

Fandong Meng, Zhengdong Lu, Hang Li, and Qun Liu.
2016. Interactive attention for neural machine trans-
lation. In Proceedings of COLING, pages 2174–
2185.

112

Bart van Merriënboer, Dzmitry Bahdanau, Vincent
Dumoulin, Dmitriy Serdyuk, David Warde-Farley,
Jan Chorowski, and Yoshua Bengio. 2015. Blocks
and fuel: Frameworks for deep learning. CoRR,
abs/1506.00619.

Makoto Morishita, Yusuke Oda, Graham Neubig,
Koichiro Yoshino, Katsuhito Sudoh, and Satoshi
Nakamura. 2017. An empirical study of mini-batch
creation strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 61–68.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. ASPEC:
Asian scientific paper excerpt corpus. In Proceed-
ings of LREC.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
ACL, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
ACL, pages 311–318.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of ACL,
pages 86–96.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of ACL, pages
1715–1725.

K. C. Sim, W. J. Byrne, M. J. F. Gales, H. Sahbi, and
P. C. Woodland. 2007. Consensus network decod-
ing for statistical machine translation system combi-
nation. In Proceedings of ICASSP, volume 4, pages
105–108.

Felix Stahlberg and Bill Byrne. 2017. Unfolding and
shrinking neural machine translation ensembles. In
Proceedings of EMNLP, pages 1946–1956.

Felix Stahlberg, Adrià de Gispert, Eva Hasler, and
Bill Byrne. 2017. Neural machine translation by
minimising the bayes-risk with respect to syntactic
translation lattices. In Proceedings of EACL, vol-
ume 2, pages 362–368.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. In Proceedings of ACL, pages 299–305.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS, volume 2, pages
3104–3112, Cambridge, MA, USA. MIT Press.

Roy Tromble, Shankar Kumar, Franz Och, and Wolf-
gang Macherey. 2008. Lattice Minimum Bayes-
Risk decoding for statistical machine translation. In
Proceedings of EMNLP, pages 620–629.

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu,
and Hang Li. 2017. Context gates for neural ma-
chine translation. Transactions of the Association
for Computational Linguistics, 5:87–99.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of ACL, pages
76–85.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Pavan Yalamanchili, Umar Arshad, Zakiuddin Mo-
hammed, Pradeep Garigipati, Peter Entschev, Brian
Kloppenborg, James Malcolm, and John Melonakos.
2015. ArrayFire - A high performance software
library for parallel computing with an easy-to-use
API.

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2017. Improv-
ing neural machine translation through phrase-based
forced decoding. In Proceedings of IJCNLP, pages
152–162.

113

