
Proceedings of NAACL-HLT 2018, pages 386–392
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

A Dynamic Oracle for Linear-Time 2-Planar Dependency Parsing

Daniel Fernández-González and Carlos Gómez-Rodrı́guez
Universidade da Coruña

FASTPARSE Lab, LyS Research Group, Departamento de Computación
Campus de Elviña, s/n, 15071 A Coruña, Spain

d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

We propose an efficient dynamic oracle for
training the 2-Planar transition-based parser,
a linear-time parser with over 99% cover-
age on non-projective syntactic corpora. This
novel approach outperforms the static train-
ing strategy in the vast majority of languages
tested and scored better on most datasets than
the arc-hybrid parser enhanced with the Swap
transition, which can handle unrestricted non-
projectivity.

1 Introduction

Linear-time greedy transition-based parsers such
as arc-eager, arc-standard and arc-hybrid (Nivre,
2003, 2004; Kuhlmann et al., 2011) are widely
used for dependency parsing due to their efficiency
and performance, but they cannot deal with non-
projective syntax. To address this, various exten-
sions have been proposed, involving new trans-
itions (Attardi, 2006; Nivre, 2009; Fernández-
González and Gómez-Rodrı́guez, 2012), data
structures (Gómez-Rodrı́guez and Nivre, 2010;
Pitler and McDonald, 2015) or pre and postpro-
cessing (Nivre and Nilsson, 2005). Among these
extensions, the 2-Planar parser (Gómez-Rodrı́guez
and Nivre, 2010) has attractive properties, as it (1)
keeps the original worst-case linear time, (2) has
close to full coverage of non-projective phenom-
ena, and (3) needs no pre- or post-processing.

Dynamic oracles (Goldberg and Nivre, 2012)
are known to improve the accuracy of greedy pars-
ers by enabling more robust training, by explor-
ing configurations beyond the gold path. While
dynamic oracles have been defined for many
transition-based algorithms (Goldberg and Nivre,
2013; Goldberg et al., 2014; Gómez-Rodrı́guez
et al., 2014; Gómez-Rodrı́guez and Fernández-
González, 2015; de Lhoneux et al., 2017), none
is available so far for the 2-Planar system. The

lack of the arc-decomposability property, which
can be used to derive dynamic oracles for parsers
that have it, makes the obtention of one non-trivial.

To fill this gap, we define an efficient dy-
namic oracle for the 2-Planar transition-based
parser, using similar loss calculation techniques as
described in (Gómez-Rodrı́guez and Fernández-
González, 2015) for the non-arc-decomposable
Covington parser (Covington, 2001). Training the
2-Planar parser with this novel strategy achieves
accuracy gains in the vast majority of datasets
tested. In addition, we empirically compare our
novel approach to the most similar existing altern-
ative:1 the arc-hybrid parser with a swap trans-
ition trained with a static-dynamic oracle, recently
introduced by de Lhoneux et al. (2017); which
can handle unrestricted non-projective dependen-
cies inO(n2) worst-case time in theory, but expec-
ted linear time in practice (Nivre, 2009). Our ap-
proach outperforms this swap-based system on av-
erage over a standard set of dependency treebanks.

2 The 2-Planar parser

We briefly sketch the 2-Planar transition sys-
tem, which was defined by Gómez-Rodrı́guez
and Nivre (2010, 2013) under the transition-based
parsing framework (Nivre, 2008) and is based on
the arc-eager algorithm (Nivre, 2003), keeping
its linear time complexity. It works by building,
in a single pass, two non-crossing graphs (called
planes) whose union provides a dependency parse
in the set of 2-planar (or pagenumber-2) graphs,
which is known to cover over 99% of parses in a
large number of real treebanks (Gómez-Rodrı́guez
and Nivre, 2010; Gómez-Rodrı́guez, 2016).

Parser configurations have the form c =

1Although the two-register parser by Pitler and McDonald
(2015) is even closer to ours in terms of the transition system
(being based on arc-eager and running in linear time), no dy-
namic oracle is known for it, to the best of our knowledge.

386



〈Σ1,Σ2, B,A〉, where Σ1 and Σ2 are, respect-
ively, the active stack and inactive stack and are
tied to each of the planes or pages of the output
graph, B is a buffer of unread words, and A the
set of dependency arcs built so far. For an in-
put string w1 · · ·wn, the parser starts at config-
uration cs(w1 . . . wn) = 〈[ ], [ ], [w1 . . . wn], ∅〉,
applying transitions until a terminal configuration
〈Σ1,Σ2, [ ], A〉 is reached, andA yields the output.

Figure 1 shows the parser’s transitions. The
Shift transition pops the first (leftmost) word in
the buffer, and pushes it to both stacks; the Reduce
transition pops the top word from the active stack,
implying that we have added all arcs to or from it
on the plane tied to that stack; and the Left-Arc and
Right-Arc transitions create a leftward or right-
ward dependency arc connecting the first word in
the buffer to the top of the active stack. Finally,
the Switch transition makes the active stack inact-
ive and vice versa, changing the plane the parser is
working with. Transitions that violate the single-
head or acyclicity constraints are disallowed, so
that the output is a forest. Finally, to guarantee the
termination of the parsing process, two consecut-
ive Switch transitions are not allowed.

3 A dynamic oracle

We now define an efficient dynamic oracle to train
the 2-Planar algorithm, which operates under the
assumption of a fixed assignment of arcs to planes.

Following Goldberg and Nivre (2013), if the
Hamming loss (L) between trees t and tG is the
amount of words with a different head in t and tG,
then implementing a dynamic oracle reduces to
defining a loss function `(c) which, given a parser
configuration c and a gold tree tG, computes the
minimum loss between tG and a tree reachable
from c.2 We call this the minimum loss of config-
uration c, `(c) = mint|c t L(t, tG). A correct dy-
namic oracle will return the set of transitions τ that
do not increase this loss (i.e., `(τ(c))− `(c) = 0),
thus leading to the best parse reachable from c.

For parsers that are arc-decomposable3, `(c)
can be obtained by counting gold arcs that are not
individually reachable from c, which is trivial in
most parsers. Unfortunately, the 2-Planar parser

2We say that an arc set X is reachable from config-
uration c, and we write c  X , if there is some (pos-
sibly empty) path of transitions from c to some configuration
c′ = 〈Σ1,Σ2, B,A′〉, with X ⊆ A′.

3i.e., if every individual arc of X is reachable from a given
configuration c, the set X as a whole is reachable from c.

is non-arc-decomposable. To show this, it suffices
to consider any configuration where an incorrect
arc created in A forms a cycle together with a set
of otherwise reachable gold arcs, just as in the
proof of non-arc-decomposability for Covington
provided by Gómez-Rodrı́guez and Fernández-
González (2015). In fact, the same counter-
example provided there also works for this parser.

Note, however, that non-arc-decomposability in
the 2-Planar parser not only comes from cycles
(as in Covington) but also from situations where,
due to a poor assignment of planes to already-built
arcs, no possible plane assignment allows building
a set of pending gold arcs. Thus, the loss calcula-
tion technique of the Covington dynamic oracle is
not directly applicable to the 2-Planar parser.

However, if we statically choose a canonical
plane assignment and we calculate loss with re-
spect to that assignment (i.e., creating a correct arc
in the non-canonical plane incurs loss), then the
Covington technique, based on counting individu-
ally unreachable arcs and then correcting for the
presence of cycles, works for the 2-Planar parser.
This is the idea of our dynamic oracle, which
therefore is a correct dynamic oracle only with re-
spect to a preset criterion for plane assignment,
and not for all the possible plane assignments that
would produce the gold dependency structure.

In particular, given a 2-planar gold dependency
tree whose set of arcs is tG, we need to divide it
into two gold arc sets t1G and t2G, associated with
each plane.4 In this paper, we take as canonical the
division provided by the static oracle of Gómez-
Rodrı́guez and Nivre (2010), which prefers to
build arcs in the active plane to minimize the num-
ber of Switch transitions needed.5

Once the plane assignment is set, we can associ-
ate individually unreachable arcs to a plane. Then,
we can calculate configuration loss as:

`(c) = |U1(c, t1G) ∪ U2(c, t2G)|
+ nc(A ∪ (I1(c, t1G) ∪ I2(c, t2G)))

4In practice, for gold parses that are not 2-planar, some
arcs will need to be discarded, so that t1G ∪ t2G will be a 2-
planar subset of tG. Note that in this case, our oracle is cor-
rect with respect to this 2-planar subset, but it does not guar-
antee minimum loss with respect to the original non-2-planar
graph (in the same way as existing projective dynamic oracles
do not guarantee it with respect to non-projective trees).

5Our dynamic oracle can work with any plane assignment
criterion. We chose this one for simplicity, for direct compar-
ability to the existing static oracle, and because it has been
shown to be learnable in practice.

387



Shift: 〈Σ1,Σ2, wi|B,A〉 ⇒ 〈Σ1|wi,Σ2|wi, B,A〉
Reduce: 〈Σ1|wi,Σ2, B,A〉 ⇒ 〈Σ1,Σ2, B,A〉
Left-Arc: 〈Σ1|wi,Σ2, wj |B,A〉 ⇒ 〈Σ1|wi,Σ2, wj |B,A ∪ {wj → wi}〉

only if @wk | wk → wi ∈ A (single-head) and wi →∗ wj 6∈ A (acyclicity).

Right-Arc: 〈Σ1|wi,Σ2, wj |B,A〉 ⇒ 〈Σ1|wi,Σ2, wj |B,A ∪ {wi → wj}〉
only if @wk | wk → wj ∈ A (single-head) and wj →∗ wi 6∈ A (acyclicity).

Switch: 〈Σ1,Σ2, B,A〉 ⇒ 〈Σ2,Σ1, B,A〉

Figure 1: Transitions of the 2-Planar dependency parser. The notation wi →∗ wj ∈ A means that there is a
(possibly empty) directed path from wi to wj in A.

where for i ∈ {1, 2}, each set Ii(c, tiG) = {x →
y ∈ tiG | c  (x → y)} is the set of indi-
vidually reachable arcs of tiG from configuration
c; Ui(c, tiG) is the set of individually unreachable
arcs of tiG from c, defined as tiG \ Ii(c, tiG); and
nc(G) denotes the number of cycles in a graph G.

To compute the sets of individually unreach-
able arcs Ui(c, tiG) from a configuration c =
〈Σ1,Σ2, B,A〉, we examine gold arcs. A gold arc
x → y ∈ tiG will be in Ui(c, tiG) if it is not in
A∩ tiG (the set of already-built arcs from the plane
of interest), and at least one of the following holds:

• min(x, y) 6∈ Σi ∪ B ∨max(x, y) 6∈ B, (i.e.,
min(x, y) must be in plane i’s stack or in the
buffer, and max(x, y) must be in the buffer
so that the arc x→ y can still be built),

• there is some z 6= 0, z 6= x such that z →
y ∈ A, (i.e., we cannot create x→ y because
it would violate the single-head constraint),

• x and y are on the same weakly connected
component of A (i.e., we cannot create x →
y due to the acyclicity constraint).

• x → y ∈ A ∩ t3−iG (i.e., the arc was already
erroneously created in the other plane and,
therefore, is unreachable in plane i).

Once we have Ui(c, tiG) for each of the two
planes, Ii(c, tiG) can be obtained as tiG \Ui(c, tiG).
Finally, since the graph A ∪ I1(c, t1G) ∪ I2(c, t2G)
has in-degree 1, the algorithm by Tarjan (1972)
can be used to implement the function nc to count
its cycles in O(n) time. For this reason, the full
loss calculation runs in linear time as well.6

6The check for acyclicity using weakly connected com-
ponents has no impact on the complexity: when weakly con-
nected components are represented using path compression

Given a plane assignment, `(c) is an exact ex-
pression of the loss of a configuration of the 2-
Planar parser as expressed in Figure 1, without
the control constraint that forbids two consecut-
ive Switch transitions. This can be proven us-
ing the same reasoning as for the Covington loss
expression of (Gómez-Rodrı́guez and Fernández-
González, 2015). Thus, the computation of `(c)
provides a complete and correct dynamic oracle
for this parser under a given plane assignment, by
directly evaluating `(τ(c)) − `(c) for each trans-
ition τ . However, to make the oracle correct for
the practical version, where consecutive Switch
transitions are disallowed, we need to modify the
cost calculation for the Switch transition.

In particular, applying a Switch transition does
not affect the loss, so `(Switch(c)) − `(c) is al-
ways 0. Indeed, if Switch transitions are always
allowed, their cost is zero because they can always
be undone and thus never affect the reachability
of any arcs. However, when consecutive Switch
transitions are banned to ensure parser termina-
tion, choosing to Switch can have consequences
as, in the resulting configuration, the parser will
be forced to take one of the other four transitions,
which may lead to suboptimal outcomes compared
to not having switched.

To address this, we compute the cost of Switch
transitions instead as min({`(τ(Switch(c))) −
`(c)|τ 6= Switch}), i.e., the minimum number of
gold arcs missed after being forced to apply one of
the other four transitions after Switch (if this cost
is 0, then switching stacks is an optimal choice).
Adding this modification makes the dynamic or-
acle correct for the practical version of the parser

and union by rank, the relevant operations run in amort-
ized inverse Ackermann time, meaning that they behave as
constant time for all practical purposes, like in (Gómez-
Rodrı́guez and Nivre, 2013)

388



that disallows consecutive Switch transitions.

Regularization While the above dynamic oracle
is theoretically correct, we noticed experimentally
that the Switch transition tends to switch stacks
very frequently during training, due to explora-
tion. This leads the parser to learn unnecessarily
long and complex transition sequences that change
planes more than needed, harming accuracy.

To avoid this, we add a regularization term to
`(c) representing the transition sequence length
from c to its minimum-loss reachable tree(s), to
discourage unnecessarily long sequences. This
amounts to penalizing the Switch transition if
there is any zero-cost transition available in the
active plane and changing planes will delay its
application. Thus, arcs assigned to the currently
active plane will be built before switching if pos-
sible, enforcing a global arc creation order. This is
similar to the prioritization of monotonic paths in
(Honnibal et al., 2013, §6), as they also penalize
unneeded actions that will need to be undone later.

4 Experiments

4.1 Data and Evaluation

We conduct our experiments on the commonly-
used non-projective benchmark compounded of
nine datasets from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and all datasets
from the CoNLL-XI shared task (Nivre et al.,
2007).7 We also use the Stanford Dependencies
(de Marneffe and Manning, 2008) conversion (us-
ing the Stanford parser v3.3.0)8 of the WSJ Penn
Treebank (PTB-SD) (Marcus et al., 1993) with
standard splits. Labelled and Unlabelled Attach-
ment Scores (LAS and UAS) are computed includ-
ing punctuation for all datasets except for the PTB
where, following common practice, the punctu-
ation is excluded. We train our system for 15 it-
erations and choose the best model according to
development set accuracy. Statistical significance
is calculated using a paired test with 10,000 boot-
strap samples.

4.2 Model

We implement both the static oracle and the dy-
namic oracle with aggressive exploration for the

7We use for evaluation the latest version for each lan-
guage, i.e., if a language appeared in both CoNLL-X and
CoNLL-XI, we use the CoNLL-XI dataset.

8https://nlp.stanford.edu/software/
lex-parser.shtml

2-Planar parser under the neural network archi-
tecture proposed by Kiperwasser and Goldberg
(2016). We also add the static-dynamic arc-hybrid
parser with Swap transition (de Lhoneux et al.,
2017), implemented under the same framework to
perform a fair comparison.

The neural network architecture used in this
paper is taken from Kiperwasser and Goldberg
(2016). We use the same BiLSTM-based featur-
ization method that concatenates the representa-
tions of the top 3 words on the active stack and
the leftmost word in the buffer for the arc-hybrid
and 2-Planar algorithms, and we add the top 2
words on the inactive stack for the latter. Follow-
ing Kiperwasser and Goldberg (2016), we also in-
clude the BiLSTM vectors of the rightmost and
leftmost modifiers of words from the stacks, as
well as the leftmost modifier of the first word in
the buffer. We initialize word embeddings with
100-dimensional GloVe vectors (Pennington et al.,
2014) for English and use 300-dimensional Face-
book vectors (Bojanowski et al., 2016) for other
languages. The other parameters of the neural net-
work keep the same values as in (Kiperwasser and
Goldberg, 2016).

4.3 Results

Table 1 shows that the 2-Planar parser trained with
a dynamic oracle outperforms the static training
strategy in terms of UAS in 15 out of 20 languages,
with 8 of these improvements statistically signific-
ant (α = .05), and one statistically significant de-
crease. When comparing with the enhanced arc-
hybrid system in Table 2, our approach provides a
better UAS in 12 out of 20 datasets tested, achiev-
ing statistically significant (α = .05) gains in ac-
curacy on 7 of them, and significant losses on 3 of
them.

We could not find a clear pattern to explain why
the 2-Planar algorithm outperforms arc-hybrid
plus Swap in some languages and vice versa. The
latter seems to work better on treebanks with less
non-projectivity such as the English, Chinese and
Japanese datasets, and worse on those with higher
amounts like Turkish, Dutch or Basque. However,
some cases like Czech or Catalan go against this
trend. From (Gómez-Rodrı́guez and Nivre, 2010),
we also know that the Dutch and German tree-
banks have a relatively high proportion of non-
2-planar trees, but the 2-Planar parser seems to
be a better option on them than the extended arc-

389



2-Planar 2-Planar
static dynamic

Language UAS LAS UAS LAS
Arabic 83.20 73.48 82.96 73.24
Basque 77.61 69.94 78.11 70.11
Catalan 92.50 87.92 93.70∗ 88.48∗
Chinese 85.95 80.97 87.08∗ 81.73∗
Czech 84.67 78.56 85.29 79.40
English 89.57 88.69 90.87∗ 90.03∗
Greek 81.93 74.23 82.06 74.79
Hungarian 81.50 75.94 82.48∗ 76.97∗
Italian 86.85 82.36 87.24 82.38
Turkish 81.68 73.59 81.48 73.61
Bulgarian 93.14 89.74 93.23 89.97
Danish 88.31 84.23 88.57 84.76
Dutch 85.51 81.63 86.50∗ 82.70∗
German 90.80 88.71 90.71 88.51
Japanese 92.51 90.56 93.19∗ 90.65∗
Portugue. 88.68 85.12 89.02∗ 85.92∗
Slovene 78.67 70.49 79.30 70.86
Spanish 83.63∗ 79.79∗ 82.42 78.68
Swedish 89.92 85.48 89.83 85.40
PTB-SD 93.59 91.60 93.96∗ 92.06∗

Average 86.51 81.65 86.90 82.01

Table 1: Parsing accuracy of the 2-Planar parser trained
with static and dynamic oracles on CoNLL-XI (first
block), CoNLL-X (second block) and PTB-SD (third
block) datasets. Best results for each language are
shown in boldface. Statistically significant improve-
ments (α = .05) are marked with ∗.

hybrid system that can handle unrestricted non-
projectivity. The reasons, beyond the scope of this
research, might be related to different dependency
length distributions or non-projective topologies.

We noticed that, in general, the 2-Planar parser
has higher precision on non-projective arcs and the
enhanced arc-hybrid parser has a better recall.

5 Conclusion

We present an efficient dynamic oracle to train
the 2-Planar transition-based parser, which is cor-
rect with respect to a given plane assignment, and
results in notable gains in accuracy. The parser
trained with this dynamic oracle performs better
on average than an expected linear-time parser
supporting unrestricted non-projectivity.

2-Planar AHybridSwap
dynamic static-dynamic

Language UAS LAS UAS LAS
Arabic 82.96∗ 73.24∗ 80.74 70.69
Basque 78.11∗ 70.11∗ 75.60 68.70
Catalan 93.70∗ 88.48 93.12 88.06
Chinese 87.08 81.73 87.31 82.02
Czech 85.29 79.40 85.71∗ 80.08∗
English 90.87 90.03 91.37 90.37
Greek 82.06 74.79 83.72∗ 76.33∗
Hungarian 82.48 76.97 82.20 76.88
Italian 87.24∗ 82.38∗ 86.24 81.48
Turkish 81.48∗ 73.61∗ 77.44 69.22
Bulgarian 93.23 89.97 93.17 89.62
Danish 88.57 84.76 88.65 84.60
Dutch 86.50∗ 82.70∗ 84.24 81.04
German 90.71 88.51 90.60 88.39
Japanese 93.19 90.65 93.40 91.47∗
Portugue. 89.02 85.92 88.78 85.48
Slovene 79.30∗ 70.86 77.68 70.61
Spanish 82.42 78.68 83.98∗ 80.15∗
Swedish 89.83 85.40 89.92 85.18
PTB-SD 93.96 92.06 93.83 91.93
Average 86.90 82.01 86.39 81.62

Table 2: Parsing accuracy of the 2-Planar parser trained
with the dynamic oracle and the arc-hybrid parser with
the Swap transition trained with a static-dynamic oracle
on CoNLL-XI (first block), CoNLL-X (second block)
and PTB-SD (third block) datasets. Best results for
each language are in boldface. Statistically significant
improvements (α = .05) are marked with ∗.

Acknowledgments

This work has received funding from the European
Research Council (ERC), under the European
Union’s Horizon 2020 research and innova-
tion programme (FASTPARSE, grant agreement
No 714150), from the TELEPARES-UDC pro-
ject (FFI2014-51978-C2-2-R) and the ANSWER-
ASAP project (TIN2017-85160-C2-1-R) from
MINECO, and from Xunta de Galicia (ED431B
2017/01).

References
Giuseppe Attardi. 2006. Experiments with a multil-

anguage non-projective dependency parser. In Pro-
ceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL). pages 166–
170.

390



Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL). pages
149–164. http://www.aclweb.org/anthology/W06-
2920.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference. ACM, New
York, NY, USA, pages 95–102.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the The 15th International Conference on Parsing
Technologies (IWPT).. Pisa, Italy.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. The stanford typed depend-
encies representation. In Coling 2008: Pro-
ceedings of the Workshop on Cross-Framework
and Cross-Domain Parser Evaluation. Associ-
ation for Computational Linguistics, Strouds-
burg, PA, USA, CrossParser ’08, pages 1–8.
http://dl.acm.org/citation.cfm?id=1608858.1608859.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2012. Improving transition-based
dependency parsing with buffer transitions. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 308–319.
http://aclweb.org/anthology/D/D12/D12-1029.pdf.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In Pro-
ceedings of COLING 2012. Association for Compu-
tational Linguistics, Mumbai, India, pages 959–976.
http://www.aclweb.org/anthology/C12-1059.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic
oracles. Transactions of the Association
for Computational Linguistics 1:403–414.
http://anthology.aclweb.org/Q/Q13/Q13-1033.pdf.

Yoav Goldberg, Francesco Sartorio, and Giorgio Satta.
2014. A tabular method for dynamic oracles in
transition-based parsing. Transactions of the Asso-
ciation for Computational Linguistics 2:119–130.

Carlos Gómez-Rodrı́guez. 2016. Restricted
non-projectivity: Coverage vs. efficiency.
Comput. Linguist. 42(4):809–817. ht-
tps://doi.org/10.1162/COLI a 00267.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic oracle for

unrestricted non-projective parsing. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 2: Short Papers. pages 256–261.
http://aclweb.org/anthology/P/P15/P15-2042.pdf.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’10, pages 1492–1501.
http://dl.acm.org/citation.cfm?id=1858681.1858832.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2013. Di-
visible transition systems and multiplanar depend-
ency parsing. Comput. Linguist. 39(4):799–845. ht-
tps://doi.org/10.1162/COLI a 00150.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and
Giorgio Satta. 2014. A polynomial-time dy-
namic oracle for non-projective dependency
parsing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for
Computational Linguistics, pages 917–927.
http://aclweb.org/anthology/D14-1099.

Matthew Honnibal, Yoav Goldberg, and Mark John-
son. 2013. A non-monotonic arc-eager trans-
ition system for dependency parsing. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, CoNLL 2013,
Sofia, Bulgaria, August 8-9, 2013. pages 163–
172. http://aclweb.org/anthology/W/W13/W13-
3518.pdf.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. TACL 4:313–327. ht-
tps://transacl.org/ojs/index.php/tacl/article/view/885.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and
Giorgio Satta. 2011. Dynamic programming
algorithms for transition-based dependency pars-
ers. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguist-
ics: Human Language Technologies - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 673–682.
http://dl.acm.org/citation.cfm?id=2002472.2002558.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19:313–330.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT 03). ACL/SIGPARSE, pages 149–160.

391



Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together (ACL). pages 50–57.

Joakim Nivre. 2008. Algorithms for Determ-
inistic Incremental Dependency Parsing.
Computational Linguistics 34(4):513–553.
https://doi.org/10.1162/coli.07-056-R1-07-027.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP). pages 351–359.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Pro-
ceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007. pages 915–932.
http://www.aclweb.org/anthology/D/D07/D07-
1096.pdf.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In ACL ’05: Pro-
ceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, Morristown, NJ, USA,
pages 99–106.

Jeffrey Pennington, Richard Socher, and Chris-
topher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Emily Pitler and Ryan McDonald. 2015. A
linear-time transition system for crossing inter-
val trees. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 662–
671. http://www.aclweb.org/anthology/N15-1068.

Robert Endre Tarjan. 1972. Depth-first search
and linear graph algorithms. SIAM J.
Comput. 1(2):146–160. http://dblp.uni-
trier.de/db/journals/siamcomp/siamcomp1.html.

392


