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Abstract

Cross-lingual information retrieval (CLIR) is
a document retrieval task where the docu-
ments are written in a language different from
that of the user’s query. This is a chal-
lenging problem for data-driven approaches
due to the general lack of labeled training
data. We introduce a large-scale dataset de-
rived from Wikipedia to support CLIR re-
search in 25 languages. Further, we present
a simple yet effective neural learning-to-rank
model that shares representations across lan-
guages and reduces the data requirement. This
model can exploit training data in, for exam-
ple, Japanese-English CLIR to improve the re-
sults of Swahili-English CLIR.

1 Introduction

Multilingual document collections are becoming
prevalent. Thus an important application is cross-
lingual information retrieval (CLIR), i.e. docu-
ment retrieval which assumes that the language of
the user’s query does not match that of the doc-
uments. For example, imagine an investor who
wishes to monitor consumer sentiment of an inter-
national brand in Twitter conversations around the
world. She might issue a query string in English,
and desire all relevant tweets in any language.

There are two main approaches to building
CLIR systems. The modular approach involves a
pipeline of two components: translation (machine
translation or bilingual dictionary look-up) and
monolingual information retrieval (IR). These ap-
proaches may be further divided into the document
translation and query translation approaches (Nie,
2010). In the former, one translates all foreign-
language documents to the language of the user
query prior to IR indexing; in the latter, one in-
dexes foreign-language documents and translates
the query. In both, the idea is to solve the trans-
lation problem separately, so that CLIR becomes

document retrieval in the monolingual setting.
A distinctly different way to build CLIR sys-

tems is what may be called the direct model-
ing approach (Bai et al., 2010; Sokolov et al.,
2013). This assumes the availability of CLIR
training examples of the form (q, d, r), where q
is an English query, d is a foreign-language doc-
ument, a r is the corresponding relevance judg-
ment for d with respect to q. One directly builds
a retrieval model S(q, d) that scores the query-
document pair. While q and d are in different
languages, the model directly learns both trans-
lation and retrieval relevance on the CLIR train-
ing data. Compared to the modular approach, di-
rect modeling is advantageous in that it focuses
on learning translations that are beneficial for re-
trieval, rather than translations that preserve sen-
tence meaning/structure in bitext.

However, there exist no large-scale CLIR
dataset that can support direct modeling ap-
proaches in a wide variety of languages. To obtain
relevance judgments, one typically needs a bilin-
gual speaker who can read a foreign-language doc-
ument and assess whether it is relevant for a given
English query. This can be an expensive process.
Here, we present a large-scale dataset that is auto-
matically constructed from Wikipedia: it can sup-
port training and evaluation of CLIR systems be-
tween English queries and documents in 25 other
languages (Section 2). The data is of sufficient
size for direct modeling, and can also serve as an
wide-coverage evaluation data for the modular ap-
proaches.1

To demonstrate the utility of the data, we further
present experiments for CLIR in low-resource lan-
guages. First, we introduce a neural CLIR model
based on the direct modeling approach (Section

1To facilitate CLIR research, the dataset is publicly
available at http://www.cs.jhu.edu/˜kevinduh/
a/wikiclir2018/.
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Figure 1: CLIR data construction process: From an
English article (E1), we extract the English query. Us-
ing the inter-language link, we obtain the most relevant
foreign-language document (F1). Any article that has
mutual links to and from F1 are labeled as slightly rel-
evant (F2). All other articles are not relevant (F3). The
data is a set of tuples: (English query q, foreign doc-
ument d, relevance judgment r), where r ∈ {0, 1, 2}
represents the three levels of relevance.

3.1). We then show how we can bootstrap CLIR
models for languages with less training data by an
appropriate use of paramater sharing among dif-
ferent language pairs (Section 3.2). For exam-
ple, using the training data for Japanese-English
CLIR, we can improve the Mean Average Pre-
cision (MAP) results of a Swahili-English CLIR
system by 5-7 points (Section 4).

2 Large-Scale CLIR Dataset

We construct a large-scale CLIR data from
Wikipedia. The idea is to exploit inter-language
links: from an English page, we extract a sentence
as query, and label the linked foreign-document
pages as relevant. See Figure 1 for an illustration.

This data construction process is similar to
(Schamoni et al., 2014) who made an English-
German CLIR dataset, but ours is at a larger scale.
Specifically, we use Wikipedia dumps released on
August 23, 2017. English queries are obtained
by extracting the first sentence of every English
Wikipedia article. The intuition is that the first
sentence is usually a well-defined summary of its
corresponding article and should be thematically
related for articles linked to it from another lan-
guage. Similar to (Schamoni et al., 2014), title
words from the query sentences are removed, be-
cause they may be present across different lan-
guage editions. This deletion prevents the task
from becoming an easy keyword matching task.

For practical purposes, each document is lim-
ited to the first 200 words of the article. Empty
documents and category pages are filtered. Cur-
rently, our dataset consists of more than 2.8 mil-

Language #Doc #Query #SR
Arabic 535 324 194
Catalan 548 339 625
Chinese 951 463 462
Czech 386 233 720
Dutch 1908 687 1646
Finnish 418 273 665
French 1894 1089 4048
German 2091 938 4612
Italian 1347 808 2635
Japanese 1071 426 2912
Korean 394 224 343
Norwegian-Nynorsk 133 99 150
Norwegian-Bokmål 471 299 663
Polish 1234 693 1777
Portuguese 973 611 1130
Romanian 376 199 251
Russian 1413 664 1656
Simple English 127 114 135
Spanish 1302 781 2113
Swahili 37 22 35
Swedish 3785 639 1430
Tagalog 79 48 23
Turkish 295 185 195
Ukrainian 704 348 565
Vietnamese 1392 354 257

(All numbers are in units of one thousand)

Table 1: CLIR dataset statistics. For each language X,
we show the total number of documents in language
X and the number of English queries. The number
of ”most relevant” documents is by definition equal to
#Query. The number of ”slightly relevant” documents
is shown in the column #SR.

lion English queries and relevant documents from
25 other selected languages (see Table 1).

In sum, we have created a CLIR dataset that is
large-scale in terms of both the amount of exam-
ples as well as the number of languages. This can
be used in two scenarios: (1) one mixed-language
collection where an English query may retrieve
relevant documents in multiple languages. (2) 25
independent datasets for training and evaluating
CLIR on English queries against one foreign lan-
guage collection. In the experiments in Section 4,
we will utilize the dataset in terms of scenario (2).2

2For extensibility purposes, these experiments use only
half of the data, randomly sampled by query (the held-out
data is reserved for other uses). Also it only considers binary
relevance (most relevant vs not relevant) for simplicity. The
exact data splits will be provided along with the data release.
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3 Direct Modeling for CLIR

3.1 Neural Ranking Model
Given an English query q and a foreign-language
document d, our models compute the relevance
score S(q, d). First, we represent each word as
n-dimensional vectors, so q and d are represented
as matrices Q ∈ Rn×|q| and D ∈ Rn×|d|, where
|q| and |d| are the numbers of tokens in q and d:

Q = [Eq(q1);Eq(q2); ...;Eq(q|q|)]

D = [Ed(d1);Ed(d2); ...;Ed(d|d|)]

qi and di denote the i-th term in q and d. E is em-
bedding function which transforms each term to a
dense n-dimensional vector as its representation.
; is the concatenation operator. Then, we apply
convolutional feature map3 to these matrices, fol-
lowed by tanh activation and average-pooling to
obtain each representation vector q̂ and d̂.

q̂ = CNNq(Q); d̂ = CNNd(D) (1)

Next, we define two variations in calculating
S(q, d). The first is a cosine model which com-
putes cosine similarity between q̂ and d̂:

Scos(q, d) = cossim(q̂, d̂) (2)

The second is a deep model with a fully con-
nected layer on top of the concatenation of q̂ and
d̂ (a 200-dimensional vector):

Sdeep(q, d) = tanh(O · hTvec) (3)

= tanh(O · relu(W · [q̂; d̂]T))

Here, O ∈ R1×h and W ∈ Rh×200 are the deep
model parameters, and h is the number of dimen-
sions of the hidden state, hvec ∈ R1×h. For reg-
ularization, we set dropout rate as 0.5 (Srivastava
et al., 2014) at the hidden layer.

In the training phase, we minimize pairwise
ranking loss, which is widely used for learning-
to-rank (Pang et al., 2016; Guo et al., 2016; Hui
et al., 2017; Xiong et al., 2017; Dehghani et al.,
2017), defined as follows:

L = max
{

0, 1− (S(q, d+)− S(q, d−))
}

(4)

where d+ and d− are relevant and non-relevant
document respectively. We fix only the word em-
beddings and tune the other parameters.

3The n× 4 convolution window has filter size of 100 and
takes a stride of 1.

Figure 2: Illustration of the proposed method. On low
resource dataset (e.g. Swahili-English), the parame-
ters of the CNN for encoding query (CNNEn) and
the parameters of the fully connected layer (OEn−Sw,
WEn−Sw) are initialized by the ones pre-trained on
high resource dataset (e.g. Japanese-English).

Ja De Fr
Scos(q, d): cos 59/74 49/66 55/70
Sdeep(q, d): h=100 61/75 64/77 69/81
Sdeep(q, d): h=200 68/80 67/79 74/84
Sdeep(q, d): h=300 70/82 70/81 74/84
Sdeep(q, d): h=400 73/83 71/82 75/85
Sdeep(q, d): h=500 73/84 70/81 76/85

Table 2: P@1/MAP performance (0-100 range, in
percent) of the cosine model and the deep model with
different hidden state size on high resource datasets.
Best value in each column is highlighted in bold.

We note there are many other ranking models
that can be adapted to CLIR (Huang et al., 2013;
Shen et al., 2014; Xiong et al., 2017; Mitra et al.,
2017); they have a common framework in extract-
ing features from both query and document and
optimizing scores S(q, d) via some ranking loss.

3.2 Sharing Representations

Training a network like the deep model generally
requires a nontrivial amount of data. To address
the data requirement for low-resource languages,
we propose a simple yet effective method that
shares representations across CLIR models trained
in different language-pairs. Basically, we use the
same architecture as the deep model (Sdeep(q, d),
Equation 3). However, we use the parameters
trained on a high-resource dataset (e.g Japanese-
English) to initialize the parameters for a low-
resource language-pair (e.g. Swahili-English).

Figure 2 illustrates the idea: Concretely, we ini-
tialize the parameters of the CNN for encoding
query (CNNq) and the parameters of the fully
connected layer (O, W ) by using the pre-trained
parameters. When training on low-resource data,
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Tl Sw De (subsample) Fr (subsample)
In Sh ∆ In Sh ∆ In Sh ∆ In Sh ∆

cos 51/68 50/67 -/- 51/67 49/65 -/- 40/59 38/56 -/- 46/63 43/60 -/-
h=100 34/50 48/62 +/+ 46/62 46/62 =/= 39/55 46/62 +/+ 40/57 46/62 +/+
h=200 44/58 55/67 +/+ 47/63 52/67 +/+ 41/57 48/63 +/+ 43/60 51/66 +/+
h=300 42/57 49/63 +/+ 50/65 58/70 +/+ 44/60 50/65 +/+ 49/65 51/66 +/+
h=400 49/63 57/69 +/+ 51/66 60/73 +/+ 45/61 51/66 +/+ 47/64 56/70 +/+
h=500 51/64 54/67 +/+ 53/68 56/69 +/+ 44/60 49/65 +/+ 47/63 51/66 +/+

Table 3: P@1/MAP performances on low resource datasets. ∆ columns show the comparison between the basic
deep models with in-language training (In) and the deep models with sharing parameters (Sh); + indicates Sh
outperforms In, and - indicates the In outperforms Sh. Best value in each dataset is highlighted in bold.

we fix only the word embedding, and tune the pa-
rameters of CNNs and the fully connected layer.

The intuition behind this is that our direct
modeling approach enforces q̂ and d̂ to become
language-independent representations of the query
and document. The parameters O and W in the
deep layer can therefore be used for any language-
pair. Note for the cosine model, we can also share
parameters for CNNq.

4 Experiment Results

Setup: We use datasets of 3 high-resource lan-
guages (Japanese [Ja], German [De], French
[Fr]) and 2 low-resource languages (Tagalog [Tl],
Swahili [Sw]). We also subsample German and
French data to be equivalent to the size of Swahili,
in order to compare training size effects. Word
embedding with dimension 100 for each language
is trained on Wikipedia corpus, using word2vec
SGNS (Mikolov et al., 2013). The size of hidden
states in the deep model is {100, 200, 300, 400,
500}. We adopt Adam (Kingma and Ba, 2014)
for optimization, train for 20 epochs and pick the
best epoch based on development set loss. For
the proposed method of parameter sharing, we use
the weight parameters pre-trained on Japanese-
English dataset to initialize parameters.
High-resource results: Table 2 shows the P@1
(precision at top position) and MAP (mean aver-
age precision) for datasets consisting of on the or-
der of 100k+ training queries. The deep models
outperformed the cosine models under all condi-
tions, suggesting that the fully connected layer can
exploit the large training set in learning more ex-
pressive scoring functions.
Low-resource results: Table 3 shows the results
on the low resource datasets under two conditions:
training on only the language-pair of interest (in-

language), or additionally sharing parameters us-
ing a pre-trained Japanese-English model. For the
in-language case, we observe the cosine model
outperforms the deep model. In contrast to the
high-resource results, this implies that deep mod-
els, which have a lot of parameters, only become
effective if provided with sufficient training data.

For the sharing case, the deep models with pa-
rameter sharing outperformed the basic deep mod-
els trained only on in-language data under almost
all conditions. This indicates that our sharing
method reduces training data requirement. Im-
portantly, by sharing parameters, the deep models
are now able to outperform the cosine model and
achieve the best results on all datasets.4

5 Conclusion and Future Work

We introduce a large-scale CLIR dataset in 25 lan-
guages. This enables the training and evaluation
of direct modeling approaches in CLIR. We also
present a neural ranking model with shared rep-
resentations, and demonstrate its effectiveness in
bootstrapping CLIR in low-resource languages.

Future work includes: (a) expansion of the
dataset to more languages, (b) extraction of differ-
ent types of queries and relevant judgments from
Wikipedia, and (c) development of other rank-
ing models. Importantly, we also plan to evalu-
ate our models on standard CLIR test sets such
as TREC (Schäuble and Sheridan, 1997), NTCIR
(2007), FIRE (2013) and CLEF (2016). This will
help answer the question of whether knowledge

4Sharing representations with the cosine models did not
help; we hypothesize that cross-lingual sharing only works
if given sufficient model expressiveness. We also tried the
shared deep models on high resource datasets (e.g. using
Japanese parameters on the full French dataset without sub-
sampling). As expected, results did not change significantly.
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learned from automatically-generated datasets can
be transferred to a wide range of CLIR problems.
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