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Abstract

We show that explicit pragmatic inference aids
in correctly generating and following natural
language instructions for complex, sequential
tasks. Our pragmatics-enabled models reason
about why speakers produce certain instruc-
tions, and about how listeners will react upon
hearing them. Like previous pragmatic mod-
els, we use learned base listener and speaker
models to build a pragmatic speaker that uses
the base listener to simulate the interpretation
of candidate descriptions, and a pragmatic lis-
tener that reasons counterfactually about al-
ternative descriptions. We extend these mod-
els to tasks with sequential structure. Eval-
uation of language generation and interpreta-
tion shows that pragmatic inference improves
state-of-the-art listener models (at correctly
interpreting human instructions) and speaker
models (at producing instructions correctly in-
terpreted by humans) in diverse settings.

1 Introduction

How should speakers and listeners reason about
each other when they communicate? A core in-
sight of computational pragmatics is that speaker
and listener agents operate within a cooperative
game-theoretic context, and that each agent ben-
efits from reasoning about others’ intents and ac-
tions within that context. Pragmatic inference has
been studied by a long line of work in linguistics,
natural language processing, and cognitive sci-
ence. In this paper, we present a technique for lay-
ering explicit pragmatic inference on top of mod-
els for complex, sequential instruction-following
and instruction-generation tasks. We investigate a
range of current data sets for both tasks, showing
that pragmatic behavior arises naturally from this
inference procedure, and gives rise to state-of-the-
art results in a variety of domains.

Consider the example shown in Figure la, in
which a speaker agent must describe a route to
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Figure 1: Real samples for the SAIL navigation en-
vironments, comparing base models, without explicit
pragmatic inference, to the rational pragmatic infer-
ence procedure. (a) The rational speaker, which rea-
sons about listener behavior, generates instructions
which in this case are more robust to uncertainty about
the listener’s initial orientation. (b) The base listener
moves to an unintended position (even though it cor-
rectly passes two objects). The rational listener, which
reasons about the speaker, infers that a route ending
at the sofa would have been described differently, and
stops earlier.

a target position in a hallway. A conventional
learned instruction-generating model produces a
truthful description of the route (walk forward four
times). But the pragmatic speaker in this paper,
which is capable of reasoning about the listener,
chooses to also include additional information (the
intersection with the bare concrete hall), to reduce
potential ambiguity and increase the odds that the
listener reaches the correct destination.

This same reasoning procedure also allows a lis-
tener agent to overcome ambiguity in instructions
by reasoning counterfactually about the speaker
(Figure 1b). Given the command walk along the
blue carpet and you pass two objects, a conven-
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tional learned instruction-following model is will-
ing to consider all paths that pass two objects,
and ultimately arrives at an unintended final po-
sition. But a pragmatic listener that reasons about
the speaker can infer that the long path would have
been more easily described as go to the sofa, and
thus that the shorter path is probably intended. In
these two examples, which are produced by the
system we describe in this paper, a unified rea-
soning process (choose the output sequence which
is most preferred by an embedded model of the
other agent) produces pragmatic behavior for both
speakers and listeners.

The application of models with explicit prag-
matic reasoning abilities has so far been largely
restricted to simple reference games, in which the
listener’s only task is to select the right item from
among a small set of candidate referents given
a single short utterance from the speaker. But
as the example shows, there are real-world in-
struction following and generation tasks with rich
action spaces that might also benefit from prag-
matic modeling. Moreover, approaches that learn
to map directly between human-annotated instruc-
tions and action sequences are ultimately limited
by the effectiveness of the humans themselves.
The promise of pragmatic modeling is that we can
use these same annotations to build a model with a
different (and perhaps even better) mechanism for
interpreting and generating instructions.

The primary contribution of this work is to
show how existing models of pragmatic reasoning
can be extended to support instruction following
and generation for challenging, multi-step, inter-
active tasks. Our experimental evaluation focuses
on four instruction-following domains which have
been studied using both semantic parsers and at-
tentional neural models. We investigate the in-
terrelated tasks of instruction following and in-
struction generation, and show that incorporat-
ing an explicit model of pragmatics helps in both
cases. Reasoning about the human listener allows
a speaker model to produce instructions that are
easier for humans to interpret correctly in all do-
mains (with absolute gains in accuracy ranging
from 12% to 46%). Similarly, reasoning about the
human speaker improves the accuracy of the lis-
tener models in interpreting instructions in most
domains (with gains in accuracy of up to 10%).
In all cases, the resulting systems are competitive
with, and in many cases exceed, results from past

state-of-the-art systems for these tasks.!

2 Problem Formulation

Consider the instruction following and instruc-
tion generation tasks shown in Figure 1, where an
agent must produce or interpret instructions about
a structured world context (e.g. walk along the
blue carpet and you pass two objects).

In the instruction following task, a listener
agent begins in a world state (in Figure 1 an ini-
tial map location and orientation). The agent is
then tasked with following a sequence of direction
sentences d . .. dg produced by humans. At each
time ¢ the agent receives a percept y;, which is a
feature-based representation of the current world
state, and chooses an action a; (e.g. move forward,
or turn). The agent succeeds if it is able to reach
the correct final state described by the directions.

In the instruction generation task, the agent
receives a sequence of actions ap,---ap along
with the world state ¥, - - - y7 at each action, and
must generate a sequence of direction sentences
di,...dx describing the actions. The agent suc-
ceeds if a human listener is able to correctly follow
those directions to the intended final state.

We evaluate models for both tasks in four do-
mains. The first domain is the SAIL corpus
of virtual environments and navigational direc-
tions (MacMahon et al., 2006; Chen and Mooney,
2011), where an agent navigates through a two-
dimensional grid of hallways with patterned walls
and floors and a discrete set of objects (Figure 1
shows a portion of one of these hallways).

In the three SCONE domains (Long et al.,
2016), the world contains a number of objects with
various properties, such as colored beakers which
an agent can combine, drain, and mix. Instructions
describe how these objects should be manipulated.
These domains were designed to elicit instructions
with a variety of context-dependent language phe-
nomena, including ellipsis and coreference (Long
et al., 2016) which we might expect a model of
pragmatics to help resolve (Potts, 2011).

3 Related Work

The approach in this paper builds upon long lines
of work in pragmatic modeling, instruction fol-
lowing, and instruction generation.

'Source code is available at http://github.com/
dpfried/pragmatic-instructions
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Pragmatics Our approach to pragmatics (Grice,
1975) belongs to a general category of rational
speech acts models (Frank and Goodman, 2012),
in which the interaction between speakers and
listeners is modeled as a probabilistic process
with Bayesian actors (Goodman and Stuhlmiiller,
2013). Alternative formulations (e.g. with best-
response rather than probabilistic dynamics) are
also possible (Golland et al., 2010). Inference in
these models is challenging even when the space
of listener actions is extremely simple (Smith
et al., 2013), and one of our goals in the present
work is to show how this inference problem can be
solved even in much richer action spaces than pre-
viously considered in computational pragmatics.
This family of pragmatic models captures a num-
ber of important linguistic phenomena, especially
those involving conversational implicature (Mon-
roe and Potts, 2015); we note that many other top-
ics studied under the broad heading of “pragmat-
ics,” including presupposition and indexicality, re-
quire different machinery.

Williams et al. (2015) use pragmatic reasoning
with weighted inference rules to resolve ambigu-
ity and generate clarification requests in a human-
robot dialog task. Other recent work on pragmatic
models focuses on the referring expression gener-
ation or “contrastive captioning” task introduced
by Kazemzadeh et al. (2014). In this family are
approaches that model the listener at training time
(Mao et al., 2016), at evaluation time (Andreas and
Klein, 2016; Monroe et al., 2017; Vedantam et al.,
2017; Su et al., 2017) or both (Yu et al., 2017b;
Luo and Shakhnarovich, 2017).

Other conditional sequence rescoring models
that are structurally similar but motivated by con-
cerns other than pragmatics include Li et al. (2016)
and Yu et al. (2017a). Lewis et al. (2017) perform
a similar inference procedure for a competitive ne-
gotiation task. The language learning model of
Wang et al. (2016) also features a structured out-
put space and uses pragmatics to improve online
predictions for a semantic parsing model. Our ap-
proach in this paper performs both generation and
interpretation, and investigates both structured and
unstructured output representations.

Instruction following Work on instruction fol-
lowing tasks includes models that parse com-
mands into structured representations processed
by a rich execution model (Tellex et al., 2011;
Chen, 2012; Artzi and Zettlemoyer, 2013; Guu

et al., 2017), and models that map directly from
instructions to a policy over primitive actions
(Branavan et al., 2009), possibly mediated by an
intermediate alignment or attention variable (An-
dreas and Klein, 2015; Mei et al., 2016). We use
a model similar to Mei et al. (2016) as our base
listener in this paper, evaluating on the SAIL nav-
igation task (MacMahon et al., 2006) as they did,
as well as the SCONE context-dependent execu-
tion domains (Long et al., 2016).

Instruction generation Previous work has also
investigated the instruction generation task, in par-
ticular for navigational directions. The GIVE
shared tasks (Byron et al., 2009; Koller et al.,
2010; Striegnitz et al., 2011) have produced a
large number of interactive direction-giving sys-
tems, both rule-based and learned. The work most
immediately related to the generation task in this
paper is that of Daniele et al. (2017), which also
focuses on the SAIL dataset but requires substan-
tial additional structured annotation for training,
while both our base and pragmatic speaker models
learn directly from strings and action sequences.

Older work has studied the properties of effec-
tive human strategies for generating navigational
directions (Anderson et al., 1991). Instructions
of this kind can be used to extract templates for
generation (Look, 2008; Dale et al., 2005), while
here we focus on the more challenging problem of
learning to generate new instructions from scratch.
Like our pragmatic speaker model, Goeddel and
Olson (2012) also reason about listener behavior
when generating navigational instructions, but rely
on rule-based models for interpretation.

4 Pragmatic inference procedure

As a foundation for pragmatic inference, we as-
sume that we have base listener and speaker mod-
els to map directions to actions and vice-versa.
(Our notation for referring to models is adapted
from Bergen et al. (2016).) The base listener, Lg,
produces a probability distribution over sequences
of actions, conditioned on a representation of the
directions and environment as seen before each
action: Pr,(a1.7|d1.k,y1.7). Similarly, the base
speaker, Sy, defines a distribution over possible
descriptions conditioned on a representation of the
actions and environment: Ps,(dy.x|a1.7, y1.7).
Our pragmatic inference procedure requires
these base models to produce candidate outputs
from a given input (actions from descriptions, for
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Figure 2: (a) Rational pragmatic models embed base listeners and speakers. Potential candidate sequences are
drawn from one base model, and then the other scores each candidate to simulate whether it produces the desired
pragmatic behavior. (b) The base listener and speaker are neural sequence-to-sequence models which are largely
symmetric to each other. Each produces a representation of its input sequence (a description, for the listener;
actions with associated environmental percepts, for the listener) using an LSTM encoder. The output sequence is

generated by an LSTM decoder attending to the input.

the listener; descriptions from actions, for the
speaker), and calculate the probability of a fixed
output given an input, but is otherwise agnostic to
the form of the models.

We use standard sequence-to-sequence mod-
els with attention for both the base listener and
speaker (described in Section 5). Our models use
segmented action sequences, with one segment
(sub-sequence of actions) aligned with each de-
scription sentence d;, for all j € {1...K}. This
segmentation is either given as part of the train-
ing and testing data (in the instruction following
task for the SAIL domain, and in both tasks for
the SCONE domain, where each sentence corre-
sponds to a single action), or is predicted by a sep-
arate segmentation model (in the generation task
for the SAIL domain), see Section 5.

4.1 Models

Using these base models as self-contained mod-
ules, we derive a rational speaker and rational lis-
tener that perform inference using embedded in-
stances of these base models (Figure 2a). When
describing an action sequence, a rational speaker
S1 chooses a description that has a high chance of
causing the listener modeled by Lg to follow the
given actions:

Si(ar.r) = argmax Pr,(ar.r|dik,yir) (1)
1:K

(noting that, in all settings we explore here, the
percepts y.7 are completely determined by the ac-
tions a1.7). Conversely, a rational listener L fol-
lows a description by choosing an action sequence
which has high probability of having caused the

speaker, modeled by Sy, to produce the descrip-
tion:

Li(di:k) = argmax Ps,(di:klar.r,yir)  (2)
1.T

These optimization problems are intractable to
solve for general base listener and speaker agents,
including the sequence-to-sequence models we
use, as they involve choosing an input (from a
combinatorially large space of possible sequences)
to maximize the probability of a fixed output se-
quence. We instead follow a simple approximate
inference procedure, detailed in Section 4.2.

We consider also incorporating the scores of the
base model used to produce the candidates. For
the case of the speaker, we define a combined ra-
tional speaker, denoted Sy - 51, that selects the
candidate that maximizes a weighted product of
probabilities under both the base listener and the
base speaker:

argmaXPLo (a1:T|d1:K7 yl:T)A
dl:K

X Psy(di.rc|larr,yir)™  (3)

for a fixed interpolation hyperparameter \ € [0, 1].
There are several motivations for this combination
with the base speaker score. First, as argued by
Monroe et al. (2017), we would expect varying de-
grees of base and reasoned interpretation in human
speech acts. Second, we want the descriptions pro-
duced by the model to be fluent descriptions of the
actions. Since the base models are trained discrim-
inatively, maximizing the probability of an output
sequence for a fixed input sequence, their scoring
behaviors for fixed outputs paired with inputs dis-
similar to those seen in the training set may be
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poorly calibrated (for example when conditioning
on ungrammatical descriptions). Incorporating the
scores of the base model used to produce the can-
didates aims to prevent this behavior.

To define rational listeners, we use the symmet-
ric formulation: first, draw candidate action se-
quences from Lg. For Ly, choose the actions that
achieve the highest probability under Sy; and for
the combination model L - L1 choose the actions
with the highest weighted combination of Sy and
L (paralleling equation 3).

4.2 Inference

As in past work (Smith et al., 2013; Andreas and
Klein, 2016; Monroe et al., 2017), we approximate
the optimization problems in equations 1, 2, and
3: use the base models to generate candidates, and
rescore them to find ones that are likely to produce
the desired behavior.

In the case of the rational speaker S, we use
the base speaker Sy to produce a set of n can-
didate descriptions wgzll)(l e wﬁb) . for the se-
quences ai.7,y1.7, using beam search. We then
find the score of each description under Py, (us-
ing it as the input sequence for the observed output
actions we want the rational speaker to describe),
or a weighted combination of Pr,, and the origi-
nal candidate score Pg,, and choose the descrip-
tion wy;g with the largest score, approximately
solving the maximizations in equations 1 or 3, re-
spectively. We perform a symmetric procedure for
the rational listener: produce action sequence can-
didates from the base listener, and rescore them

using the base speaker.”

As the rational speaker must produce long out-
put sequences (with multiple sentences), we inter-
leave the speaker and listener in inference, deter-
mining each output sentence sequentially. From a
list of candidate direction sentences from the base
speaker for the current subsequence of actions, we
choose the top-scoring direction under the listener
model (which may also condition on the direc-
tions which have been output previously), and then

*We use ensembles of models for the base listener and
speaker (subsection 5.3), and to obtain candidates that are
high-scoring under the combination of models in the ensem-
ble, we perform standard beam search using all models in
lock-step. At every timestep of the beam search, each pos-
sible extension of an output sequence is scored using the
product of the extension’s conditional probabilities across all
models in the ensemble.

move on to the next subsequence of actions.

5 Base model details

Given this framework, all that remains is to de-
scribe the base models Ly and Sp. We imple-
ment these as sequence-to-sequence models that
map directions to actions (for the listener) or ac-
tions to directions (for the speaker), additionally
conditioning on the world state at each timestep.

5.1 Base listener

Our base listener model, Ly, predicts action se-
quences conditioned on an encoded representation
of the directions and the current world state. In
the SAIL domain, this is the model of Mei et al.
(2016) (illustrated in green in Figure 2b for a sin-
gle sentence and its associated actions), see “do-
main specifics” below.

Encoder Each direction sentence is encoded
separately with a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997); the LSTM’s hidden
states are reset for each sentence. We obtain a rep-
resentation hj, for the kth word in the current sen-
tence by concatenating an embedding for the word
with its forward and backward LSTM outputs.

Decoder We generate actions incrementally us-
ing an LSTM decoder with monotonic alignment
between the direction sentences and subsequences
of actions; at each timestep the decoder predicts
the next action for the current sentence wi.ps (in-
cluding choosing to shift to the next sentence).
The decoder takes as input at timestep ¢ the cur-
rent world state, y; and a representation z; of the
current sentence, updates the decoder state 2%, and
outputs a distribution over possible actions:

h{ = LSTMqy(h{" |, [Wyys, z4])
G = Wo(Wyys + Wih$ + W, 2)

plat | ar:e—1,Y1:, wi:ar) < exp(qy)

where all weight matrices W are learned param-
eters. The sentence representation z; is produced
using an attention mechanism (Bahdanau et al.,
2015) over the representation vectors hf...hS,

3We also experimented with sampling from the base mod-
els to produce these candidate lists, as was done in previ-
ous work (Andreas and Klein, 2016; Monroe et al., 2017).
In early experiments, however, we found better performance
with beam search in the rational models for all tasks.
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for words in the current sentence:

g, o< exp(v - tanh(Waht_ + W,hg))
M
zt = Z ay khy,
k=1

where the attention weights o ;, are normalized
to sum to one across positions k in the input, and
weight matrices W and vector v are learned.

Domain specifics For SAIL, we use the align-
ments between sentences and route segments an-
notated by Chen and Mooney (2011), which were
also used in previous work (Artzi and Zettlemoyer,
2013; Artzi et al., 2014; Mei et al., 2016). Fol-
lowing Mei et al. (2016), we reset the decoder’s
hidden state for each sentence.

In the SCONE domains, which have a larger
space of possible outputs than SAIL, we extend
the decoder by: (i) decomposing each action into
an action type and arguments for it, (ii) using sepa-
rate attention mechanisms for types and arguments
and (iii) using state-dependent action embeddings.
See Appendix A in the supplemental material for
details. The SCONE domains are constructed so
that each sentence corresponds to a single (non-
decomposed) action; this provides our segmenta-
tion of the action sequence.

5.2 Base speaker

While previous work (Daniele et al., 2017) has re-
lied on more structured approaches, we construct
our base speaker model S using largely the same
sequence-to-sequence machinery as above. Sy (il-
lustrated in orange in Figure 2b) encodes a se-
quence of actions and world states, and then uses
a decoder to output a description.

Encoder We encode the sequence of vector em-
beddings for the actions a; and world states y; us-
ing a bidirectional LSTM. Similar to the base lis-
tener’s encoder, we then obtain a representation hf
for timestep ¢ by concatenating a; and y; with the
LSTM outputs at that position.

Decoder As in the listener, we use an LSTM de-
coder with monotonic alignment between direc-
tion sentences and subsequences of actions, and
attention over the subsequences of actions. The
decoder takes as input at position £ an embed-
ding for the previously generated word wy_; and
a representation z; of the current subsequence of

actions and world states, and produces a distribu-
tion over words (including ending the description
for the current subsequence and advancing to the
next). The decoder’s output distribution is pro-
duced by:

hd = LSTMd(hi_p [wr—1, 2])
Qk = Whhz + szk

p(wg | wik—1, @1:7, Y1.1) X exp(qk)

where all weight matrices W are learned parame-
ters.* As in the base listener, the input represen-
tation zj, is produced by attending to the vectors
hi...h% encoding the input sequence (here, en-
coding the subsequence of actions and world states
to be described):

gt o exp(v - tanh(Wahi_; + W,h))
T
Zk = Z Oékﬂg h?
t=1

The decoder’s LSTM state is reset at the beginning
of each sentence.

Domain specifics In SAIL, for comparison to
the generation system of Daniele et al. (2017)
which did not use segmented routes, we train a
route segmenter for use at test time. We also rep-
resent routes using a collapsed representation of
action sequences. In the SCONE domains, we
(i) use the same context-dependent action embed-
dings used in the listener, and (ii) don’t require an
attention mechanism, since only a single action is
used to produce a given sentence within the se-
quence of direction sentences. See Appendix A
for more details.

5.3 Training

The base listener and speaker models are trained
independently to maximize the conditional likeli-
hoods of the actions—directions pairs in the train-
ing sets. See Appendix A for details on the opti-
mization, LSTM variant, and hyperparameters.

We use ensembles for the base listener Ly and
base speaker .Sy, where each ensemble consists of
10 models trained from separate random parame-
ter initializations. This follows the experimental
setup of Mei et al. (2016) for the SAIL base lis-
tener.

*All parameters are distinct from those used in the base
listener; the listener and speaker are trained separately.
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Single-sentence Multi-sentence

listener Rel Abs Rel Abs
ast work 69.98 65.28 26.07 35.44
o e (MBW) _ (AZ) _(MBW) _ _(ADP)
Lo 68.40 59.62 24.79 13.53
Lo- L1 71.64 64.38 34.05 24.50
accuracy gain +3.24 +4.76 +9.26 +10.97

Table 1: Instruction-following results on the SAIL
dataset. The table shows cross-validation test accu-
racy for the base listener (L) and pragmatic listen-
ers (Lo - Ly), along with the gain given by prag-
matics. We report results for the single- and multi-
sentence conditions, under the relative and absolute
starting conditions®, comparing to the best-performing
prior work by Artzi and Zettlemoyer (2013) (AZ), Artzi
et al. (2014) (ADP), and Mei et al. (2016) (MBW).
Bold numbers show new state-of-the-art results.

6 Experiments

We evaluate speaker and listener agents on both
the instruction following and instruction genera-
tion tasks in the SAIL domain and three SCONE
domains (Section 2). For all domains, we com-
pare the rational listener and speaker against the
base listener and speaker, as well as against past
state-of-the-art results for each task and domain.
Finally, we examine pragmatic inference from
a model combination perspective, comparing the
pragmatic reranking procedure to ensembles of a
larger number of base speakers or listeners.

For all experiments, we use beam search both
to generate candidate lists for the rational systems
(section 4.2) and to generate the base model’s out-
put. We fix the beam size n to be the same in both
the base and rational systems, using n = 20 for
the speakers and n = 40 for the listeners. We
tune the weight A in the combined rational agents
(Lo - Ly or Sy - S7) to maximize accuracy (for lis-
tener models) or BLEU (for speaker models) on
each domain’s development data.

6.1 Instruction following

We evaluate our listener models by their accuracy
in carrying out human instructions: whether the
systems were able to reach the final world state
which the human was tasked with guiding them
to.

SAIL We follow standard cross-validation eval-
uation for the instruction following task on the
SAIL dataset (Artzi and Zettlemoyer, 2013; Artzi

listener Alchemy Scene Tangrams
IR GPLL _ 529 _ 462 _ 373
Lo 69.7 70.9 69.6
Lo- L1 72.0 72.7 69.6
accuracy gain +2.3 +1.8 +0.0

Table 2: Instruction-following results in the SCONE
domains. The table shows accuracy on the test set. For
reference, we also show prior results from Guu et al.
(2017) (GPLL), although our models use more super-
vision at training time.

a red guy appears on the far left
then to orange’s other side

base listener, Lo rational listener, Lo - L1

) ) ) )
A A A A
olw ) oD 2
a0 A a0 A
) Olw, 8o )
C— 1 CF —

Figure 3: Action traces produced for a partial instruc-
tion sequence (two instructions out of five) in the Scene
domain. The base listener moves the red figure to a
position that is a marginal, but valid, interpretation of
the directions. The rational listener correctly produces
the action sequence the directions were intended to de-
scribe.

et al., 2014; Mei et al., 2016).> Table 1 shows
improvements over the base listener Ly when us-
ing the rational listener Lo - L in the single- and
multi-sentence settings. We also report the best
accuracies from past work. We see that the largest
relative gains come in the multi-sentence setting,
where handling ambiguity is potentially more im-
portant to avoid compounding errors. The rational
model improves on the published results of Mei
et al. (2016), and while it is still below the sys-
tems of Artzi and Zettlemoyer (2013) and Artzi
et al. (2014), which use additional supervision in
the form of hand-annotated seed lexicons and log-
ical domain representations, it approaches their re-
sults in the single-sentence setting.

SCONE In the SCONE domains, past work
has trained listener models with weak supervision

SPast work has differed in the handling of undetermined
orientations in the routes, which occur in the first state for
multi-sentence routes and the first segment of their corre-
sponding single-sentence routes. For comparison to both
types of past work, we train and evaluate listeners in two
settings: Abs, which sets these undetermined starting orien-
tations to be a fixed absolute orientation, and Rel, where an
undetermined starting orientation is set to be a 90 degree ro-
tation from the next state in the true route.
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speaker SAIL  Alchemy Scene Tangrams
_____DBW_ 705 = —  __— ___—_.
So 62.8 29.3 31.3 60.0
So - 51 75.2 75.3 69.3 88.0
__ Gccuracygain  +124 _ +460 _ +380 = +280
human-generated 73.2 83.3 78.0 66.0

Table 3: Instruction generation results. We report the
accuracies of human evaluators at following the outputs
of the speaker systems (as well as other humans) on 50-
instance samples from the SAIL dataset and SCONE
domains. DBW is the system of Daniele et al. (2017).
Bold numbers are new state-of-the-art results.

(with no intermediate actions between start and
end world states) on a subset of the full SCONE
training data. We use the full training set, and to
use a model and training procedure consistent with
the SAIL setting, train listener and speaker mod-
els using the intermediate actions as supervision
as well. The evaluation method and test data are
the same as in past work on SCONE: models are
provided with an initial world state and a sequence
of 5 instructions to carry out, and are evaluated on
their accuracy in reaching the intended final world
state.

Results are reported in Table 2. We see gains
from the rational system Lg - L; in both the
Alchemy and Scene domains. The pragmatic
inference procedure allows correcting errors or
overly-literal interpretations from the base listener.
An example is shown in Figure 3. The base lis-
tener (left) interprets then to orange’s other side
incorrectly, while the rational listener discounts
this interpretation (it could, for example, be bet-
ter described by fo the left of blue) and produces
the action the descriptions were meant to describe
(right). To the extent that human annotators al-
ready account for pragmatic effects when generat-
ing instructions, examples like these suggest that
our model’s explicit reasoning is able to capture
interpretation behavior that the base sequence-to-
sequence listener model is unable to model.

6.2 Instruction generation

As our primary evaluation for the instruction gen-
eration task, we had Mechanical Turk workers
carry out directions produced by the speaker mod-

SSince the pragmatic inference procedure we use is ag-
nostic to the models’ training method, it could also be ap-
plied to the models of Guu et al. (2017); however we find that
pragmatic inference can improve even upon our stronger base
listener models.

speaker SAIL  Alchemy Scene Tangrams
I DBW 1100 = — = — =
So  12.04 19.34 18.09 21.75
So-S1 10.78 18.70 27.15 23.03
| BLEUgain _-126 _ -064_ _ +9.06 _ +1.28
accuracy gain
(from Table 3) +12.4 +46.0 +38.0 +28.0

Table 4: Gains in how easy the directions are to fol-
low are not always associated with a gain in BLEU.
This table shows corpus-level 4-gram BLEU compar-
ing outputs of the speaker systems to human-produced
directions on the SAIL dataset and SCONE domains,
compared to gains in accuracy when asking humans to
carry out a sample of the systems’ directions (see Ta-
ble 3).

els (and by other humans) in a simulated version of
each domain. For SAIL, we use the simulator re-
leased by Daniele et al. (2017) which was used in
their human evaluation results, and we construct
simulators for the three SCONE domains. In all
settings, we take a sample of 50 action sequences
from the domain’s test set (using the same sam-
ple as Daniele et al. (2017) for SAIL), and have
three separate Turk workers attempt to follow the
systems’ directions for the action sequence.

Table 3 gives the average accuracy of subjects
in reaching the intended final world state across
all sampled test instances, for each domain. The
“human-generated” row reports subjects’ accu-
racy at following the datasets’ reference direc-
tions. The directions produced by the base speaker
Sp are often much harder to follow than those pro-
duced by humans (e.g. 29.3% of Sy’s directions
are correctly interpretable for Alchemy, vs. 83.3%
of human directions). However, we see substan-
tial gains from the rational speaker Sy - S over Sy
in all cases (with absolute gains in accuracy rang-
ing from 12.4% to 46.0%), and the average accu-
racy of humans at following the rational speaker’s
directions is substantially higher than for human-
produced directions in the Tangrams domain. In
the SAIL evaluation, we also include the direc-
tions produced by the system of Daniele et al.
(2017) (DBW), and find that the rational speaker’s
directions are followable to comparable accuracy.

We also compare the directions produced by the
systems to the reference instructions given by hu-
mans in the dataset, using 4-gram BLEU’ (Pap-

"See Appendix A for details on evaluating BLEU in the
SAIL setting, where there may be a different number of ref-
erence and predicted sentences for a given example.
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take away the last item

h

uman undo the last step

S remove the last figure
0 add it back

So - S remove the last figure

add it back in the 3rd position

Figure 4: Descriptions produced for a partial action se-
quence in the Tangrams domain. Neither the human
nor base speaker Sy correctly specifies where to add
the shape in the second step, while the rational speaker
So - S1 does.

ineni et al., 2002) in Table 4. Consistent with past
work (Krahmer and Theune, 2010), we find that
BLEU score is a poor indicator of whether the di-
rections can be correctly followed.

Qualitatively, the rational inference procedure is
most successful in fixing ambiguities in the base
speaker model’s descriptions. Figure 4 gives a
typical example of this for the last few timesteps
from a Tangrams instance. The base speaker cor-
rectly describes that the shape should be added
back, but does not specify where to add it, which
could lead a listener to add it in the same position
it was deleted. The human speaker also makes this
mistake in their description. This speaks to the
difficulty of describing complex actions pragmat-
ically even for humans in the Tangrams domain.
The ability of the pragmatic speaker to produce
directions that are easier to follow than humans’
in this domain (Table 3) shows that the pragmatic
model can generate something different (and in
some cases better) than the training data.

6.3 Pragmatics as model combination

Finally, our rational models can be viewed
as pragmatically-motivated model combinations,
producing candidates using base listener or
speaker models and reranking using a combina-
tion of scores from both. We want to verify that
a rational listener using n ensembled base listen-
ers and n base speakers outperforms a simple en-
semble of 2n base listeners (and similarly for the
rational speaker).

Fixing the total number of models to 20 in each

listener experiment, we find that the rational lis-
tener (using an ensemble of 10 base listener mod-
els and 10 base speaker models) still substantially
outperforms the ensembled base listener (using 20
base listener models): accuracy gains are 68.5 —
71.6%, 70.1 — 72.0%, 71.9 — 72.7%, and 69.1
— 69.6% for SAIL single-sentence Rel, Alchemy,
Scene, and Tangrams, respectively.

For the speaker experiments, fixing the total
number of models to 10 (since inference in the
speaker models is more expensive than in the fol-
lower models), we find similar gains as well: the
rational speaker improves human accuracy at fol-
lowing the generated instructions from 61.9 —
73.4%, 30.7 — 74.7%, 32.0 — 66.0%, 58.7 —
92.7%, for SAIL, Alchemy, Scene, and Tangrams,
respectively.®

7 Conclusion

We have demonstrated that a simple procedure for
pragmatic inference, with a unified treatment for
speakers and listeners, obtains improvements for
instruction following as well as instruction gen-
eration in multiple settings. The inference proce-
dure is capable of reasoning about sequential, in-
terdependent actions in non-trivial world contexts.
We find that pragmatics improves upon the perfor-
mance of the base models for both tasks, in most
cases substantially. While this is perhaps unsur-
prising for the generation task, which has been dis-
cussed from a pragmatic perspective in a variety
of recent work in NLP, it is encouraging that prag-
matic reasoning can also improve performance for
a grounded listening task with sequential, struc-
tured output spaces.
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type arguments contextual embedding
Alchemy

Mix source % contents of ¢

POUR source %, target j contents of ¢ and j

DRAIN amount a, source ¢  a, contents of ¢

Scene

ENTER color ¢, source ¢ peopleat: — land i+ 1
EXIT source % people até, ¢ — 1,041
MoVE source ¢, target j peopleate,j — 1,5+ 1
SWITCH  source ¢, target j people at ¢ and j

TAKEHAT source ¢, target j people at ¢ and j

Tangrams
REMOVE
SWAP

position ¢ —
positions % and j —
index of step when s

INSERT
was removed

position ¢, shape s

Table 5: Action types, arguments, and elements of the
world state or action history that are extracted to pro-
duce contextual action embeddings.

A Supplemental Material
A.1 SCONE listener details

We factor action production in each of the three
SCONE domains, separately predicting the action
type and the arguments specific to that action type.
Action types and arguments are listed in the first
two columns of Table 5. For example, Alchemy’s
actions involve predicting the action type, a po-
tential source beaker index ¢ and target beaker in-
dex j, and potential amount to drain a. All fac-
tors of the action (the type and options for each
argument) are predicted using separate attention
mechanisms, which produce a vector g giving un-
normalized scores for factor f (e.g. scoring each
possible type, or each possible choice for the argu-
ment).

We also obtain state-specific embeddings of ac-
tions, to make it easier for the model to learn
relevant features from the state embeddings (e.g.
rather than needing to learn to select the region
of the state vector corresponding to the 5th beaker
in the action MIX(5) in Alchemy, this action’s
contextual embedding encodes the current content
of the 5th beaker). We incorporate these state-
specific embeddings into computation of the ac-
tion probabilities using a bilinear bonus score:

b(a) =q' Wyea +w, a

where ¢ is the concatenation of all gy factor scor-
ing vectors, and Wy, and w, are a learned param-
eter matrix and vector, respectively. This bonus
score b(a) for each action is added to the un-

normalized score for the corresponding action a
(computed by summing the entries of the q; vec-
tors which correspond to the factored action com-
ponents), and the normalized output distribution is
then produced using a softmax over all valid ac-
tions.

A.2 SAIL speaker details

Since our speaker model operates on segmented
action sequences, we train a route segmenter on
the training data and then predict segmentations
for the test data. This provides a closer compar-
ison to the generation system of Daniele et al.
(2017) which did not use segmented routes. The
route segmenter runs a bidirectional LSTM over
the concatenated state and action embeddings (as
in the speaker encoder), then uses a logistic output
layer to classify whether the route should be split
at each possible timestep. We also collapse con-
secutive sequences of forward movement actions
into single actions (e.g. MOVE4 representing four
consecutive forward movements), which we found
helped prevent counting errors (such as outputting
move forward three when the correct route moved
forward four steps).

A.3 SCONE speaker details

We use a one-hot representation of the arguments
(see Table 5) and contextual embedding (as de-
scribed in A.1) for each action a; as input to the
SCONE speaker encoder at time ¢ (along with
the representation e; of the world state, as in
SAIL). Since SCONE uses a monotonic, one-to-
one alignment between actions and direction sen-
tences, the decoder does not use a learned atten-
tion mechanism but fixes the contextual represen-
tation z; to be the encoded vector at the action cor-
responding to the sentence currently being gener-
ated.

A.4 Training details

We optimize model parameters using ADAM
(Kingma and Ba, 2015) with default hyperparam-
eters and the initialization scheme of Glorot and
Bengio (2010). All LSTMs have one layer. The
LSTM cell in both the listener and the follower use
coupled input and forget gates, and peephole con-
nections to the cell state (Greff et al., 2016). We
also apply the LSTM variational dropout scheme
of Gal and Ghahramani (2016), using the same
dropout rate for inputs, outputs, and recurrent con-
nections. See Table 6 for hyperparameters. We
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dropout hidden attention

model domain rate dim dim
Lo SAIL 0.25 100 100
Lo Alchemy 0.1 50 50
Lo Scene 0.1 100 100
Lo Tangrams 0.3 50 100
So SAIL 0.25 100 100
So Alchemy 0.3 100 -
So Scene 0.3 100 -
So Tangrams 0.3 50 -

Table 6: Hyperparameters for the base listener (L) and
speaker (Sp) models. The SCONE speakers do not use
an attention mechanism.

perform early stopping using the evaluation met-
ric (accuracy for the listener and BLEU score for
the speaker) on the development set.

A.5 Computing BLEU for SAIL

To compute BLEU in the SAIL experiments, as
the speaker models may choose produce a differ-
ent number of sentences for each route than in
the true description, we obtain a single sequence
of words from a multi-sentence description pro-
duced for a route by concatenating the sentences,
separated by end-of-sentence tokens. We then
calculate corpus-level 4-gram BLEU between all
these sequences in the test set and the true multi-
sentence descriptions (concatenated in the same

way).
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