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Abstract

End-to-end neural models show great promise
towards building conversational agents that are
trained from data and on-line experience using
supervised and reinforcement learning. How-
ever, these models require a large corpus of di-
alogues to learn effectively. For goal-oriented
dialogues, such datasets are expensive to col-
lect and annotate, since each task involves a
separate schema and database of entities. Fur-
ther, the Wizard-of-Oz approach commonly
used for dialogue collection does not provide
sufficient coverage of salient dialogue flows,
which is critical for guaranteeing an accept-
able task completion rate in consumer-facing
conversational agents. In this paper, we study
a recently proposed approach for building an
agent for arbitrary tasks by combining dia-
logue self-play and crowd-sourcing to gener-
ate fully-annotated dialogues with diverse and
natural utterances. We discuss the advantages
of this approach for industry applications of
conversational agents, wherein an agent can be
rapidly bootstrapped to deploy in front of users
and further optimized via interactive learning
from actual users of the system.

1 Introduction

Goal-oriented conversational agents enable users
to complete specific tasks like restaurant reserva-
tions, buying movie tickets or booking a doctor’s
appointment, through natural language dialogue
via a spoken or a text-based chat interface, instead
of operating a graphical user interface on a device.
Each task is based on a database schema which de-
fines the domain of interest. Developing an agent
to effectively handle all user interactions in a given
domain requires properly dealing with variations
in the dialogue flows (what information the users
choose to convey in each utterance), surface forms
(choice of words to convey the same information),

* Work done while the author was an intern at Google.
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database states (what entities are available for sat-
isfying the user’s request), and noise conditions
(whether the user’s utterances are correctly recog-
nized by the agent). Moreover, the number of po-
tential tasks is proportional to the number of trans-
actional websites on the Web, which is in the order
of millions.

Popular consumer-facing conversational assis-
tants approach this by enabling third-party devel-
opers to build dialogue “experiences” or “skills”
focusing on individual tasks (e.g. DialogFlow',
Alexa Skills (Kumar et al. (2017)), wit.ai?). The
platform provides a parse of the user utterance into
a developer defined intent, and the developer pro-
vides a policy which maps user intents to system
actions, usually modeled as flow charts®. This
gives the developer full control over how a par-
ticular task is handled, allowing her to incremen-
tally add new features to that task. However, some
limitations are that (i) the developer must antici-
pate all ways in which users might interact with
the agent, and (ii) since the programmed dialogue
flows are not “differentiable”, the agent’s dialogue
policy cannot be improved automatically with ex-
perience and each improvement requires human
intervention to add logic to support a new dialogue
flow or revise an existing flow.

Recently proposed neural conversational mod-
els (Vinyals and Le (2015)) are trained with su-
pervision over a large corpus of dialogues (Ser-
ban et al. (2016, 2017); Lowe et al. (2017)) or
with reinforcement to optimize a long term reward
(Li et al. (2016a,b)). End-to-end neural conver-
sational models for task-oriented dialogues (Wen
et al. (2016); Liu and Lane (2017a)) leverage an-
notated dialogues collected with an expert to em-
bed the expert’s dialogue policy for a given task in

"https://dialogflow.com
Zhttps://wit.ai
*https://dialogflow.com/docs/dialogs
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Figure 1: Bootstrapping a neural conversational agent.

the weights of a neural network. However, train-
ing such models requires a large corpus of anno-
tated dialogues in a specific domain, which is ex-
pensive to collect. Approaches that use reinforce-
ment learning to find the optimal policy also rely
on a pre-training step of supervised learning over
expert dialogues in order to reduce the exploration
space to make the policy learning tractable (Fatemi
etal. (2016); Su et al. (2016b, 2017); Liu and Lane
(2017b)). A further issue with application of rein-
forcement learning techniques is that the user sim-
ulator used for the policy training step may not en-
tirely mimic the behavior of actual users of the
system. This can be mitigated by continuously
improving the deployed agent from interactions
with actual users via on-line learning (Gasi¢ et al.
(2011); Su et al. (2015, 2016a)).

The Wizard-of-Oz setup (Kelley (1984);
Dahlbick et al. (1993)) is a popular approach
to collect and annotate task-oriented dialogues
via crowd-sourcing for training neural conver-
sational models (Wen et al. (2016); Asri et al.
(2017)). However, this is an expensive and lossy
process as the free-form dialogues collected
from crowd-workers might contain dialogues
unfit for use as training data, for instance if the
crowd workers use language that is either too
simplistic or too convoluted, or may have errors
in dialogue act annotations requiring an expensive
manual filtering and cleaning step. Further, the
corpus might not cover all the interactions that the
dialogue developer expects the agent to handle.
In contrast, the recently proposed Machines
Talking To Machines (M2M) approach (Shah
et al. (2018)) is a functionality-driven process
for training dialogue agents, which combines a
dialogue self-play step and a crowd-sourcing step
to obtain a higher quality of dialogues in terms of
(1) diversity of surface forms as well as dialogue
flows, (ii) coverage of all expected user behaviors,
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and (iii) correctness of annotations.

To apply these recent neural approaches to
consumer-facing agents that must rapidly scale
to new tasks, we propose the following recipe
(Fig. 1): (1) exhaustively generate dialogue tem-
plates for a given task using dialogue self-play
between a simulated user and a task-independent
programmed system agent, (2) obtain natural lan-
guage rewrites of these templates using crowd
sourcing, (3) train an end-to-end conversational
agent on this fully annotated dataset, achieving a
reasonable task completion rate, and (4) deploy
this agent to interact with users and collect user
feedback, which serves as a reward value to con-
tinuously improve the agent’s policy with on-line
reinforcement learning updates. Consequently, a
programmed dialogue agent’s policy is distilled
into a differentiable neural model which sustains
a minimum task completion rate through guaran-
teed coverage of the interactions anticipated by the
developer. Such an agent is safely deployable in
front of actual users while also continuously im-
proving from user feedback via lifelong learning.

The main contribution of this paper is two-fold:

1. an approach combining dialogue self-play,
crowd-sourcing, and on-line reinforcement
learning to rapidly scale consumer-facing
conversational agents to new tasks.

discussion of practical solutions for improv-
ing user simulation and crowd-sourcing se-
tups to guarantee coverage of salient dialogue
flows and diversity of surface forms.

2 Approach

We present a brief overview of the Machines Talk-
ing To Machines (M2M) approach for bootstrap-
ping a conversational agent. We direct the reader
to the technical report Shah et al. (2018) for a de-
tailed description of this approach.



Table 1: Sample dialogue outline and rewrite for movie ticket booking.

QOutline Rewrite
Annotations Template utterances NL utterances
S: greeting() Greeting. Hi, how can I help you?

U: inform(intent=book_movie,
name=Inside Out, date=tomorrow,
num_tickets=2)

Book movie with name is
Inside Out and date is tomorrow
and num tickets is 2.

I want to buy 2 tickets for Inside
Out for tomorrow.

S: ack() request(time)

OK. Provide time.

Alright. What time would you like
to see the movie?

U: inform(time=evening)

Time is evening.

Anytime during the evening works
for me.

S: offer(theatre=Cinemark 16,

time=6pm) time is 6pm.

Offer theatre is Cinemark 16 and

How about the 6pm show at
Cinemark 16?

U: affirm() Agree.

That sounds good.

S: notify_success()

Reservation confirmed.

Your tickets have been booked!

21 M2M

At a high level, M2M connects a developer,
who provides the task-specific information, and a
Jframework, which provides the task-independent
information, for generating dialogues centered
around completing the task. In this work we focus
on database querying applications, which involve
a relational database which contains entities that
the user would like to browse and select through a
natural language dialogue. The input to the frame-
work is a task specification obtained from the de-
veloper, consisting of a schema of “slots” induced
by the columns of the database and an API client
which can be queried with a SQL-like syntax to
return a list of matching candidate entities for any
valid combination of slot values. For example,
the schema for a movie ticket booking domain
would include slots such as “movie name”, “num-
ber of tickets”, “date” and “time” of the show, etc.
The API client would provide access to a database
(hosted locally or remotely via the Web) of movie
showtimes.

Outlines. With the task specification, the
framework must generate a set of dialogues cen-
tered around that task. Each dialogue is a se-
quence of natural language utterances, i.e. dia-
logue turns, and their corresponding annotations,
which include the semantic parse of that turn as
well as additional information tied to that turn.
For example, for the user turn “Anytime during
the evening works for me”, the annotation would
be “User: inform(time=evening)”. The key idea
in M2M is to separate the linguistic variations in
the surface forms of the utterances from the se-
mantic variations in the dialogue flows. This is
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achieved by defining the notion of a dialogue out-
line as a sequence of template utterances and their
corresponding annotations. Template utterances
are simplistic statements with language that is easy
to generate procedurally. An outline encapsulates
the semantic flow of the dialogue while abstract-
ing out the linguistic variation in the utterances.
The first two columns of Table 1 provide a sample
dialogue outline for a movie ticket booking inter-
action, consisting of the annotations and template
utterances, respectively.

Dialogue self-play. M2M proceeds by first gen-
erating a set of dialogue outlines for the specified
task. A task-oriented dialogue involves the back
and forth flow of information between a user and
a system agent aimed towards satisfying a user
need. Dialogue self-play simulates this process by
employing a task-independent user simulator and
system agent seeded with a task schema and API
client. The user simulator maps a (possibly empty)
dialogue history, a user profile and a task schema
to a distribution over turn annotations for the next
user turn. Similarly, the system agent maps a di-
alogue history, task schema and API client to a
distribution over system turn annotations. Anno-
tations are sampled from user and system itera-
tively to take the dialogue forward. The gener-
ated annotations consist of dialogue frames that
encode the semantics of the turn through a dia-
logue act and a slot-value map (Table 1). For ex-
ample “inform(date=tomorrow, time=evening)” is
a dialogue frame that informs the system of the
user’s constraints for the date and time slots. We
use the Cambridge dialogue act schema (Hender-
son et al. (2013)) as the list of possible dialogue



acts. The process continues until either the user’s
goals are achieved and the user exits the dialogue
with a “bye()” act, or a maximum number of turns
are reached.

In our experiments we use an agenda-based
user simulator (Schatzmann et al. (2007)) pa-
rameterized by a user goal and a user pro-
file. The programmed system agent is modeled
as a handcrafted finite state machine (Hopcroft
et al. (2006)) which encodes a set of task-
independent rules for constructing system turns,
with each turn consisting of a response frame
which responds to the user’s previous turn, and
an initiate frame which drives the dialogue for-
ward through a predetermined sequence of sub-
dialogues. For database querying applications,
these sub-dialogues are: gather user preferences,
query a database via an API, offer matching enti-
ties to the user, allow user to modify preferences
or request more information about an entity, and
finally complete the transaction (buying or reserv-
ing the entity) (Fig. 2). By exploring a range of
parameter values and sampling a large number of
outlines, dialogue self-play can generate a diverse
set of dialogue outlines for the task.

Template utterances. Once a full dialogue
has been sampled, a template utterance generator
maps each annotation to a template utterance using
a domain-general grammar (Wang et al. (2015))
parameterized with the task schema. For ex-
ample, “inform(date=tomorrow, time=evening)”
would map to a template “($slot is $value) (and
($slot is $value))*”, which is grounded as “Date is
tomorrow and time is evening.” The developer can
also provide a list of templates to use for some or
all of the dialogue frames if they want more con-
trol over the language used in the utterances. Tem-
plate utterances are an important bridge between
the annotation and the corresponding natural lan-
guage utterance, as they present the semantic in-
formation of a turn annotation in a format under-
standable by crowd workers.

Crowd-sourced rewrites. To obtain a natu-
ral language dialogue from its outline, the frame-
work employs crowd sourcing to paraphrase tem-
plate utterances into more natural sounding utter-
ances. The paraphrase task is designed as a “con-
textual rewrite” task where a crowd worker sees
the full dialogue template, and provides the nat-
ural language utterances for each template utter-
ances of the dialogue. This encourages the crowd
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Figure 2: Finite state machine for a task-independent
system agent for database querying applications.

worker to inject linguistic phenomena like coref-
erence (“Reserve that restaurant”) and lexical en-
trainment (“Yes, the 6pm show”) into the utter-
ances. Fig. 5 in the Appendix provides the UI
shown to crowd workers for this task. The same
outline is shown to K > 1 crowd-workers to get
diverse natural language utterances for the same
dialogue. The third column of Table 1 presents
contextual rewrites for each turn of an outline for
a movie ticket booking task.

Model training. The crowd sourced dataset
has natural language utterances along with full an-
notations of dialogue acts, slot spans, dialogue
state and API state for each turn. These anno-
tated dialogues are sufficient for training end-to-
end models using supervision (Wen et al. (2016)).
Dialogue self-play ensures sufficient coverage of
flows encoded in the programmed system agent
in the crowd sourced dataset. Consequently, the
trained agent reads natural language user utter-
ances and emits system turns by encoding the
FSM policy of system agent in a differentiable
neural model.

2.2 On-line reinforcement learning

A limitation of training a neural agent on the
dataset collected with M2M is that it is restricted
to the flows encoded in the user simulator or the
programmed system agent, and utterances col-
lected from crowd-workers. When deployed to in-
teract with actual users, the agent may find itself in
new dialogue states that weren’t seen during train-
ing. This can be mitigated by continually improv-



ing the agent’s language understanding as well as
dialogue policy by using a feedback score on each
dialogue interaction of the neural agent as a reward
value to optimize the end-to-end model using pol-
icy gradient reinforcement learning (RL). The RL
updates can be done in two phases (which could
be interleaved):

RL with user simulator. Since RL requires
training for thousands of episodes, we construct
a simulated environment in which the user sim-
ulator emits a user turn annotation, and a natu-
ral language utterance is sampled from the set of
utterances collected for that dialogue frame from
crowd sourcing. This enables the neural agent
to discover dialogue flows not present in the pro-
grammed agent. The reward is computed based on
successful task completion minus a turn penalty
(El Asri et al. (2014)), and the model is updated
with the on-policy REINFORCE update after each
episode (Liu et al. (2017)).

RL with human feedback. For the agent to
handle user interactions that are not generated by
the user simulator, the agent must learn from its in-
teractions with actual users. This is accomplished
by applying updates to the model based on feed-
back scores collected from users after each dia-
logue interaction (Shah et al. (2016)).

3 User simulation and dialogue self-play

M2M hinges on having a generative model of a
user that is reasonably close to actual users of
the system. While it is difficult to develop pre-
cise models of user behavior customized for every
type of dialogue interaction, it is easier to create a
task-independent user simulator that operates at a
higher level of abstraction (dialogue acts) and en-
capsulates common patterns of user behavior for
a broad class of dialogue tasks. Seeding the user
simulator with a task-specific schema of intents,
slot names and slot values allows the framework
to generate a variety of dialogue flows tailored to
that specific task. Developing a general user sim-
ulator targeting a broad class of tasks, for exam-
ple database querying applications, has significant
leverage as adding a new conversational pattern to
the simulator benefits the outlines generated for
dialogue interfaces to any database or third-party
APL

Another concern with the use of a user sim-
ulator is that it restricts the generated dialogue
flows to only those that are engineered into the
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user model. In comparison, asking crowd work-
ers to converse without any restrictions could gen-
erate interesting dialogues that are not anticipated
by the dialogue developer. Covering complex in-
teractions is important when developing datasets
to benchmark research aimed towards building
human-level dialogue systems. However, we ar-
gue that for consumer-facing chatbots, the primary
aim is reliable coverage of critical user interac-
tions. Existing methods for developing chatbots
with engineered finite state machines implicitly
define a model of expected user behavior in the
states and transitions of the system agent. A user
simulator makes this user model explicit and is a
more systematic approach for a dialogue devel-
oper to reason about the user behaviors handled
by the agent. Similarly, having more control over
the dialogue flows present in the dataset ensures
that all and only expected user and system agent
behaviors are present in the dataset. A dialogue
agent bootstrapped with such a dataset can be de-
ployed in front of users with a guaranteed mini-
mum task completion rate.

The self-play step also uses a programmed sys-
tem agent that generates valid system turns for a
given task. Since M2M takes a rule-based agent
which works with user dialogue acts and emits a
neural conversational agent that works with nat-
ural language user utterances, the framework ef-
fectively distills an expert dialogue policy com-
bined with a language understanding module into
a single learned neural network. The developer
can customize the behavior of the neural agent
by modifying the component rules of the pro-
grammed agent. Further, by developing a task-
independent set of rules for handling a broad task
like database querying applications (Fig. 2), the
cost of building the programmed agent can be
amortized over a large number of dialogue tasks.

4 Crowdsourcing

In the Wizard-of-Oz setting, a task is shown to
a pair of crowd workers who are asked to con-
verse in natural language to complete the task. The
collected dialogues are manually annotated with
dialogue act and slot span labels. This process
is expensive as the two annotation tasks are dif-
ficult and therefore time consuming: identifying
the dialogue acts of an utterance requires under-
standing the precise meaning of each dialogue act,
and identifying all slot spans in an utterance re-



quires checking the utterance against all slots in
the schema. As a result, the crowd-sourced an-
notations may need to be cleaned by an expert.
In contrast, M2M significantly reduces the crowd-
sourcing expense by automatically annotating a
majority of the dialogue turns and annotating the
remaining turns with two simpler crowd-sourcing
tasks: “Does this utterance contain this particular
slot value?” and “Do these two utterances have the
same meaning?”’, which are easier for the average
crowd worker.

Further, the lack of control over crowd workers’
behavior in the Wizard-of-Oz setting can lead to
dialogues that may not reflect the behavior of real
users, for example if the crowd worker provides
all constraints in a single turn or always mentions a
single constraint in each turn. Such low-quality di-
alogues either need to be manually removed from
the dataset, or the crowd participants need to be
given additional instructions or training to encour-
age better interactions (Asri et al. (2017)). M2M
avoids this issue by using dialogue self-play to
systematically generate all usable dialogue out-
lines, and simplifying the crowd-sourcing step to
a dialogue paraphrase task.

5 Evaluations

We have released* two datasets totaling 3000 dia-
logues collected using M2M for the tasks of buy-
ing a movie ticket (Sim-M) and reserving a restau-
rant table (Sim-R). We present some experiments
with these datasets.

5.1 Dialogue diversity

First we investigate the claim that M2M leads
to higher coverage of dialogue features in the
dataset. We compare the Sim-R training dialogues
with the DSTC2 (Henderson et al. (2013)) train-
ing set which also deals with restaurants and is
similarly sized (1611 vs. 1116 dialogues) (Ta-
ble 2). M2M compares favorably to DSTC2 on
the ratio of unique unigrams and bigrams to total
number of tokens in the dataset, which signifies
a greater variety of surface forms as opposed to
repeating the same words and phrases. We also
measure the outline diversity, defined as the ra-
tio of unique outlines divided by total dialogues in
the dataset. We calculate this for sub-dialogues of
length k = {1, 3,5} as well as full dialogues. This

*https://github.com/google-research-datasets/simulated-
dialogue
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Table 2: Comparing DSTC2 and M2M Restaurants
datasets on diversity of language and dialogue flows.

Metric DSTC2 | Sim-R
(Train) | (Train)
Dialogues 1611 1116
Total turns 11670 6188
Total tokens 199295 | 99932
Avg. turns per dialogue | 14.49 11.09
Avg. tokens per turn 8.54 8.07
Unique tokens ratio 0.0049 | 0.0092
Unique bigrams ratio 0.0177 | 0.0670
Outline diversity (k=1) | 0.0982 | 0.2646
Outline diversity (k=3) | 0.1831 | 0.3145
Outline diversity (k=5) | 0.5621 | 0.7061
Outline diversity (full) 0.9243 | 0.9292
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Figure 3: Crowd worker ratings for the quality of the
user and system utterances of dialogues collected with
M2M.

gives a sense of the diversity of dialogue flows in
the dataset. M2M has fewer repetitions of sub-
dialogues compared to DSTC2.

5.2 Human evaluation of dataset quality

To evaluate the subjective quality of the M2M
datasets, we showed the final dialogues to human
judges recruited via a crowd-sourcing service, and
asked them to rate each user and system turn be-
tween 1 to 5 on multiple dimensions. Fig. 6 in the
Appendix provides the UI shown to crowd work-
ers for this task. Each dialogue was shown to 3
judges. Fig. 3 shows the average ratings aggre-
gated over all turns for the two datasets.

5.3 Human evaluation of model quality

To evaluate the proposed method of bootstrapping
neural conversational agents from a programmed
system agent, we trained an end-to-end conversa-
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Figure 4: Average crowd worker ratings for the quality
of the system utterances of neural conversational agents
trained on Sim-M.

tional model (Liu et al. (2017)) using supervised
learning (SL) on the Sim-M training set. This
model is further trained with RL for 10K episodes
with the user simulator as described in Section 2.2
(SL+RL). We performed two separate evaluations
of these models:

Simulated user. We evaluate the neural
agents in the user simulation environment for 100
episodes. We asked crowd-sourced judges to read
dialogues between the agent and the user simu-
lator and rate each system turn on a scale of 1
(frustrating) to 5 (optimal way to help the user).
Each turn was rated by 3 different judges. Fig. 4
shows the average scores for both agents. End-to-
end optimization with RL improves the quality of
the agent according to human judges, compared to
an agent trained with only supervised learning on
the dataset.

Human user. We evaluate the neural agents
in live interactions with human judges for 100
episodes each. The human judges are given sce-
narios for a movie booking task and asked to talk
with the agent to complete the booking accord-
ing to the constraints. After the dialogue finishes,
the judge is asked to rate each system turn on the
same scale of 1 to 5. Fig. 4 shows the average
scores for both agents. End-to-end optimization
with RL improves the agent’s interactions with hu-
man users. The interactions with human users are
of lower quality than those with the user simula-
tor as human users may use utterances or dialogue
flows unseen by the agent. Continual training of
the agent with on-line reinforcement learning can
close this gap with more experience.
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6 Related work and discussion

We presented an approach for rapidly bootstrap-
ping goal-oriented conversational agents for arbi-
trary database querying tasks, by combining dia-
logue self-play, crowd-sourcing and on-line rein-
forcement learning.

The dialogue self-play step uses a task-
independent user simulator and programmed sys-
tem agent seeded with a task-specific schema,
which provides the developer with full control
over the generated dialogue outlines. PyDial
(Ultes et al. (2017)) is an extensible open-source
toolkit which provides domain-independent im-
plementations of dialogue system modules, which
could be extended by adding dialogue self-play
functionality. We described an FSM system agent
for handling any transactional or form-filling task.
For more complex tasks, the developer can extend
the user simulator and system agents by adding
their own rules. These components could also
be replaced by machine learned generative mod-
els if available. Task Completion Platform (TCP)
(Crook et al. (2016)) introduced a task configura-
tion language for building goal-oriented dialogue
interactions. The state update and policy modules
of TCP could be used to implement agents that
generate outlines for more complex tasks.

The crowd-sourcing step uses human intelli-
gence to gather diverse natural language utter-
ances. Comparisons with the DSTC2 dataset show
that this approach can create high-quality fully an-
notated datasets for training conversational agents
in arbitrary domains. ParlAI (Miller et al. (2017)),
a dialogue research software platform, provides
easy integration with crowd sourcing for data
collection and evaluation. However, the crowd
sourcing tasks are open-ended and may result in
lower quality dialogues as described in Section
4. In M2M, crowd workers are asked to para-
phrase given utterances instead of writing new
ones, which is at a suitable difficulty level for
crowd workers.

Finally, training a neural conversational model
over the M2M generated dataset encodes the pro-
grammed policy in a differentiable neural model
which can be deployed to interact with users. This
model is amenable to on-line reinforcement learn-
ing updates with feedback from actual users of the
system (Su et al. (2016a); Liu et al. (2017)), ensur-
ing that the agent improves its performance in real
situations with more experience.
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Figure 5: Contextual rewrite task interface for paraphrasing a dialogue outline with natural language.

Instructions

You'll be shown a very unnatural computer generated conversation between a user and an assistant.

Your task is to paraphrase the messages in the original conversation in order to create a new conversation that has the exact same meaning but sounds like a
real conversation between a user and a professional assistant.
Feel free to be creative with your paraphrased messages, as long as they meet the following important requirements:

User messages need to look like something you would type in a chat window.

Assistant messages need to look formal — just like chat replies from a human customer service agent.
All of your paraphrased messages must have the same meaning as the original message.

Your paraphrased conversation needs to make sense on it's own.

When done rewording/rephrasing the original phrases, you'll be asked to re-read the entire dialog as a whole and verify it makes sense as a stand alone dialog, as
opposed to paraphrasing each sentence without looking at the result as a whole.

Task

Original conversation Paraphrased conversation
Assistant: greetings
|Hello |
User: greetings AND buy movie tickets AND
date is Wednesday |I would like to buy movie tickets for Wednesday. |
Assistant: provide preference for: theatre
name and time and number of tickets and |What theatre, movie, time, and number of tickets would you like? |
movie
User: unable to understand, must re-phrase
your message |Sorr)r, | didn't understand. Could you repeat that? |
Assistant: provide preference for: theatre
name and time and number of tickets and |How many tickets would you like and what is the theatre, movie, and showtime? |

movie

User: movie is The Magnificent Seven and time
is 4:00 pm and theatre name is Century 20 |I need 6 tickets for the 4:00 pm showing of The Magnificent Seven at the Century 20 Great Mall |
Great Mall and number of tickets is 6

Assistant: confirm the following: time is 4:00
pm |That was for 4:00 pm, right? |

User: accept time is 4:00 pm

|Yes‘ 4:00 pm |

Assistant: purchase confirmed with given
details movie is The Magnificent Seven and |I have purchased 6 tickets for the Magnificent Seven at 4:00 o'clock on March 8 at the Century 20 Great Mal|.|
number of tickets is 6 and time is 4:00 pm and
date is March 08 and theatre name is Century
20 Great Mall

User: thank you AND goodbye

Thanks, bye.

After you are done paraphrasing, please read your paraphrased conversation from top to bottom

Does it seem like a conversation between a user that sounds like you and an assistant that sounds formal?
'® Yes
'~/ No, but | can't make it better

Does it have the same meaning as the original conversation, while still making sense on it's own?
'® Yeg
'~/ No, but | can't make it better

General comments/feedback (optional)
Please add any comments here
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Figure 6: Dialogue quality evaluation task interface for rating the user and system turns of completed dialogues.

Instructions

You'll be shown a machine-generated conversation between a user and an assistant. The assistant is helping the user achieve a task such as booking a table
at a restaurant, finding movie tickets, etc.

Your task is to evaluate the quality of the conversation by evaluating each message in it.

Examples

How to evaluate the assistant:

Focus on the conversation context and what the assistant is trying to accomplish with their last message (rather than the wording).
Then compare that with what an ideal human assistant would do in this same situation.

Here are some examples of what an ideal human assistant would do:

« Pay attention to the preferences expressed by the user and offer helpful suggestions
+ Ask the user only for necessary information
« Offer alternatives when the user's request is not possible (e.g. reservation time is unavailable)
Here are some examples of what an ideal human assistant would not do:
« Make nonsensical offers such as dinner at 1 pm or alternative offers that are unrelated to the user's request

+ Ask for information that the user already provided
+ Easily get confused

Task

Conversation Message Quality Evaluation
User: | wanna book a table The message on the left sounds:
N/A Robotic Neutral Natural and
typical for a
human
Assistant: What restaurant would you like to book a The message on the left sounds:
table at? P | | |
N/A Rude Neutral Polite
The message on the left is:
N/A Confusing Neutral Easy to
understand
As compared to an ideal human assistant, this assistant's approach is:
N/A Frustrating Acceptable The best way to
help the user
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