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Abstract

We combine multi-task learning and semi-
supervised learning by inducing a joint embed-
ding space between disparate label spaces and
learning transfer functions between label em-
beddings, enabling us to jointly leverage un-
labelled data and auxiliary, annotated datasets.
We evaluate our approach on a variety of se-
quence classification tasks with disparate la-
bel spaces. We outperform strong single and
multi-task baselines and achieve a new state-
of-the-art for topic-based sentiment analysis.

1 Introduction

Multi-task learning (MTL) and semi-supervised
learning are both successful paradigms for learn-
ing in scenarios with limited labelled data and
have in recent years been applied to almost all ar-
eas of NLP. Applications of MTL in NLP, for ex-
ample, include partial parsing (Sggaard and Gold-
berg, 2016), text normalisation (Bollman et al.,
2017), neural machine translation (Luong et al.,
2016), and keyphrase boundary classification (Au-
genstein and Sggaard, 2017).

Contemporary work in MTL for NLP typically
focuses on learning representations that are useful
across tasks, often through hard parameter shar-
ing of hidden layers of neural networks (Collobert
et al., 2011; Sg¢gaard and Goldberg, 2016). If
tasks share optimal hypothesis classes at the level
of these representations, MTL leads to improve-
ments (Baxter, 2000). However, while sharing
hidden layers of neural networks is an effective
regulariser (Sggaard and Goldberg, 2016), we po-
tentially loose synergies between the classification
functions trained to associate these representations
with class labels. This paper sets out to build an ar-
chitecture in which such synergies are exploited,

*The first two authors contributed equally.

with an application to pairwise sequence classifi-
cation tasks. Doing so, we achieve a new state of
the art on topic-based sentiment analysis.

For many NLP tasks, disparate label sets are
weakly correlated, e.g. part-of-speech tags corre-
late with dependencies (Hashimoto et al., 2017),
sentiment correlates with emotion (Felbo et al.,
2017; Eisner et al., 2016), etc. We thus propose to
induce a joint label embedding space (visualised
in Figure 2) using a Label Embedding Layer that
allows us to model these relationships, which we
show helps with learning.

In addition, for tasks where labels are closely
related, we should be able to not only model their
relationship, but also to directly estimate the cor-
responding label of the target task based on auxil-
iary predictions. To this end, we propose to train
a Label Transfer Network (LTN) jointly with the
model to produce pseudo-labels across tasks.

The LTN can be used to label unlabelled and
auxiliary task data by utilising the ‘dark knowl-
edge’ (Hinton et al., 2015) contained in auxil-
iary model predictions. This pseudo-labelled data
is then incorporated into the model via semi-
supervised learning, leading to a natural combi-
nation of multi-task learning and semi-supervised
learning. We additionally augment the LTN with
data-specific diversity features (Ruder and Plank,
2017) that aid in learning.

Contributions Our contributions are: a) We
model the relationships between labels by induc-
ing a joint label space for multi-task learning. b)
We propose a Label Transfer Network that learns
to transfer labels between tasks and propose to
use semi-supervised learning to leverage them for
training. ¢) We evaluate MTL approaches on a va-
riety of classification tasks and shed new light on
settings where multi-task learning works. d) We
perform an extensive ablation study of our model.
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e) We report state-of-the-art performance on topic-
based sentiment analysis.

2 Related work

Learning task similarities Existing approaches
for learning similarities between tasks enforce a
clustering of tasks (Evgeniou et al., 2005; Jacob
etal., 2009), induce a shared prior (Yu et al., 2005;
Xue et al., 2007; Daumé III, 2009), or learn a
grouping (Kang et al., 2011; Kumar and Daumé
III, 2012). These approaches focus on homoge-
neous tasks and employ linear or Bayesian mod-
els. They can thus not be directly applied to our
setting with tasks using disparate label sets.

Multi-task learning with neural networks Re-
cent work in multi-task learning goes beyond hard
parameter sharing (Caruana, 1993) and considers
different sharing structures, e.g. only sharing at
lower layers (Sggaard and Goldberg, 2016) and
induces private and shared subspaces (Liu et al.,
2017; Ruder et al., 2017). These approaches, how-
ever, are not able to take into account relationships
between labels that may aid in learning. Another
related direction is to train on disparate annota-
tions of the same task (Chen et al., 2016; Peng
etal., 2017). In contrast, the different nature of our
tasks requires a modelling of their label spaces.

Semi-supervised learning There exists a wide
range of semi-supervised learning algorithms,
e.g., self-training, co-training, tri-training, EM,
and combinations thereof, several of which have
also been used in NLP. Our approach is proba-
bly most closely related to an algorithm called co-
forest (Li and Zhou, 2007). In co-forest, like here,
each learner is improved with unlabeled instances
labeled by the ensemble consisting of all the other
learners. Note also that several researchers have
proposed using auxiliary tasks that are unsuper-
vised (Plank et al., 2016; Rei, 2017), which also
leads to a form of semi-supervised models.

Label transformations The idea of manually
mapping between label sets or learning such a
mapping to facilitate transfer is not new. Zhang
et al. (2012) use distributional information to map
from a language-specific tagset to a tagset used
for other languages, in order to facilitate cross-
lingual transfer. More related to this work, Kim
et al. (2015) use canonical correlation analysis to
transfer between tasks with disparate label spaces.
There has also been work on label transformations

in the context of multi-label classification prob-
lems (Yeh et al., 2017).

3 Multi-task learning with disparate
label spaces

3.1 Problem definition

In our multi-task learning scenario, we have access
to labelled datasets for 71" tasks 71, . . ., 77 at train-
ing time with a target task 77 that we particularly
care about. The training dataset for task 7; consists
of N examples X7, = {x?, e xﬁk} and their
labels Y7 = {y ", ... ,yﬁk}. Our base model is
a deep neural network that performs classic hard
parameter sharing (Caruana, 1993): It shares its
parameters across tasks and has task-specific soft-
max output layers, which output a probability dis-
tribution p”’ for task 7; according to the following
equation:

p’i = softmax(W7ih + b’i) (1)

where softmax(x) = €*/ Zyﬂ eXi, Wi ¢
REixh pTi e REi is the weight matrix and bias
term of the output layer of task 7; respectively,
h € R” is the jointly learned hidden representa-
tion, L; is the number of labels for task 7;, and h
is the dimensionality of h.

The MTL model is then trained to minimise the
sum of the individual task losses:

L=ML1+...+ ALy )

where £; is the negative log-likelihood objec-
tive £; = H(p",y") = =% 3, 3 logpl'y ]
and )\; is a parameter that determines the weight
of task 7;. In practice, we apply the same weight
to all tasks. We show the full set-up in Figure 1a.

3.2 Label Embedding Layer

In order to learn the relationships between labels,
we propose a Label Embedding Layer (LEL) that
embeds the labels of all tasks in a joint space. In-
stead of training separate softmax output layers as
above, we introduce a label compatibility function
¢(-, -) that measures how similar a label with em-
bedding 1 is to the hidden representation h:

¢(Lh)=1-h 3)

where - is the dot product. This is similar to
the Universal Schema Latent Feature Model in-
troduced by Riedel et al. (2013). In contrast to
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(a) Multi-task learning

(b) MTL with LEL

(c) Semi-supervised MTL with LTN

Figure 1: a) Multi-task learning (MTL) with hard parameter sharing and 3 tasks 7; 3 and L;_3 labels per task. A
shared representation h is used as input to task-specific softmax layers, which optimise cross-entropy losses £1_3.
b) MTL with the Label Embedding Layer (LEL) embeds task labels 1?1 ‘L“" in a joint embedding space and uses

these for prediction with a label compatibility function. ¢) Semi-supervised MTL with the Label Transfer Network
(LTN) in addition optimises an unsupervised 10ss L,scyd0 OVer pseudo-labels z’T on auxiliary/unlabelled data.
The pseudo-labels z7 are produced by the LTN for the main task 77 using the concatenation of auxiliary task

label output embeddings [0;_1,0;, 0,+1] as input.

other models that use the dot product in the objec-
tive function, we do not have to rely on negative
sampling and a hinge loss (Collobert and Weston,
2008) as negative instances (labels) are known.
For efficiency purposes, we use matrix multipli-
cation instead of a single dot product and softmax
instead of sigmoid activations:

p = softmax(Lh) 4)

where L € R(=i L)%l js the label embedding
matrix for all tasks and [ is the dimensionality of
the label embeddings. In practice, we set [ to the
hidden dimensionality h. We use padding if [ <
h. We apply a task-specific mask to L in order to
obtain a task-specific probability distribution p7:.
The LEL is shared across all tasks, which allows
us to learn the relationships between the labels in
the joint embedding space. We show MTL with
the LEL in Figure 1b.

3.3 Label Transfer Network

The LEL allows us to learn the relationships be-
tween labels. In order to make use of these re-
lationships, we would like to leverage the predic-
tions of our auxiliary tasks to estimate a label for
the target task. To this end, we introduce the Label
Transfer Network (LTN). This network takes the
auxiliary task outputs as input. In particular, we
define the output label embedding o; of task 7; as

the sum of the task’s label embeddings 1; weighted
with their probability pz—i:

L;
0i=Y pll )
j=1

The label embeddings 1 encode general relation-
ship between labels, while the model’s probability
distribution p” over its predictions encodes fine-
grained information useful for learning (Hinton
et al., 2015). The LTN is trained on labelled tar-
get task data. For each example, the correspond-
ing label output embeddings of the auxiliary tasks
are fed into a multi-layer perceptron (MLP), which
is trained with a negative log-likelihood objective
LN to produce a pseudo-label z”7 for the target
task Tr:

LTNy = MLP([oy,...,071])  (6)

where [, | designates concatenation. The map-
ping of the tasks in the LTN yields another signal
that can be useful for optimisation and act as a reg-
ulariser. The LTN can also be seen as a mixture-
of-experts layer (Jacobs et al., 1991) where the
experts are the auxiliary task models. As the la-
bel embeddings are learned jointly with the main
model, the LTN is more sensitive to the rela-
tionships between labels than a separately learned
mixture-of-experts model that only relies on the
experts’ output distributions. As such, the LTN
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can be directly used to produce predictions on un-
seen data.

3.4 Semi-supervised MTL

The downside of the LTN is that it requires addi-
tional parameters and relies on the predictions of
the auxiliary models, which impacts the runtime
during testing. Instead, of using the LTN for pre-
diction directly, we can use it to provide pseudo-
labels for unlabelled or auxiliary task data by
utilising auxiliary predictions for semi-supervised
learning.

We train the target task model on the pseudo-
labelled data to minimise the squared error be-
tween the model predictions p’: and the pseudo
labels z”7¢ produced by the LTN:

Lypseudo = MSE(pTT7ZTT> = ||pTT - ZTTHQ
(7)
We add this loss term to the MTL loss in Equa-
tion 2. As the LTN is learned together with the
MTL model, pseudo-labels produced early during
training will likely not be helpful as they are based
on unreliable auxiliary predictions. For this rea-
son, we first train the base MTL model until con-
vergence and then augment it with the LTN. We
show the full semi-supervised learning procedure
in Figure lc.

3.5 Data-specific features

When there is a domain shift between the datasets
of different tasks as is common for instance when
learning NER models with different label sets, the
output label embeddings might not contain suffi-
cient information to bridge the domain gap.

To mitigate this discrepancy, we augment the
LTN’s input with features that have been found
useful for transfer learning (Ruder and Plank,
2017). In particular, we use the number of word
types, type-token ratio, entropy, Simpson’s index,
and Rényi entropy as diversity features. We calcu-
late each feature for each example.! The features
are then concatenated with the input of the LTN.

3.6 Other multi-task improvements

Hard parameter sharing can be overly restrictive
and provide a regularisation that is too heavy when
jointly learning many tasks. For this reason, we
propose several additional improvements that seek

"For more information regarding the feature calculation,
refer to Ruder and Plank (2017).

Task Domain N L Metric
Topic-2  Twitter 4346 2 PN
Topic—-5  Twitter 6,000 5 MAEM
Target Twitter 6,248 3 FIM
Stance Twitter 2914 3 Ff4
ABSA-L Reviews 2,909 3 Acc
ABSA-R Reviews 2,507 3 Acc
FNC-1 News 39,741 4 Acc
MultiNLI Diverse 392,702 3 Acc

Table 1: Training set statistics and evaluation metrics
of every task. N: # of examples. L: # of labels.

to alleviate this burden: We use skip-connections,
which have been shown to be useful for multi-
task learning in recent work (Ruder et al., 2017).
Furthermore, we add a task-specific layer before
the output layer, which is useful for learning task-
specific transformations of the shared representa-
tions (Sggaard and Goldberg, 2016; Ruder et al.,
2017).

4 [Experiments

For our experiments, we evaluate on a wide range
of text classification tasks. In particular, we
choose pairwise classification tasks—i.e. those
that condition the reading of one sequence on an-
other sequence—as we are interested in under-
standing if knowledge can be transferred even
for these more complex interactions. To the
best of our knowledge, this is the first work
on transfer learning between such pairwise se-
quence classification tasks. We implement all our
models in Tensorflow (Abadi et al., 2016) and
release the code at https://github.com/
coastalcph/mtl-disparate.

4.1 Tasks and datasets

We use the following tasks and datasets for our
experiments, show task statistics in Table 1, and
summarise examples in Table 2:

Topic-based sentiment analysis Topic-based
sentiment analysis aims to estimate the sentiment
of a tweet known to be about a given topic. We
use the data from SemEval-2016 Task 4 Subtask B
and C (Nakov et al., 2016) for predicting on a two-
point scale of positive and negative (Topic—2)
and five-point scale ranging from highly negative
to highly positive (Topic—5) respectively. An
example from this dataset would be to classify the
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Topic-based sentiment analysis:

Tweet: No power at home, sat in the dark listening
to AC/DC in the hope it’ll make the electricity come
back again
Topic: AC/DC
Label: positive

Target-dependent sentiment analysis:
Text: how do you like settlers of catan for the wii?
Target: wii
Label: neutral

Aspect-based sentiment analysis:
Text: For the price, you cannot eat this well in
Manhattan
Aspects: restaurant prices, food quality
Label: positive

Stance detection:
Tweet: Be prepared - if we continue the policies of
the liberal left, we will be #Greece
Target: Donald Trump
Label: favor

Fake news detection:

Document: Dino Ferrari hooked the whopper wels
catfish, (...), which could be the biggest in the world.
Headline: Fisherman lands 19 STONE catfish which

could be the biggest in the world to be hooked
Label: agree

Natural language inference:
Premise: Fun for only children
Hypothesis: Fun for adults and children
Label: contradiction

Table 2: Example instances from the datasets de-
scribed in Section 4.1.

tweet “No power at home, sat in the dark listen-
ing to AC/DC in the hope it’ll make the electric-
ity come back again” known to be about the topic
“AC/DC”, which is labelled as a positive senti-
ment. The evaluation metrics for Topic-2 and
Topic—5 are macro-averaged recall (p©'Y) and
macro-averaged mean absolute error (M AEM)
respectively, which are both averaged across top-
ics.

Target-dependent sentiment analysis Target-
dependent sentiment analysis (Target) seeks to
classify the sentiment of a text’s author towards
an entity that occurs in the text as positive, neg-
ative, or neutral. We use the data from Dong
et al. (2014). An example instance is the ex-
pression “how do you like settlers of catan for
the wii?” which is labelled as neutral towards
the target “wii’.” The evaluation metric is macro-
averaged F (FlM ).

Aspect-based sentiment analysis Aspect-based
sentiment analysis is the task of identifying

whether an aspect, i.e. a particular property of an
item is associated with a positive, negative, or neu-
tral sentiment (Ruder et al., 2016). We use the data
of SemEval-2016 Task 5 Subtask 1 Slot 3 (Pon-
tiki et al., 2016) for the laptops (ABSA-L) and
restaurants (ABSA—-R) domains. An example is the
sentence “For the price, you cannot eat this well
in Manhattan”, labelled as positive towards both
the aspects “restaurant prices” and “food quality”.
The evaluation metric for both domains is accu-
racy (Acc).

Stance detection Stance detection (Stance)
requires a model, given a text and a target en-
tity, which might not appear in the text, to pre-
dict whether the author of the text is in favour or
against the target or whether neither inference is
likely (Augenstein et al., 2016). We use the data
of SemEval-2016 Task 6 Subtask B (Mohammad
et al., 2016). An example from this dataset would
be to predict the stance of the tweet “Be prepared
- if we continue the policies of the liberal left,
we will be #Greece” towards the topic “Donald
Trump”, labelled as “favor”. The evaluation met-
ric is the macro-averaged F} score of the “favour”
and “against” classes (FlF 4y,

Fake news detection The goal of fake news de-
tection in the context of the Fake News Challenge?
is to estimate whether the body of a news arti-
cle agrees, disagrees, discusses, or is unrelated to-
wards a headline. We use the data from the first
stage of the Fake News Challenge (FNC-1). An
example for this dataset is the document “Dino
Ferrari hooked the whopper wels catfish, (...),
which could be the biggest in the world.” with
the headline “Fisherman lands 19 STONE catfish
which could be the biggest in the world to be
hooked” labelled as “agree”. The evaluation met-
ric is accuracy (Acc)’.

Natural language inference Natural language
inference is the task of predicting whether one sen-
tences entails, contradicts, or is neutral towards
another one. We use the Multi-Genre NLI cor-
pus (MultiNLT) from the RepEval 2017 shared
task (Nangia et al., 2017). An example for an in-
stance would be the sentence pair “Fun for only
children”, “Fun for adults and children”, which are
in a “contradiction” relationship. The evaluation
metric is accuracy (Acc).

http://www.fakenewschallenge.org/
3We use the same metric as Riedel et al. (2017).
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Stance FNC MultiNLI Topic-2 Topic-5* ABSA-IL ABSA-R Target

Augenstein et al. (2016) 49.01 - - - - - -
Riedel et al. (2017) - 88.46 - - - - -
Chen et al. (2017) - - 74.90 - - - - -
Palogiannidi et al. (2016) - - 79.90 - - - -
Balikas and Amini (2016) - - - 0.719 - - -
Brun et al. (2016) - - - - - 88.13 -
Kumar et al. (2016) - - - - 82.77 86.73 -
Vo and Zhang (2015) - - - - - - 69.90
STL 41.1 7272 49.25 63.92 0.919 76.74 67.47 64.01
MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LEL + LTN, main model 43,16 72.73 48.75 73.90 0.810 75.06 83.71 66.10
MTL + LEL + LTN + semi, main model 43.56 72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 3: Comparison of our best performing models on the test set against a single task baseline and the state of
the art, with task specific metrics. *: lower is better. Bold: best. Underlined: second-best.

4.2 Base model

Our base model is the Bidirectional Encoding
model (Augenstein et al., 2016), a state-of-the-
art model for stance detection that conditions a
bidirectional LSTM (BiLSTM) encoding of a text
on the BIiLSTM encoding of the target. Un-
like Augenstein et al. (2016), we do not pre-train
word embeddings on a larger set of unlabelled in-
domain text for each task as we are mainly inter-
ested in exploring the benefit of multi-task learn-
ing for generalisation.

4.3 Training settings

We use BiLSTMs with one hidden layer of 100
dimensions, 100-dimensional randomly initialised
word embeddings, a label embedding size of 100.
We train our models with RMSProp, a learning
rate of 0.001, a batch size of 128, and early stop-
ping on the validation set of the main task with a
patience of 3.

5 Results

Our main results are shown in Table 3, with a com-
parison against the state of the art. We present the
results of our multi-task learning network with la-
bel embeddings (MTL + LEL), multi-task learn-
ing with label transfer (MTL + LEL + LTN), and
the semi-supervised extension of this model. On
7/8 tasks, at least one of our architectures is better
than single-task learning; and in 4/8, all our archi-
tectures are much better than single-task learning.

The state-of-the-art systems we compare
against are often highly specialised, task-
dependent architectures. Our architectures, in
contrast, have not been optimised to compare

favourably against the state of the art, as our
main objective is to develop a novel approach to
multi-task learning leveraging synergies between
label sets and knowledge of marginal distributions
from unlabeled data. For example, we do not
use pre-trained word embeddings (Augenstein
et al., 2016; Palogiannidi et al., 2016; Vo and
Zhang, 2015), class weighting to deal with label
imbalance (Balikas and Amini, 2016), or domain-
specific sentiment lexicons (Brun et al., 2016;
Kumar et al., 2016). Nevertheless, our approach
outperforms the state-of-the-art on two-way
topic-based sentiment analysis (Topic—2).

The poor performance compared to the state-
of-the-art on FNC and MultiNLT is expected; as
we alternate among the tasks during training, our
model only sees a comparatively small number of
examples of both corpora, which are one and two
orders of magnitude larger than the other datasets.
For this reason, we do not achieve good perfor-
mance on these tasks as main tasks, but they are
still useful as auxiliary tasks as seen in Table 4.

6 Analysis

6.1 Label Embeddings

Our results above show that, indeed, modelling the
similarity between tasks using label embeddings
sometimes leads to much better performance. Fig-
ure 2 shows why. In Figure 2, we visualise the
label embeddings of an MTL+LEL model trained
on all tasks, using PCA. As we can see, simi-
lar labels are clustered together across tasks, e.g.
there are two positive clusters (middle-right and
top-right), two negative clusters (middle-left and
bottom-left), and two neutral clusters (middle-top

1901



1.0 sHeutral ABSA-L
* ABSA-R
¢ FNC-1
* MultiNLI

0.8

¢lisagree Topic-5
é'eutrpone

0.6

favor
gregpositive
Foregposit
0.4 yegative . N
egative ,emahﬁ'é‘r““cmd‘o”
xneg heutral ;.
Jositive  pogitive
0.2 speutral
egative
#e9 Lagainst
¢nrelated
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Label embeddings of all tasks. Positive, neg-
ative, and neutral labels are clustered together.

and middle-bottom).

Our visualisation also provides us with a pic-
ture of what auxilary tasks are beneficial, and to
what extent we can expect synergies from multi-
task learning. For instance, the notion of posi-
tive sentiment appears to be very similar across the
topic-based and aspect-based tasks, while the con-
ceptions of negative and neutral sentiment differ.
In addition, we can see that the model has failed
to learn a relationship between Mult iNLT labels
and those of other tasks, possibly accounting for
its poor performance on the inference task. We
did not evaluate the correlation between label em-
beddings and task performance, but Bjerva (2017)
recently suggested that mutual information of tar-
get and auxiliary task label sets is a good predictor
of gains from multi-task learning.

6.2 Auxilary Tasks

For each task, we show the auxiliary tasks that
achieved the best performance on the development
data in Table 4. In contrast to most existing work,
we did not restrict ourselves to performing multi-
task learning with only one auxiliary task (Sggaard
and Goldberg, 2016; Bingel and Sggaard, 2017).
Indeed we find that most often a combination of
auxiliary tasks achieves the best performance. In-
domain tasks are less used than we assumed; only
Target is consistently used by all Twitter main
tasks. In addition, tasks with a higher number of
labels, e.g. Topic—5 are used more often. Such
tasks provide a more fine-grained reward signal,
which may help in learning representations that
generalise better. Finally, tasks with large amounts

Main task  Auxiliary tasks

Topic—-2 FNC-1,MultiNLI, Target
, FNC-1,MultiNLI, ABSA-L,
Topic—-5
Target
Target FNC-1,MultiNLI, Topic-5
Stance FNC-1,MultiNLI, Target
ABSA-L Topic-5
ABSA-R Topic-5,ABSA-L, Target
Stance, MultiNLI, Topic-5,
FNC-1
ABSA-R, Target
MultiNLI Topic-5

Table 4: Best-performing auxiliary tasks for different
main tasks.

of training data such as FNC-1 and MultiNLI
are also used more often. Even if not directly re-
lated, the larger amount of training data that can be
indirectly leveraged via multi-task learning may
help the model focus on relevant parts of the rep-
resentation space (Caruana, 1993). These obser-
vations shed additional light on when multi-task
learning may be useful that go beyond existing
studies (Bingel and Sggaard, 2017).

6.3 Ablation analysis

We now perform a detailed ablation analysis of
our model, the results of which are shown in Ta-
ble 5. We ablate whether to use the LEL (+
LEL), whether to use the LTN (+ LTN), whether
to use the LEL output or the main model output
for prediction (main model output is indicated by
, main model), and whether to use the LTN as a
regulariser or for semi-supervised learning (semi-
supervised learning is indicated by + semi). We
further test whether to use diversity features (— di-
versity feats) and whether to use main model pre-
dictions for the LTN (4 main model feats).

Overall, the addition of the Label Embed-
ding Layer improves the performance over regular
MTL in almost all cases.

6.4 Label transfer network

To understand the performance of the LTN, we
analyse learning curves of the relabelling func-
tion vs. the main model. Examples for all tasks
without semi-supervised learning are shown in
Figure 3. One can observe that the relabelling
model does not take long to converge as it has
fewer parameters than the main model. Once the
relabelling model is learned alongside the main
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Stance FNC MultiNLI Topic—-2 Topic-5* ABSA-L ABSA-R Target

MTL 4412 7275 49.39 80.74 0.859 74.94 82.25 65.73
MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LTN 4095 72.72 44.14 78.31 0.851 73.98 82.37 63.71
MTL + LTN, main model 41.60 7272  47.62 79.98 0.814 75.54 81.70 65.61
MTL + LEL + LTN 4448 72776 4372 74.07 0.821 75.66 81.92 65.00
MTL + LEL + LTN, main model 43.16 72773 4875 73.90 0.810 75.06 83.71 66.10
MTL + LEL + LTN + main preds feats 4278 7272 45.41 66.30 0.835 73.86 81.81 65.08
MTL + LEL + LTN + main preds feats, main model 42.65 7273  48.81 67.53 0.803 75.18 82.59 63.95
MTL + LEL + LTN + main preds feats — diversity feats 4278 7272 43.13 66.3 0.835 73.5 81.7 63.95
MTL + LEL + LTN + main preds feats — diversity feats, main model 42.47 72.74 47.84 67.53 0.807 74.82 82.14 65.11
MTL + LEL + LTN + semi 42.65 72775 4428 77.81 0.841 74.10 81.36 64.45
MTL + LEL + LTN + semi, main model 43.56  72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 5: Ablation results with task-specific evaluation metrics on test set with early stopping on dev set. LTN
means the output of the relabelling function is shown, which does not use the task predictions, only predictions
from other tasks. LTN + main preds feats means main model predictions are used as features for the relabelling
function. LTN, main model means that the main model predictions of the model that trains a relabelling function
are used. Note that for MultiNLI, we down-sample the training data. *: lower is better. Bold: best. Underlined:

second-best.

Task Main LTN Main (Semi) LTN (Semi)
Stance 2.12 2.62 1.94 1.28
FNC 428 2.49 6.92 4.84
MultiNLI 1.5 195 1.94 1.28
Topic-2 645 444 5.87 5.59
Topic-5% 9.22 9.71 11.3 5.90
ABSA-L 3.79 252 9.06 6.63
ABSA-R 10.6 6.70 9.06 6.63
Target 26.3 14.6 20.1 15.7

Table 6: Error analysis of LTN with and without semi-
supervised learning for all tasks. Metric shown: per-
centage of correct predictions only made by either the
relabelling function or the main model, respectively,
relative to the the number of all correct predictions.

model, the main model performance first stag-
nates, then starts to increase again. For some of the
tasks, the main model ends up with a higher task
score than the relabelling model. We hypothesise
that the softmax predictions of other, even highly
related tasks are less helpful for predicting main
labels than the output layer of the main task model.
At best, learning the relabelling model alongside
the main model might act as a regulariser to the
main model and thus improve the main model’s
performance over a baseline MTL model, as it is
the case for TOPIC-5 (see Table 5).

To further analyse the performance of the LTN,
we look into to what degree predictions of the
main model and the relabelling model for individ-
ual instances are complementary to one another.
Or, said differently, we measure the percentage of
correct predictions made only by the relabelling

03
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Figure 3: Learning curves with LTN for selected tasks,
dev performances shown. The main model is pre-
trained for 10 epochs, after which the relabelling func-
tion is trained.

model or made only by the main model, relative
to the number of correct predictions overall. Re-
sults of this for each task are shown in Table 6 for
the LTN with and without semi-supervised learn-
ing. One can observe that, even though the rela-
belling function overall contributes to the score to
a lesser degree than the main model, a substan-
tial number of correct predictions are made by the
relabelling function that are missed by the main
model. This is most prominently pronounced for
ABSA-R, where the proportion is 14.6.
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7 Conclusion

We have presented a multi-task learning archi-
tecture that (i) leverages potential synergies be-
tween classifier functions relating shared represen-
tations with disparate label spaces and (ii) enables
learning from mixtures of labeled and unlabeled
data. We have presented experiments with com-
binations of eight pairwise sequence classification
tasks. Our results show that leveraging synergies
between label spaces sometimes leads to big im-
provements, and we have presented a new state
of the art for topic-based sentiment analysis. Our
analysis further showed that (a) the learned label
embeddings were indicative of gains from multi-
task learning, (b) auxiliary tasks were often ben-
eficial across domains, and (c) label embeddings
almost always led to better performance. We also
investigated the dynamics of the label transfer net-
work we use for exploiting the synergies between
disparate label spaces.
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