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Abstract

We address the task of detecting foiled im-
age captions, i.e. identifying whether a cap-
tion contains a word that has been deliber-
ately replaced by a semantically similar word,
thus rendering it inaccurate with respect to the
image being described. Solving this problem
should in principle require a fine-grained un-
derstanding of images to detect linguistically
valid perturbations in captions. In such con-
texts, encoding sufficiently descriptive image
information becomes a key challenge. In this
paper, we demonstrate that it is possible to
solve this task using simple, interpretable yet
powerful representations based on explicit ob-
ject information. Our models achieve state-
of-the-art performance on a standard dataset,
with scores exceeding those achieved by hu-
mans on the task. We also measure the upper-
bound performance of our models using gold
standard annotations. Our analysis reveals that
the simpler model performs well even without
image information, suggesting that the dataset
contains strong linguistic bias.

1 Introduction

Models tackling vision-to-language (V2L) tasks,
for example Image Captioning (IC) and Visual
Question Answering (VQA), have demonstrated
impressive results in recent years in terms of au-
tomatic metric scores. However, whether or not
these models are actually learning to address the
tasks they are designed for is questionable. For ex-
ample, Hodosh and Hockenmaier (2016) showed
that IC models do not understand images suffi-
ciently, as reflected by the generated captions. As
a consequence, in the last few years many diagnos-
tic tasks and datasets have been proposed aiming
at investigating the capabilities of such models in
more detail to determine whether and how these
models are capable of exploiting visual and/or lin-
guistic information (Shekhar et al., 2017b; John-

son et al., 2017; Antol et al., 2015; Chen et al.,
2015; Gao et al., 2015; Yu et al., 2015; Zhu et al.,
2016).

FOIL (Shekhar et al., 2017b) is one such
dataset. It was proposed to evaluate the ability of
V2L models in understanding the interplay of ob-
jects and their attributes in the images and their
relations in an image captioning framework. This
is done by replacing a word in MSCOCO (Lin
et al., 2014) captions with a ‘foiled’ word that is
semantically similar or related to the original word
(substituting dog with cat), thus rendering the im-
age caption unfaithful to the image content, while
yet linguistically valid. Shekhar et al. (2017b) re-
port poor performance for V2L models in classi-
fying captions as foiled (or not). They suggested
that their models (using image embeddings as in-
put) are very poor at encoding structured visual-
linguistic information to spot the mismatch be-
tween a foiled caption and the corresponding con-
tent depicted in the image.

In this paper, we focus on the foiled captions
classification task (Section 2), and propose the use
of explicit object detections as salient image cues
for solving the task. In contrast to methods from
previous work that make use of word based in-
formation extracted from captions (Heuer et al.,
2016; Yao et al., 2016; Wu et al., 2018), we use
explicit object category information directly ex-
tracted from the images. More specifically, we use
an interpretable bag of objects as image represen-
tation for the classifier. Our hypothesis is that, to
truly ‘understand’ the image, V2L models should
exploit information about objects and their rela-
tions in the image and not just global, low-level
image embeddings as used by most V2L models.

Our main contributions are:

1. A model (Section 3) for foiled captions clas-
sification using a simple and interpretable
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object-based representation, which leads to
the best performance in the task (Section 4);

2. Insights on upper-bound performance for
foiled captions classification using gold stan-
dard object annotations (Section 4);

3. An analysis of the models, providing insights
into the reasons for their strong performance
(Section 5).

Our results reveal that the FOIL dataset has a very
strong linguistic bias, and that the proposed simple
object-based models are capable of finding salient
patterns to solve the task.

2 Background

In this section we describe the foiled caption clas-
sification task and dataset.

We combine the tasks and data from Shekhar
et al. (2017b) and Shekhar et al. (2017a). Given
an image and a caption, in both cases the task
is to learn a model that can distinguish between
a REAL caption that describes the image, and a
FOILed caption where a word from the original
caption is swapped such that it no longer describes
the image accurately. There are several sets of
‘foiled captions’ where words from specific parts
of speech are swapped:

• Foiled Noun: In this case a noun word in the
original caption is replaced with another sim-
ilar noun, such that the resultant caption is
not the correct description for the image. The
foiled noun is obtained from list of object an-
notations from MSCOCO (Lin et al., 2014)
and nouns are constrained to the same super-
category;

• Foiled Verb: Here, verb is foiled with a sim-
ilar verb. The similar verb is extracted using
external resources;

• Foiled Adjective and Adverb: Adjectives
and adverbs are replaced with similar adjec-
tives and adverbs. Here, the notion of similar-
ity again is obtained from external resources;

• Foiled Preposition: Prepositions are directly
replaced with functionally similar preposi-
tions.

The Verb, Adjective, Adverb and Preposition
subsets were obtained using a slightly different

methodology (see Shekhar et al. (2017a)) than that
used for Nouns (Shekhar et al., 2017b). Therefore,
we evaluate these two groups separately.

3 Proposed Model

For the foiled caption classification task (Sec-
tion 3.1), our proposed model uses information
from explicit object detections as an object-based
image representation along with textual represen-
tations (Section 3.2) as input to several different
classifiers (Section 3.3).

3.1 Model definition

Let y ∈ {REAL, FOIL} denote binary class la-
bels. The objective is to learn a model that com-
putes P (y|I;C), where I and C correspond to the
image and caption respectively. Our model seeks
to maximize a scoring function θ:

y = argmax θ(I;C) (1)

3.2 Representations

Our scoring function θ takes in image features
and text features (from captions) and concatenates
them. We experiment with various types of fea-
tures.

For the image side, we propose a bag of ob-
jects representation for 80 pre-defined MSCOCO
categories. We consider two variants: (a) Object
Mention: A binary vector where we encode the
presence/absence of instances of each object cate-
gory for a given image; (b) Object Frequency: A
histogram vector where we encode the number of
instances of each object category in a given image.

For both features, we use Gold MSCOCO ob-
ject annotations as well as Predicted object detec-
tions using YOLO (Redmon and Farhadi, 2017)
pre-trained on MSCOCO to detect instances of the
80 categories.

As comparison, we also compute a stan-
dard CNN-based image representation, using the
POOL5 layer of a ResNet-152 (He et al., 2016)
CNN pre-trained on ImageNet. We posit that our
object-based representation will better capture se-
mantic information corresponding to the text com-
pared to the CNN embeddings used directly as a
feature by most V2L models.

For the language side, we explore two features:
(a) a simple bag of words (BOW) representation
for each caption; (b) an LSTM classifier based
model trained on the training part of the dataset.
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PoS Type Trainfoil Testfoil Total Train Total Test

Noun 153,229 75,278 306,458 150,556
Verb 6,314 2,788 60,262 33,616

Adjective 15,640 9,009 73,057 42,163
Adverb 1,011 451 53,381 30,738

Preposition 8,733 5,551 77,002 46,018

Table 1: Dataset statistics for different foiled parts of
speech. The superscript foil indicates the number of
foiled captions.

Our intuition is that an image descrip-
tion/caption is essentially a result of the interac-
tion between important objects in the image (this
includes spatial relations, co-occurrences, etc.).
Thus, representations explicitly encoding object-
level information are better suited for the foiled
caption classification task.

3.3 Classifiers

Three types of classifiers are explored: (a) Mul-
tilayer Perceptron (MLP): For BOW-based text
representations, a two 100-dimensional hidden
layer MLP with ReLU activation function is
used with cross-entropy loss, and is optimized
with Adam (learning rate 0.001); (b) LSTM
Classifier: For LSTM-based text representa-
tions, a uni-directional LSTM classifier is used
with 100-dimensional word embeddings and 200-
dimensional hidden representations. We train it
using cross-entropy loss and optimize it using
Adam (learning rate 0.001). Image representa-
tions are appended to the final hidden state of
the LSTM; (c) Multimodal LSTM (MM-LSTM)
Classifier: As above, except that we initialize the
LSTM with the image representation instead of
appending it to its output. This can also be seen
as am image grounded LSTM based classifier.

4 Experiments

Data: We use the dataset for nouns from
Shekhar et al. (2017b)1 and the datasets for other
parts of speech from Shekhar et al. (2017a) 2.
Statistics about the dataset are given in Table 1.
The evaluation metric is accuracy per class and the
average (overall) accuracy over the two classes.

Performance on nouns: The results of our ex-
periments with foiled nouns are summarized in Ta-
ble 2. First, we note that the models that use Gold

1https://foilunitn.github.io/
2The authors have kindly provided us the datasets.

Feats Overall Real Foil

Blind (LSTM only)† 55.62 86.20 25.04
HieCoAtt† 64.14 91.89 36.38

CNN + BOW MLP 88.42 86.89 89.97
Predict Mention + BOW MLP 94.94 95.68 94.23

Predict Freq + BOW MLP 95.14 95.82 94.48
Gold Mention + BOW MLP 95.83 96.30 95.36

Gold Freq + BOW MLP 96.45 96.04 96.85

CNN + LSTM 87.45 86.78 88.14
Predict Freq + LSTM 85.99 85.17 86.81
Gold Freq + LSTM 87.38 86.62 88.18

Predict Freq + MM-LSTM 87.90 86.73 88.95
Gold Freq + MM-LSTM 89.02 88.35 89.72

Human (majority)† 92.89 91.24 94.52

Table 2: Accuracy on Nouns dataset. † are taken di-
rectly from Shekhar et al. (2017b). HieCoAtt is the
state of the art reported in the paper.

bag of objects information are the best performing
models across classifiers. We also note that the
performance is better than human performance.
We hypothesize the following reasons for this:
(a) human responses were crowd-sourced, which
could have resulted in some noisy annotations; (b)
our gold object-based features closely resembles
the information used for data-generation as de-
scribed in Shekhar et al. (2017b) for the foil noun
dataset. The models using Predicted bag of ob-
jects from a detector are very close to the perfor-
mance of Gold. The performance of models us-
ing simple bag of words (BOW) sentence repre-
sentations and an MLP is better than that of mod-
els that use LSTMs. Also, the accuracy of the
bag of objects model with Frequency counts is
higher than with the binary Mention vector, which
only encodes the presence of objects. The Multi-
modal LSTM (MM-LSTM) has a slightly better
performance than LSTM classifiers. In all cases,
we observe that the performance is on par with
human-level accuracy. Our overall accuracy is
substantially higher than that reported in Shekhar
et al. (2017b). Interestingly, our implementation
of CNN+LSTM produced better results than their
equivalent model (they reported 61.07% vs. our
87.45%). We investigate this further in Section 5.

Performance on other parts of speech: For
other parts of speech, we fix the image representa-
tion to Gold Frequency, and compare results us-
ing the BOW-based MLP and MM-LSTM. We
also compare the scores to the state of the art re-
ported in Shekhar et al. (2017a). Note that this
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Classifier Overall Real Foil
V

B
Gold Freq + BOW MLP 84.03 97.38 70.68
Gold Freq + MM-LSTM 87.90 99.48 76.32

HieCoAtt† 81.79 - 57.94

A
D

J Gold Freq + BOW MLP 87.74 96.96 78.52
Gold Freq + MM-LSTM 92.29 85.82 98.77

HieCoAtt† 86.00 - 80.05

A
D

V Gold Freq + BOW MLP 54.99 98.49 11.48
Gold Freq + MM-LSTM 56.55 99.45 13.65

HieCoAtt† 53.40 - 14.73

PR
E

P Gold Freq + BOW MLP 75.53 92.61 58.45
Gold Freq + MM-LSTM 89.74 95.59 83.89

HieCoAtt† 74.91 - 61.92

Table 3: Accuracy on Verb, Adjective, Adverb and
Preposition datasets, using Gold Frequency as the im-
age representation. † is the best performing model as
reported in Shekhar et al. (2017a).

model does not use gold object information and
may thus not be directly comparable – we how-
ever recall that only a slight drop in accuracy was
found for our models when using predicted object
detections rather than gold ones. Our findings are
summarized in Table 3. The classification perfor-
mance is not as high as it was for the nouns dataset.
Noteworthy is the performance on adverbs, which
is significantly lower than the performance across
other parts of speech. We hypothesize that this
is because of the imbalanced distribution of foiled
and real captions in the dataset. We also found that
the performance of LSTM-based models on other
parts of speech datasets are almost always better
than BOW-based models, indicating the necessity
of more sophisticated features.

5 Analysis

In this section, we attempt to better understand
why our models achieve such a high accuracy.

5.1 Ablation Analysis

We first perform ablation experiments with our
proposed models over the Nouns dataset (FOIL).
We compute image-only models (CNN or Gold
Frequency) and text-only models (BOW or
LSTM), and investigate which components of our
model (text or image/objects) contribute to the
strong classification performance (Table 4). As ex-
pected, we cannot classify foiled captions given
only image information (global or object-level),
resulting in chance-level performance.

On the other hand, text-only models achieve a

very high accuracy. This is a central finding, sug-
gesting that foiled captions are easy to detect even
without image information. We also observe that
the performance of BOW improves by adding ob-
ject Frequency image information, but not CNN
image embeddings. We posit that this is because
there is a tighter correspondence between the bag
of objects and bag of word models. In the case
of LSTMs, adding either image information helps
slightly. The accuracy of our models is substan-
tially higher than that reported in Shekhar et al.
(2017b), even for equivalent models.

We note, however, that while the trends of im-
age information is similar for other parts of speech
datasets, the performance of BOW based models
are lower than the performance of LSTM based
models. The anomaly of improved performance
of BOW based models seems heavily pronounced
in the nouns dataset. Thus, we further analyze our
model in the next section to shed light on whether
the high performance is due to the models or the
dataset itself.

Image Text Overall Real Foil

CNN - 50.01 64.71 35.31
Gold Freq - 50.04 53.10 47.00

M
L

P - BOW 89.33 88.32 90.34
CNN BOW 88.42 86.89 89.97

Gold Freq BOW 96.45 96.04 96.85

L
ST

M - LSTM 85.07 85.52 84.66
CNN LSTM 87.38 86.62 88.18

Gold Freq LSTM 87.45 86.78 88.14

Table 4: Ablation study on FOIL (Nouns).

5.2 Feature Importance Analysis
We apply Local Interpretable Model-agnostic Ex-
planations (Ribeiro et al., 2016) to further under-
stand the strong performance of our simple classi-
fier on the Nouns dataset (FOIL) without any im-
age information. We present an example in Fig-
ure 1. We use MLP with BOW only (no image
information) as our classifier. As the caption is
correctly predicted to be foiled, we observe that
the most important feature for classification is the
information on the word ball, which also happens
to be the foiled word. We further analyzed the
chances of this happening on the entire test set.
We found that 96.56% of the time the most impor-
tant classification feature happens to be the foiled
word. This firmly indicates that there is a very
strong linguistic bias in the training data, despite

436



Figure 1: Classifier’s prediction for the foiled caption:
The classifier is able to correctly classify the foiled cap-
tion and uses the foiled word as the trigger for classifi-
cation.

the claim in Shekhar et al. (2017b) that special at-
tention was paid to avoid linguistic biases in the
dataset.3 We note that we were not able to de-
tect the linguistic bias in the other parts of speech
datasets.

6 Conclusions

We presented an object-based image representa-
tion derived from explicit object detectors/gold an-
notations to tackle the task of classifying foiled
captions. The hypothesis was that such mod-
els provide the necessary semantic information
for the task, while this informaiton is not ex-
plicitly present in CNN image embeddings com-
monly used in V2L tasks. We achieved state-
of-the-art performance on the task, and also pro-
vided a strong upper-bound using gold annota-
tions. A significant finding is that our simple
models, especially for the foiled noun dataset,
perform well even without image information.
This could be partly due to the strong linguis-
tic bias in the foiled noun dataset, which was
revealed by our analysis on our interpretable
object-based models. We release our analysis
and source code at https://github.com/
sheffieldnlp/foildataset.git.
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