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Abstract

Spoken language understanding (SLU) is an
essential component in conversational sys-
tems. Most SLU components treat each ut-
terance independently, and then the following
components aggregate the multi-turn informa-
tion in the separate phases. In order to avoid
error propagation and effectively utilize con-
texts, prior work leveraged history for con-
textual SLU. However, most previous models
only paid attention to the related content in his-
tory utterances, ignoring their temporal infor-
mation. In the dialogues, it is intuitive that
the most recent utterances are more important
than the least recent ones, in other words, time-
aware attention should be in a decaying man-
ner. Therefore, this paper designs and investi-
gates various types of time-decay attention on
the sentence-level and speaker-level, and fur-
ther proposes a flexible universal time-decay
attention mechanism. The experiments on
the benchmark Dialogue State Tracking Chal-
lenge (DSTC4) dataset show that the proposed
time-decay attention mechanisms significantly
improve the state-of-the-art model for contex-
tual understanding performance1.

1 Introduction

Spoken dialogue systems that can help users to
solve complex tasks such as booking a movie
ticket have become an emerging research topic
in artificial intelligence and natural language pro-
cessing areas. With a well-designed dialogue sys-
tem as an intelligent personal assistant, people can
accomplish certain tasks more easily via natural
language interactions. Today, there are several
virtual intelligent assistants, such as Apple’s Siri,
Google’s Home, Microsoft’s Cortana, and Ama-
zon’s Echo. Recent advance of deep learning has

1The source code is at: https://github.com/
MiuLab/Time-Decay-SLU.

inspired many applications of neural models to di-
alogue systems (Wen et al., 2017; Bordes et al.,
2017; Dhingra et al., 2017; Li et al., 2017).

A key component of a dialogue system is a
spoken language understanding (SLU) module—
it parses user utterances into semantic frames
that capture the core meaning (Tur and De Mori,
2011). A typical pipeline of SLU is to first de-
cide the domain given the input utterance, and
based on the domain, to predict the intent and to
fill associated slots corresponding to a domain-
specific semantic template, where each utterance
is treated independently (Hakkani-Tür et al., 2016;
Chen et al., 2016b,a; Wang et al., 2016). To over-
come the error propagation and further improve
understanding performance, the contextual infor-
mation has been shown useful (Bhargava et al.,
2013; Xu and Sarikaya, 2014; Chen et al., 2015;
Sun et al., 2016). Prior work incorporated the di-
alogue history into the recurrent neural networks
(RNN) for improving domain classification, intent
prediction, and slot filling (Xu and Sarikaya, 2014;
Shi et al., 2015; Weston et al., 2015; Chen et al.,
2016c). Recently, Chi et al. (2017) and Zhang
et al. (2018) demonstrated that modeling speaker
role information can learn the notable variance in
speaking habits during conversations in order to
benefit understanding.

In addition, neural models incorporating atten-
tion mechanisms have had great successes in ma-
chine translation (Bahdanau et al., 2014), image
captioning (Xu et al., 2015), and various tasks.
Attentional models have been successful because
they separate two different concerns: 1) decid-
ing which input contexts are most relevant to the
output and 2) actually predicting an output given
the most relevant inputs. For example, the high-
lighted current utterance from the tourist, “uh on
august”, in the conversation of Figure 1 is to re-
spond the question about WHEN, and the content-
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Guide: and you were saying that you wanted to come to singapore

Guide: uh maybe can i have a little bit more details like uh when will you be coming

Guide: and like who will you be coming with

Tourist: uh yes

Tourist: um i'm actually planning to visit

Tourist: uh on august

FOL-CONFIRM; FOL-INFO 

QST-INFO; QST-WHEN

QST-WHO

FOL-CONFIRM

RES-WHEN

RES-WHEN

Figure 1: The human-human conversational utterances and their associated semantic labels from DSTC4.

aware contexts that can help current understanding
are the first two utterances from the guide “and
you were saying that you wanted to come to singa-
pore” and “un maybe can i have a little bit more
details like uh when will you be coming”. Previous
work proposed an end-to-end time-aware attention
network to leverage both contextual and tempo-
ral information for spoken language understanding
and achieved the significant improvement, show-
ing that the temporal attention can guide the at-
tention effectively (Chen et al., 2017). However,
the time-aware attention function is an inflexible
hand-crafted setting, which is a fixed function of
time for assessing the attention.

This paper focuses on investigating various flex-
ible time-aware attention mechanism in neural
models with contextual information and speaker
role modeling for language understanding. The
contributions are three-fold:
• This paper investigates different time-aware

attention mechanisms and provides guidance
for the future research about designing the
time-aware attention function.
• This paper proposes an end-to-end learnable

universal time-decay mechanism with great
flexibility of modeling temporal information
for diverse dialogue contexts.
• The proposed model achieves the state-of-

the-art understanding performance in the dia-
logue benchmark DSTC dataset.

2 The Proposed Framework

The model architecture is illustrated in Figure 2.
First, the previous utterances are fed into the con-
textual model to encode into the history summary,
and then the summary vector and the current utter-
ance are integrated for helping understanding. The
contextual model leverages the attention mecha-
nisms highlighted in red, which implements dif-
ferent attention functions for sentence and speaker
role levels. The whole model is trained in an
end-to-end fashion, where the history summary

vector and the attention weights are automatically
learned based on the downstream SLU task. The
objective of the proposed model is to optimize the
conditional probability of the intents given the cur-
rent utterance, p(ŷ | x), by minimizing the cross-
entropy loss.

2.1 Speaker Role Contextual Language
Understanding

Given the current utterance x = {wt}T1 , the goal
is to predict the user intents of x, which includes
the speech acts and associated attributes. We apply
a bidirectional long short-term memory (BLSTM)
model (Schuster and Paliwal, 1997) to history en-
coding in order to learn the probability distribution
of the user intents.

vcur = BLSTM(x,Whis · vhis), (1)

o = sigmoid(WSLU · vcur), (2)

where Whis is a weight matrix and vhis is the his-
tory summary vector, vcur is the context-aware
vector of the current utterance encoded by the
BLSTM, and o is the intent distribution. Note that
this is a multi-label and multi-class classification,
so the sigmoid function is employed for modeling
the distribution after a dense layer. The user intent
labels are decided based on whether the value is
higher than a threshold tuned by the development
set.

Considering that speaker role information is
shown to be useful for better understanding in
complex dialogues (Chi et al., 2017), we follow
the prior work for utilizing the contexts from two
roles to learn history summary representations,
vhis in (1), in order to leverage the role-specific
contextual information. Each role-dependent re-
current unit BLSTMrolei receives corresponding
inputs, xt,rolei , which includes multiple utterances
ui (i = [1, ..., t − 1]) preceding the current utter-
ance ut from the specific role, rolei, and have been
processed by an encoder model.
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Figure 2: Illustration of the proposed time-aware attention contextual model with three types of time-decay atten-
tion functions.

vhis =
∑

role

vhis,role (3)

=
∑

role

BLSTMrole(xt,role),

where xt,role are vectors after one-hot encoding
that represent the annotated intent and the attribute
features. Note that this model requires the ground
truth annotations for history utterances for training
and testing. Therefore, each role-based contextual
module focuses on modeling role-dependent goals
and speaking style, and vcur from (1) would con-
tain role-based contextual information.

2.2 Neural Attention Mechanism

One of the earliest work with a memory compo-
nent applied to language processing is memory
networks (Weston et al., 2015; Sukhbaatar et al.,
2015), which encodes mentioned facts into vec-
tors and stores them in the memory for ques-
tion answering. The idea is to encode important
knowledge and store it into memory for future us-
age with attention mechanisms. Attention mecha-
nisms allow neural network models to selectively
pay attention to specific parts. There are also
various tasks showing the effectiveness of atten-
tion mechanisms (Xiong et al., 2016; Chen et al.,
2016c). Recent work showed that two attention
types (content-aware and time-aware) and two at-
tention levels (sentence-level and role-level) sig-
nificantly improve the understanding performance
for complex dialogues. This paper focuses on ex-
panding the time-aware attention based on the in-
vestigation of different time-decay functions, and

further learning an universal time-decay function
automatically. For time-aware attention mecha-
nisms, we apply it using two levels, sentence-level
and role-level structures, and Section 3 details the
design and analysis of time-aware attention.

For the sentence-level attention, before feeding
into the contextual module, each history vector is
weighted by its time-aware attention αuj for re-
placing (3):

vUhis =
∑

role

BLSTMrole(xt,role, {αuj | uj ∈ role}).

For the role-level attention, a dialogue is disas-
sembled from a different perspective on which
speaker’s information is more important (Chi
et al., 2017). The role-level attention is to de-
cide how much to address on different speaker
roles’ contexts (vhis,role) in order to better under-
stand the current utterance. The importance of a
speaker given the contexts can be approximated to
the maximum attention value among the speaker’s
utterances, αrole = maxαuj , where uj includes
all contextual utterances from the speaker. With
the role-level attention, the sentence-level history
from (3) can be rewritten into

vRhis =
∑

role

αrole · vhis,role (4)

for combining role-dependent history vectors with
their attention weights.

2.3 End-to-End Training

The objective is to optimize SLU performance,
predicting multiple speech acts and attributes de-
scribed in Section 2.1. In the proposed model,

2135



all encoders, prediction models, and attention
weights can be automatically learned in an end-
to-end manner.

3 Time-Decay Attention Learning

The decaying function curves can be easily sep-
arated into three types: convex, linear, and con-
cave, illustrated in the top-right part of Figure 2,
and each type of time-decay functions expresses
a time-aware perspective given dialogue contexts.
Note that all attention weights will be normalized
such that their summation is equal to 1.

3.1 Convex Time-Decay Attention
A convex curve also known as “concave upward”,
in a simple 2D Cartesian coordinate system (x, y),
a convex curve f(x) means when x goes greater,
the slope f ′(x) is increasing. Intuitively, recent
utterances contain more salient information, and
the salience decreases very quickly when the dis-
tance increases; therefore we introduce the time-
aware attention mechanism that computes atten-
tion weights according to the time of utterance oc-
currence explicitly. We first define the time differ-
ence between the current utterance and the preced-
ing sentence ui as d(ui), and then simply use its
reciprocal to formulate a convex time-decay func-
tion:

αconv
ui

=
1

a · d(ui)b
, (5)

where a and b are scalar parameters.
The increasing slopes of the decay-curve assert

that importance of utterances should be attenuated
rapidly, and the importance of a earlier history sen-
tence would be considerably compressed. Note
that Chen et al. used a fixed convex time-decay
function (a = 1, b = 1) (Chen et al., 2017).

3.2 Linear Time-Decay Attention
A linearly decaying time-aware attention func-
tion should also be taken into consideration. In
a simple 2D Cartesian coordinate system (x, y),
the slopes of a linear function remain consistent
when x changes. That is, the importance of pre-
ceding utterances linearly declines as the distance
between the previous utterance and the target ut-
terance becomes larger.

αlin
ui

= max(e · d(ui) + f, 0), (6)

where e and f are the slope and the α-intercept of
the linear function. Note that when the distance

d(ui) is larger than −f
e , we assign the attention

value as 0.

3.3 Concave Time-Decay Attention

A concave curve also called “concave downward”,
in contrast to convex curves, in a simple 2D Carte-
sian coordinate system (x, y), a concave curve
f(x) means that the slope f ′(x) is decreasing
when x goes greater. Intuitively, the attention
weight decreases relatively slow when the distance
increases. To implement this idea, we design a
Butterworth filter-like low-distance pass filter
(Butterworth, 1930) that is similar to the concave
time-decay function in the beginning of the curve.

αconc
ui

=
1

1 + (d(ui)
D0

)n
, (7)

where D0 is the cut-off distance and n is the order
of filter. The decreasing slopes of the decay-curve
assert that the importance of utterances should
weaken gradually, and the importance of a earlier
history sentence would still be considerably com-
pressed. Moreover, it is more likely to preserve
the information in the multiple recent utterances
instead of focusing only on the most recent one.

3.4 Universal Time-Decay Attention

As mentioned previously, there are three types of
decaying curves: convex, linear, concave, each
type represents a different perspective on dialogue
contexts and models different contextual patterns.
However, because the contextual patterns may be
diverse, a single type of function could not fit the
complex behavior well. Hence, we propose a flex-
ible and universal time-decay attention function by
composing three types of attentional curves:

αuniv
ui

= w1 · αconv
ui

+ w2 · αlin
ui

+ w3 · αconc
ui

(8)

=
w1

a · d(ui)b
+ w2(e · d(ui) + f)

+
w3

1 + (d(ui)
D0

)n
,

where wi are the weights of time-decay attention
functions. Because the framework can be trained
in an end-to-end manner, all parameters (wi, a,
b, e, f , D0, n) can be automatically learned to
construct a flexible time-decay function. With the
combination of different curves and the adjustable
weights, the proposed universal time-decay atten-
tion function expresses the flexibility of not being
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LU Model Sentence-Level Attention Role-Level Attention
Conv. Lin. Conc. Univ. Conv. Lin. Conc. Univ.

(a) DSTC4-Best 61.60
(b) Naı̈ve LU 70.18
(c) No Attention Cxt. 74.52
(d) Content-Aware Cxt. 73.69 74.28
(e) Time-Aware Hand 75.95† 74.12 74.26 76.41† 76.73† 76.11† 76.01† 76.68†

(f) E2E 76.04† 74.25 74.32 76.67† 76.69† 76.26† 76.08† 76.75†

(g) Content+Time Hand 74.71† 73.40 73.28 75.48† 76.70† 76.24† 76.03† 76.61†

(h) E2E 74.94† 73.79 73.47 75.83† 76.51† 75.76† 76.22† 76.74†

Table 1: The understanding performance reported on F-measure in DSTC4, where the context length is 7 for each
speaker (%). † indicates the significant improvement compared to all baseline methods. Hand: hand-crafted; E2E:
end-to-end trainable.

strictly decaying; that is, the model can automati-
cally learn a properly oscillating curve in order to
model the diverse and complex contextual patterns
using the attention mechanism.

4 Experiments

To evaluate the proposed model, we conduct the
language understanding experiments on human-
human conversational data.

4.1 Setup

The experiments are conducted using the DSTC4
dataset, which consist of 35 dialogue sessions on
touristic information for Singapore collected from
Skype calls between 3 tour guides and 35 tourists,
these 35 dialogs sum up to 31,034 utterances and
273,580 words (Kim et al., 2016). All recorded di-
alogues with the total length of 21 hours have been
manually transcribed and annotated with speech
acts and semantic labels at each turn level. The
speaker information (guide and tourist) is also pro-
vided. Unlike previous DSTC series collected
human-computer dialogues, human-human dia-
logues contain rich and complex human behaviors
and bring much difficulty to all the tasks. Given
the complex dialogue patterns and longer contexts,
DSTC4 is a suitable benchmark dataset for evalu-
ation. We randomly selected 28 dialogues as the
training set, 5 dialogues as the testing set, and 2
dialogues as the validation set.

We choose the mini-batch Adam as the op-
timizer with the batch size of 256 examples.
The size of each hidden recurrent layer is 128.
We use pre-trained 200-dimensional word embed-
dings GloV e (Pennington et al., 2014). We only
apply 30 training epochs without any early stop

approach. We focus on predicting multiple la-
bels including intents and attributes, so the eval-
uation metric is an average F1 score for balanc-
ing recall and precision in each utterance. The ex-
periments are shown in Table 1, where we report
the average results over five runs. We include the
best understanding performance (row (a)) from the
participants of DSTC4 in IWSDS 2016 for refer-
ence (Kim et al., 2016). The one-tailed t-test is
performed to validate the significance of improve-
ment, and the numbers with markers indicate the
significant improvement with p < 0.05.

4.2 Effectiveness of Time-Decay Attention
To evaluate the proposed time-decay attention,
we compare the performance with the naı̈ve LU
model without any contextual information (row
(b)), the contextual model without any atten-
tion mechanism (row (c)), and the one using
the content-aware attention mechanism (row (d)),
where the attention can be learned at sentence and
role levels. The row (a) is the performance re-
ported in the DSTC challenge2. It is intuitive that
the model without considering contexts (row (b))
performs much worse than the contextual ones for
dialogue modeling. The proposed time-aware re-
sults are shown in the rows (e)-(h), where the rows
(e)-(f) use only the time-aware attention while the
rows (g)-(h) model both content-aware and time-
aware attention mechanisms together. It is obvious
that almost all time-aware results are better than
three baselines.

In order to investigate the performance of vari-
ous time-decay attention functions, for each curve
we apply two settings: 1) Hand: hand-crafted

2This experiment is not performed on the same setup as
this paper, and the shown number is estimated for reference.
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hyper-parameters (rows (e) and (g)) and 2) E2E:
end-to-end training for parameters (rows (f) and
(h)). In the hand-crafted setting, the hyper-
parameters a = 1, b = 1, e = −0.125, f =
1, D0 = 5, n = 3 are adopted3. Table 1 shows
that among three types of the sentence-level time-
decay attention, only the convex time-decay at-
tention significantly outperforms the baselines, in-
dicating that an unsuitable time-decay attention
function is barely useful. For both settings, the
convex functions perform best among the three
types of time-decay functions. Also, the end-to-
end trainable setting results in better performance
for most cases.

For our proposed universal time-decay atten-
tion mechanism, the same settings are conducted:
1) composing fixed versions for three types of
time-decay functions weighted by learned param-
eters wi and 2) fully trainable parameters for all
time-decay functions. These two settings provide
different levels of flexibility in fitting dialogue
contextual attention, and the experimental results
show that two settings both outperform all other
time-decay attention functions.

For sentence-level attention, the end-to-end
trainable universal time-decay attention achieves
best performance (rows (f) and (h)), where the
flexible time-aware attention (rows (f) and (h)) ob-
tains 2.9% relative improvement compared to the
model without the attention mechanism (row (c))
and the model using content-aware attention only
(row (d)). For role-level attention, all types of
time-decay functions significantly improve the re-
sults. The probably reason may be that modeling
temporal importance for each sentence is more dif-
ficult and less accurate, and speaker roles in the
dialogues provide informative cues for the model
to connect the temporal importance from the same
speakers together; therefore, the conversational
patterns can be considered to additionally improve
the understanding results. The further analysis is
discussed in Section 4.3. Similarly, the best re-
sults are also from the end-to-end trainable uni-
versal time-decay function.

The significant improvement achieved by the
universal functions indicates that our model can
effectively learn a suitable attention function
through this flexible setting and derive a proper
curve to fit the temporal tendency to help the

3The chosen parameters are based on the domain knowl-
edge about dialogue properties.

model preserve the essence and drop unimpor-
tant parts in the dialogue contexts. To further in-
vestigate what the universal time-decay attention
learns, we inspect the learned weights wi and find
that the convex attention function almost domi-
nates the whole function. In other words, our
model automatically learns that the convex time-
decay attention is more suitable for modeling con-
texts from the dialogue data than the other two
types. Therefore, we can conclude that in complex
dialogues, the recent utterances contain majority
of salient information for spoken language under-
standing, where the attention decay trend follows
a convex curve.

We analyze the content-aware attention im-
pact by comparing the results between time-aware
only (rows (e)-(f)) and content and time-aware
jointly (rows (g)-(h)). The content-aware atten-
tion (row (d)) fails to focus on the important con-
texts for improving understanding performance in
the complex dialogues and even performs slightly
worse than the contextual model without attention
(row (c)). Without a delicately-designed attention
mechanism, it is not guaranteed that incorporating
an additional content-aware attention would bring
better performance and the experimental results
show that a simple and coarse content-aware atten-
tion barely provides any usable information given
the complex dialogues. Therefore, we focus on
whether our time-aware attention mechanisms can
compensate the poor attention learned from the
content-aware model. In other words, we are not
going to verify whether our time-aware attention
mechanisms could collaborate with the content-
aware attention mechanism, instead, we focus on
examining how much our proposed time-aware at-
tention could mitigate the detriment of the content-
aware attention. By comparing the results be-
tween time-aware only (rows (e)-(f)) and content
and time-aware jointly (rows (g)-(h)), we find that
our universal time-decay attention keeps the im-
provement without too much performance drop by
involving the learned temporal attention. Namely,
our proposed attention mechanism can capture
temporal information precisely, and it therefore
can counteract the harmful impact of inaccurate
content-aware attention.

4.3 Effectiveness of Role-Level Attention

For role-level attention, Table 1 shows that all
results with various time-decay attention mecha-
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LU Model Context Length
3 5 7

No Attention Contextual 74.75 74.69 (-) 74.52 (-)
Content-Aware Contextual 74.04 73.90 (-) 73.69 (-)
Time-Aware (Hand) 76.05 76.34 (+) 76.41 (+)
Time-Aware (E2E) 76.26 76.43 (+) 76.67 (+)
Content+Time (Hand) 75.16 75.27 (+) 75.48 (+)
Content+Time (E2E) 75.82 75.92 (+) 75.83 (-)

Table 2: The sentence-level performance reported on
F1 of the proposed universal time-decay attention un-
der different context length settings (%). The symbols
‘+’ and ‘-’ indicate the performance trends.

nisms are better than the one with only content-
aware attention (row (d)). However, linear and
concave time-decay functions do not provide addi-
tional improvement when we model the attention
at the sentence level. The probable reason may
be that it is difficult to model attention for indi-
vidual sentences given the unsuitable time-decay
functions. That is, if designs of attention func-
tions are unsuitable for dialogue contexts, the en-
coded sentence embeddings would be weighted
by improper attention values. On the other hand,
for role-level attention, each speaker role is as-
signed an attention value to represent their im-
portance in the conversational interactions. Pre-
vious work (Chi et al., 2017; Chen et al., 2017)
also demonstrated the effectiveness of consider-
ing speaker interactions for better understanding
performance. By introducing role-level atten-
tion, the sentence-level attentional weights can be
smoothed to avoid inappropriate values. Surpris-
ingly, even though learning sentence-level tempo-
ral attention is difficult, our proposed universal
time-decay attention can achieve similar perfor-
mance for sentence-level and role-level attention
(76.67% and 76.75% from the row (f)), further
demonstrating the strong adaptability of fitting di-
verse dialogue contexts and the capability of cap-
turing salient information.

4.4 Robustness to Context Lengths

It is intuitive that longer context brings richer in-
formation; however, it may obstruct the atten-
tion learning and result in poor performance be-
cause more information should be modeled and
accurate estimation is not trivial. Because when
modeling dialogues, we have no idea about how
many contexts are enough for better understand-
ing, the robustness to varying context lengths is
important for the contextual model design. Here,
we compare the results using different context

Parameter Time-Aware (E2E Trainable)
Sentence Role

w1 0.758 1.078
w2 0.544 -0.378
w3 -0.302 0.300
a 0.888 0.841
b 0.969 1.084
e -0.320 -0.129
f 0.640 0.993
D0 4.873 4.980
n 2.977 2.755

Table 3: The converged values of end-to-end trainable
parameters from the proposed universal time-decay at-
tention models. The values are averaged over five runs.

lengths (3, 5, 7) for detailed analysis in Table 2,
where the number is for each speaker. The mod-
els without attention and the content-aware mod-
els become slightly worse with increasing context
lengths. However, our proposed universal time-
decay attention model mostly achieves better per-
formance when including longer contexts, demon-
strating not only the flexibility of adapting diverse
contextual patterns but also the robustness to vary-
ing context lengths.

4.5 Universal Time-Decay Attention Analysis

This paper proposes a flexible time-decay atten-
tion mechanism by composing three types of time-
aware attention functions in different decaying
tendencies, where each decaying curves reflect a
specific perspectives on distribution over salient
information in dialogue contexts. The proposed
universal time-decay attention shows great capa-
bility of modeling diverse dialogue patterns in the
experiments and therefore proves that our pro-
posed method is a general design of time-decay
attention. In our design, we endow the attention
function with flexibility by employing many train-
able parameters and hence it can automatically
learn a properly decaying curve for fitting the dia-
logue contexts better.

To further analyze the combination of differ-
ent time-decay attention functions, we inspect the
converged values of the trainable parameters from
the proposed universal time-decay attention mod-
els in Table 3. Under the end-to-end trainable set-
ting, the initialization of the trainable parameters
are the same as the hand-crafted ones (wi = 1, a =
1, b = 1, e = −0.125, f = 1, D0 = 5, n = 3).
In the experiments, the models automatically fig-
ure out that convex time-decay attention function
should have a higher weight than others for both
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anything else (FOL-CONFIRM)

Okay (FOL-ACK)

so we can eat there (FOL-EXPLAIN)

Okay (FOL-ACK)

okay thank you (FOL-THANK)

and how about anything else that where 
we can go for visit (QST-RECOMMEND)

so maybe (FOL-INFO)

yes so maybe at the same time if you are going to climb bukit timah (FOL-RECOMMEND)

you can also bring along some snacks with you (FOL-RECOMMEND)

just also be careful do not put your food items in plastic bag (FOL-INFO)

put them inside your bag because there will be some monkeys on the hill (FOL-INFO)

and they may disturb you (FOL-INFO)

Tourist Guideis there any restaurant 
when we (FOL-CONFIRM)

okay i mentioned earlier on i would like to recommend the zoo

Target Sentence

Content-Aware:
FOL-INFO

Content + Universal Time-Decay:
RES-RECOMMEND

Content + Universal Time-Decay Attention
Content-Aware Attention

and they will think that you know your plastic bag would have contained food (FOL-INFO)

Figure 3: The visualization of the attention weights enhanced by the proposed time-decay function compared with
the weights learned by the content-aware attention model.

sentence-level or role-level models (w1 > w2 and
w1 > w3). Namely, in dialogue contexts, the re-
cent utterances contain most information related
to the current utterance, which is aligned with our
intuition.

4.6 Qualitative Analysis

From the above experiments, the proposed time-
decay attention mechanisms significantly improve
the performance on both sentence and role lev-
els. To further understand how the time-decay
attention changes the content-aware attention, we
dig deeper into the learned attentional values for
sentences and illustrate the visualization in Fig-
ure 3. The figure shows a partial dialogue be-
tween the tourist (left) and the guide (right), where
the color shades indicate the learned attention in-
tensities of sentences. It can be found that the
learned content-aware attention (red; row (c)) fo-
cuses on the incorrect sentence (“so we can eat
there” (FOL-EXPLAIN)) and hence predicts the
wrong label, FOL-INFO. The reason may be
that with a coarse and simple design of content-
aware attention mechanism, the attention function
may not provide additional benefit for improve-
ment. By additionally leveraging our proposed
universal time-decay attention methods, the re-
sult (blue; row (g)) shows that the adjusted at-
tention pays the highest attention on the most re-
cent utterance and thereby predicts the correct in-
tent, RES-RECOMMEND. It can be found that our
proposed time-decay attention can effectively turn

the attention to the correct contexts in order to
correctly predict the dialogue act and attribute.
Therefore, the proposed attention mechanisms are
demonstrated to be effective for improving un-
derstanding performance in such complex human-
human conversations.

5 Conclusion

This paper designs and investigates various time-
decay attention functions based on an end-to-end
contextual language understanding model, where
different perspectives on dialogue contexts are an-
alyzed and a flexible and universal time-decay at-
tention mechanism is proposed. The experiments
on a benchmark human-human dialogue dataset
show that the understanding performance can be
boosted by simply introducing the proposed time-
decay attention mechanisms for guiding the model
to focus on the salient contexts following a con-
vex curve. Moreover, the proposed universal time-
decay mechanisms are easily extensible to multi-
party conversations and showing the potential of
leveraging temporal information in NLP tasks of
dialogues.
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