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Abstract

An essential step in FrameNet Semantic Role
Labeling is the Frame Identification (FrameId)
task, which aims at disambiguating a situation
around a predicate. Whilst current FrameId
methods rely on textual representations only,
we hypothesize that FrameId can profit from
a richer understanding of the situational con-
text. Such contextual information can be ob-
tained from common sense knowledge, which
is more present in images than in text. In this
paper, we extend a state-of-the-art FrameId
system in order to effectively leverage multi-
modal representations. We conduct a compre-
hensive evaluation on the English FrameNet
and its German counterpart SALSA. Our anal-
ysis shows that for the German data, tex-
tual representations are still competitive with
multimodal ones. However on the English
data, our multimodal FrameId approach out-
performs its unimodal counterpart, setting a
new state of the art. Its benefits are particularly
apparent in dealing with ambiguous and rare
instances, the main source of errors of current
systems. For research purposes, we release (a)
the implementation of our system, (b) our eval-
uation splits for SALSA 2.0, and (c) the em-
beddings for synsets and IMAGINED words.1

1 Introduction

FrameNet Semantic Role Labeling analyzes sen-
tences with respect to frame-semantic structures
based on FrameNet (Fillmore et al., 2003). Typ-
ically, this involves two steps: First, Frame Iden-
tification (FrameId), capturing the context around
a predicate (frame evoking element) and assigning
a frame, basically a word sense label for a pro-
totypical situation, to it. Second, Role Labeling,
i.e. identifying the participants (fillers) of the pred-
icate and connecting them with predefined frame-

∗named alphabetically
1https://github.com/UKPLab/

naacl18-multimodal-frame-identification

specific role labels. FrameId is crucial to the suc-
cess of Semantic Role Labeling as FrameId errors
account for most wrong predictions in current sys-
tems (Hartmann et al., 2017). Consequently, im-
proving FrameId is of major interest.

The main challenge and source of prediction er-
rors of FrameId systems are ambiguous predicates,
which can evoke several frames, e.g., the verb
sit evokes the frame Change posture in a context
like ‘a person is sitting back on a bench’, while
it evokes Being located when ‘a company is sit-
ting in a city’. Understanding the predicate con-
text, and thereby the context of the situation (here,
‘Who / what is sitting where?’), is crucial to iden-
tifying the correct frame for ambiguous cases.

State-of-the-art FrameId systems model the sit-
uational context using pretrained distributed word
embeddings (see Hermann et al., 2014). Hence,
it is assumed that the context of the situation
is explicitly expressed in words. However, lan-
guage understanding involves implicit knowledge,
which is not mentioned but still seems obvious
to humans, e.g., ‘people can sit back on a bench,
but companies cannot’, ‘companies are in cities’.
Such implicit common sense knowledge is obvi-
ous enough to be rarely expressed in sentences,
but is more likely to be present in images. Fig-
ure 1 takes the ambiguous predicate sit to illustrate

Figure 1: Example sentences demonstrating the poten-
tial benefit of images for ambiguous predicates.
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how images can provide access to implicit com-
mon sense knowledge crucial to FrameId.

When looking at the semantics of events,
FrameId has commonalities with event prediction
tasks. These aim at linking events and their partic-
ipants to script knowledge and at predicting events
in narrative chains. Ahrendt and Demberg (2016)
argue that knowing about the participants helps to
identify the event, which suggests the need for im-
plicit context knowledge also for FrameId. This
specifically applies to images, which can reflect
properties of the participants of a situation in a in-
herently different way, see Fig. 1.

We analyze whether multimodal representa-
tions grounded in images can encode common
sense knowledge to improve FrameId. To that
end, we extend SimpleFrameId (Hartmann et al.,
2017), a recent FrameId model based on dis-
tributed word embeddings, to the multimodal case
and evaluate for English and German. Note that
there is a general lack of evaluation of FrameId
systems for languages other than English. This
is problematic as they yield different challenges;
German, for example, due to long distance depen-
dencies. Also, word embeddings trained on differ-
ent languages have different strengths in ambigu-
ous words. We elaborate on insights from using
different datasets by language.

Contributions. (1) We propose a pipeline and
architecture of a FrameId system, extending state-
of-the-art methods with the option of using im-
plicit multimodal knowledge. It is flexible toward
modality and language, reaches state-of-the-art ac-
curacy on English FrameId data, clearly outper-
forming several baselines, and sets a new state of
the art on German FrameId data. (2) We discuss
properties of language and meaning with respect
to implicit knowledge, as well as the potential of
multimodal representations for FrameId. (3) We
perform a detailed analysis of FrameId systems.
First, we develop a new strong baseline. Second,
we suggest novel evaluation metrics that are es-
sential for assessing ambiguous and rare frame in-
stances. We show our system’s advantage over the
strong baseline in this regard and by this improve
upon the main source of errors. Third, we analyze
gold annotated datasets for English and German
showing their different strengths. Finally, we re-
lease the implementation of our system, our eval-
uation splits for SALSA 2.0, and the embeddings
for synsets and IMAGINED words.

2 Related Work

2.1 Frame identification
State-of-the-art FrameId systems rely on pre-
trained word embeddings as input (Hermann et al.,
2014). This proved to be helpful: those sys-
tems consistently outperform the previously lead-
ing FrameId system SEMAFOR (Das et al., 2014),
which is based on a handcrafted set of features.
The open source neural network-based FrameId
system SimpleFrameId (Hartmann et al., 2017) is
conceptually simple, yet yields competitive accu-
racy. Its input representation is a concatenation of
the predicate’s pretrained embedding and an em-
bedding of the predicate context. The dimension-
wise mean of the pretrained embeddings of all
words in the sentence is taken as the context. In
this work, we first aim at improving the represen-
tation of the predicate context using multimodal
embeddings, and second at assessing the applica-
bility to another language, namely German.

Common sense knowledge for language under-
standing. Situational background knowledge
can be described in terms of frames (Fillmore,
1985) and scripts (Schank and Abelson, 2013).
Ahrendt and Demberg (2016) report that know-
ing about a script’s participants aids in predict-
ing events linked to script knowledge. Transfer-
ring this insight to FrameId, we assume that a rich
context representation helps to identify the sense
of ambiguous predicates. Addressing ambiguous
predicates where participants have different prop-
erties depending on the context, Feizabadi and
Padó (2012) give some examples where the loca-
tion plays a discriminating role as participant: mo-
tion verbs that have both a concrete motion sense
and a more abstract sense in the cognitive domain,
e.g., struggle, lean, follow.

Frame identification in German. Shalmaneser
(Erk and Pado, 2006) is a toolbox for semantic role
assignment on FrameNet schemata of English and
German (integrated into the SALSA project for
German). Shalmaneser uses a Naive Bayes clas-
sifier to identify frames, together with features for
a bag-of-word context with a window over sen-
tences, bigrams, and trigrams of the target word
and dependency annotations. They report an F1
of 75.1 % on FrameNet 1.2 and 60 % on SALSA
1.0. These scores are difficult to compare against
more recent work as the evaluation uses older ver-
sions of datasets and custom splits. Shalmaneser
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requires software dependencies that are not avail-
able anymore, hindering application to new data.
To the best of our knowledge, there is no FrameId
system evaluated on SALSA 2.0.

Johannsen et al. (2015) present a simple,
but weak translation baseline for cross-lingual
FrameId. A SEMAFOR-based system is trained
on English FrameNet and tested on German
Wikipedia sentences, translated word-by-word to
English. This translation baseline reaches an F1
score of 8.5 % on the German sentences when
translated to English. The performance of this
weak translation baseline is worse than that of
another simple baseline: a ‘most frequent sense
baseline’ – computing majority votes for German
(and many other languages) – reaches an F1 score
of 53.0 % on the German sentences. This shows
that pure translation does not help with FrameId
and, furthermore, indicates a large room for im-
provement for FrameId in languages other than
English.

2.2 Multimodal representation learning

There is a growing interest in Natural Language
Processing for enriching traditional approaches
with knowledge from the visual domain, as images
capture qualitatively different information com-
pared to text. Regarding FrameId, to the best
of our knowledge, multimodal approaches have
not yet been investigated. For other tasks, mul-
timodal approaches based on pretrained embed-
dings are reported to be superior to unimodal
approaches. Textual embeddings have been en-
riched with information from the visual domain,
e.g., for Metaphor Identification (Shutova et al.,
2016), Question Answering (Wu et al., 2017), and
Word Pair Similarity (Collell et al., 2017). The
latter presents a simple, but effective way of ex-
tending textual embeddings with so-called multi-
modal IMAGINED embeddings by a learned map-
ping from language to vision. We apply the IMAG-
INED method to our problem.

In this work, we aim to uncover whether rep-
resentations that are grounded in images can help
to improve the accuracy of FrameId. Our appli-
cation case of FrameId is more complex than a
comparison on the word-pair level as it considers a
whole sentence in order to identify the predicate’s
frame. However, we see a potential for multimodal
IMAGINED embeddings to help: their mapping
from text to multimodal representations is learned

from images for nouns. Such nouns, in turn, are
candidates for role fillers of predicates. In order to
identify the correct sense of an ambiguous predi-
cate, it could help to enrich the representation of
the context situation with multimodal embeddings
for the entities that are linked by the predicate.

3 Our Multimodal FrameId Model

Our system builds upon the SimpleFrameId (Hart-
mann et al., 2017) system for English FrameId
based on textual word embeddings. We extend
it to multimodal and multilingual use cases; see
Fig. 2 for a sketch of the system pipeline. Same as
SimpleFrameId, our system is based on pretrained
embeddings to build the input representation out
of the predicate context and the predicate itself.

However, different to SimpleFrameId, our rep-
resentation of the predicate context is multimodal:
beyond textual embeddings we also use IMAG-
INED and visual embeddings. More precisely, we
concatenate all unimodal representations of the
predicate context, which in turn are the unimodal
mean embeddings of all words in the sentence. We
use concatenation for fusing the different embed-
dings as it is the simplest yet successful fusion
approach (Bruni et al., 2014; Kiela and Bottou,
2014). The input representation is processed by
a two-layer Multilayer Perceptron (MLP, Rosen-
blatt, 1958), where we adapt the number of hid-
den nodes to the increased input size and apply
dropout to all hidden layers to prevent overfitting
(Srivastava et al., 2014). Each node in the output
layer corresponds to one frame-label class. We use
rectified linear units (Nair and Hinton, 2010) as ac-
tivation function for the hidden layers, and a soft-

Figure 2: Sketch of the pipeline. (1) Data: sentence
with predicate. (2) Mapping: words to embeddings.
(3) Representation: concatenation of modality-specific
means. (4) Classifier: neural network predicting frame.
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max for the output layer yielding a multinomial
distribution over frames. We take its argmax as
the final prediction at test time. Optionally, filter-
ing based on the lexicon can be performed on the
predicted probabilities for each frame label. The
development set was used to determine the archi-
tecture and hyperparameters, see Sec. 6.

Majority baselines. We propose a new strong
baseline based on a combination of two existing
ones. These are: first, the most-frequent-sense
baseline using the data majority (Data Baseline)
to determine the most frequent frame for a predi-
cate; second, the baseline introduced by Hartmann
et al. (2017) using a lexicon (Lexicon Baseline)
to consider the data counts of the Data Baseline
only for those frames available for a predicate.
We propose to combine them into a Data-Lexicon
Baseline, which uses the lexicon for unambiguous
predicates and for ambiguous ones it uses the data
majority. This way, we trust the lexicon for un-
ambiguous predicates but not for ambiguous ones,
there we rather consider the data majority. Com-
paring a system to these baselines helps to see
whether it just memorizes the data majority or the
lexicon, or actually captures more.

All majority baselines strongly outperform the
weak translation baseline of Johannsen et al.
(2015) when training the system on English data
and evaluating it on German data.

4 Preparation of Input Embeddings

Textual embeddings for words. We use the
300-dimensional GloVe embeddings (Pennington
et al., 2014) for English, and the 100-dimensional
embeddings of Reimers et al. (2014) for Ger-
man. GloVe and Reimers have been trained on the
Wikipedia of their targeted language and on addi-
tional newswire text to cover more domains, re-
sulting in similarly low out-of-vocabulary scores.

Visual embeddings for synsets. We obtain vi-
sual embeddings for WordNet synsets (Fellbaum,
1998; , Ed.): we apply the pretrained VGG-m-
128 Convolutional Neural Network model (Chat-
field et al., 2014) to images for synsets from Im-
ageNet (Deng et al., 2009), we extract the 128-
dimensional activation of the last layer (before the
softmax) and then we L2-normalize it. We use
the images of the WN9-IMG dataset (Xie et al.,
2017), which links WordNet synsets to a collec-
tion of ten ImageNet images. We average the em-

beddings of all images corresponding to a synset,
leading to a vocabulary size of 6555 synsets. All
synsets in WN9-IMG are part of triples of the form
entity-relation-entity, i.e. synset-relation-synset.
Such synset entities that are participants of rela-
tions with other synset entities are candidates for
incorporating the role fillers for predicates and,
therefore, may help to find the correct frame for
a predicate (see Sec. 5 for details about sense-
disambiguation.)

Linguistic embeddings for synsets. We obtain
300-dimensional linguistic synset embeddings:
we apply the AutoExtend approach (Rothe and
Schütze, 2015) to GloVe embeddings and pro-
duce synset embeddings for all synsets having at
least one synset lemma in the GloVe embeddings.
This leads to a synset vocabulary size of 79 141.
Linguistic synset embeddings are based on tex-
tual word embeddings and the synset information
known by the knowledge base WordNet, thus they
complement the visual synset embeddings.

IMAGINED embeddings for words. We use the
IMAGINED method (Collell et al., 2017) for learn-
ing a mapping function: it maps from the word
embedding space to the visual embedding space
given those words that occur in both pretrained
embedding spaces (7220 for English and 7739 for
German). To obtain the English synset lemmas,
we extract all lemmas of a synset and keep those
that are nouns. We automatically translate En-
glish nouns to German nouns using the Google
Translate API to obtain the corresponding German
synset lemmas. The IMAGINED method is promis-
ing for cases where one embedding space (here,
the textual one) has many instances without cor-
respondence in the other embeddings space (here,
the visual one), but the user still aims at obtain-
ing instances of the first in the second space. We
aim to obtain visual correspondences for the tex-
tual embeddings in order to incorporate regulari-
ties from images into our system. The mapping is
a nonlinear transformation using a simple neural
network. The objective is to minimize the cosine
distance between each mapped representation of a
word and the corresponding visual representation.
Finally, a multimodal representation for any word
can be obtained by applying this mapping to the
word embedding.
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5 Data and Preparation of Splits

English FrameId: Berkeley FrameNet. The
Berkeley FrameNet (Baker et al., 1998; Ruppen-
hofer et al., 2016) is an ongoing project for build-
ing a large lexical resource for English with ex-
pert annotations based on frame semantics (Fill-
more, 1976). It consists of two parts, a manually
created lexicon that maps predicates to the frames
they can evoke, and fully annotated texts (fulltext).
The mapping can be used to facilitate the frame
identification for a predicate in a sentence, e.g., a
sentence in the fulltext corpus. Table 1 contains
the lexicon statistics, Table 2 (top left) the dataset
statistics. In this work, we use FrameNet 1.5 to
ensure comparability with the previous state of the
art, with the common evaluation split for FrameId
systems introduced by Das and Smith (2011) (with
the development split of Hermann et al., 2014).
Due to having a single annotation as consent of
experts, it is hard to estimate a performance bound
of a single human for the fulltext annotation.

German FrameId: SALSA. The SALSA
project (Burchardt et al., 2006; Rehbein et al.,
2012) is a completed annotation project, which
serves as the German counterpart to FrameNet.
Its annotations are based on FrameNet up to ver-
sion 1.2. SALSA adds proto-frames to properly
annotate senses that are not covered by the En-
glish FrameNet. For a more detailed description
of differences between FrameNet and SALSA, see
Ellsworth et al. (2004); Burchardt et al. (2009).
SALSA also provides a lexicon (see Table 1 for
statistics) and fully annotated texts. There are
two releases of SALSA: 1.0 (Burchardt et al.,
2006) used for Shalmaneser (Erk and Pado, 2006)
(cf. Sec. 2.1), and the final release 2.0 (Rehbein
et al., 2012), which contains more annotations and
adds nouns as predicates. We use the final release.

SALSA has no standard evaluation split; Erk
and Pado (2006) used an undocumented random

lexicon frames LUs avg(fr/pred) %amb.pred.

FrameNet 1020 11 942 1.26 17.32
SALSA 1023 1827 2.82 57.56

Table 1: Lexicon statistics for FrameNet 1.5 and for
SALSA 2.0: the total number of distinct frames and
lexical units LUs (distinct predicate-frame combina-
tions), the number of frames a predicate can evoke on
average avg, and the % of ambiguous predicates.

split. Also, it is not possible to follow the split-
ting method of Das and Smith (2011), as SALSA
project distributions do not map to documents. We
suggest splitting based on sentences, i.e. all anno-
tations of a sentence are in the same set to avoid
mixing training and test sets. We assign sentences
to 100 buckets based on their IDs and create a
70/15/15 split for training, development, and test
sets based on the bucket order. This procedure al-
lows future work to be evaluated on the same data.
Table 2 (bottom left) shows the dataset statistics.

Synsets in FrameNet and SALSA. To prepare
the datasets for working with the synset embed-
dings, we sense-disambiguate all sentences using
the API of BabelNet (Navigli and Ponzetto, 2010),
which returns multilingual synsets. We thus de-
pend on the state-of-the-art accuracy of BabelNet
(Navigli and Ponzetto, 2012) when using synset
embeddings on sense-disambiguated sentences.
However, this dependence does not hold when ap-
plying IMAGINED embeddings to sentences, as the
mapping from words to IMAGINED embeddings
does not need any synsets labeled in the sentences.
After sense-disambiguation some sentences do not
contain any synset available in our synset embed-
dings. The statistics of those sentences that have
at least one synset embedding (visual or linguistic
AutoExtend) is given in Table 2 (right).

6 Experimental Setup

We contrast our system’s performance for context
representations based on unimodal (textual) ver-
sus multimodal (textual and visual) embeddings.
Also, we compare English against German data.
We run the prediction ten times to reduce noise in

sentences frames reduced sentences
syns-Vis syns-AutoExt

Fr
am

eN train 2819 15 406 1310 2714
dev 707 4593 320 701
test 2420 4546 913 2318

SA
L

SA train 16 852 26 081 4707 16 736
dev 3561 5533 1063 3540
test 3605 5660 1032 3570

Table 2: Dataset statistics for FrameNet 1.5 fulltext
with Das split and for SALSA 2.0 with our split: num-
ber of sentences and frames (as used in our experi-
ments). Right half (only used in further investigations):
number of sentences when reduced to only those hav-
ing synsets in the visual and in the linguistic AutoEx-
tend embeddings.
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the evaluation (cf. Reimers and Gurevych, 2017)
and report the mean for each metric.

Use of lexicon. We evaluate our system in two
settings: with and without lexicon, as suggested
by Hartmann et al. (2017). In the with-lexicon set-
ting, the lexicon is used to reduce the choice of
frames for a predicate to only those listed in the
lexicon. If the predicate is not in the lexicon, it
corresponds to the without-lexicon setting, where
the choice has to be done amongst all frames.

Evaluation metrics. FrameId systems are usu-
ally compared in terms of accuracy, which we
adopt for comparability. As a multiclass clas-
sification problem, FrameId has to cope with a
strong variation in the annotation frequency of
frame classes. Minority classes are frames that oc-
cur only rarely; majority classes occur frequently.
Note that the accuracy is biased toward majority
classes, explaining the success of majority base-
lines on imbalanced datasets such as FrameNet.

Alternatively, the F1 score is sometimes re-
ported as it takes a complementary perspective.
The F-measure is the harmonic mean of precision
and recall, measuring exactness and completeness
of a model, respectively. In previous work, micro-
averaging is used to compute F1 scores. Yet, sim-
ilar to the accuracy, micro-averaging introduces
a bias toward majority classes. We compute F1-
macro instead, for which precision and recall are
computed for each class and averaged afterwards,
giving equal weight to all classes.

Taken together, this yields scores that underesti-
mate (F1-macro) and overestimate (average accu-
racy) on imbalanced datasets. Previous work just
used the overestimate such that a comparison is
possible in terms of accuracy in the with-lexicon
setting. We suggest to use F1-macro additionally
to analyze rare, but interesting classes. Thus, a
comparison within our work is possible for both
aspects, giving a more detailed picture. Note that
previous work reports one score whilst we report
the mean score of ten runs.

Hyperparameters. We identified the best hy-
perparameters for the English and German data
based on the respective development sets.2 The
Multilayer Perceptron architecture performed con-

2Differences in hyperparameters to SimpleFrameId:
‘nadam’ as optimizer instead of ‘adagrad’, dropout on hid-
den layers and early stopping to regularize training. Different
number of hidden units, optimized by grid search.

sistently better than a more complex Gated Re-
current Unit model (Cho et al., 2014). We found
that more than two hidden layers did not bring
any improvement over two layers; using dropout
on the hidden layers helped to increase the accu-
racy. Among the various input representations,
a concatenation of the representations of context
and predicate was the best amongst others, includ-
ing dependencies, lexicon indicators, and part-of-
speech tags. Training is done using Nesterov-
accelerated Adam (Nadam, Dozat, 2016) with de-
fault parameters. A batch size of 128 is used.
Learning stops if the development accuracy has
not improved for four epochs, and the learning rate
is reduced by factor of two if there has not been
any improvement for two epochs.

7 Results

First, we report our results on English data (see Ta-
ble 3, top) and then, we compare against German
data (see Table 3, bottom).

7.1 English FrameNet data

Baseline. Our new strong Data-Lexicon Base-
line reaches a considerable accuracy of 86.32 %,
which is hard to beat by trained models. Even
the most recent state of the art only beats it by
about two points: 88.41 % (Hermann et al., 2014).
However, the accuracy of the baseline drops for
ambiguous predicates (69.73 %) and the F1-macro
score reveals its weakness toward minority classes
(drop from 64.54 % to 37.42 %).

Unimodal. Our unimodal system trained and
evaluated on English data slightly exceeds the ac-
curacy of the previous state of the art (88.66 % on
average versus 88.41 % for Hermann et al., 2014);
our best run’s accuracy is 89.35 %. Especially on
ambiguous predicates, i.e. the difficult and there-
fore interesting cases, our average accuracy sur-
passes that of previous work by more than one
point (the best run by almost three points). Con-
sidering the proposed F1-macro score for an as-
sessment of the performance on minority classes
and ambiguous predicates reveals our main im-
provement: Our system substantially outperforms
the strong Data-Lexicon Baseline, demonstrating
that our system differs from memorizing majori-
ties and actually improves minority cases.

Multimodal. From a range of multimodal con-
text representations as extensions to our system,
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with lexicon without lexicon

model acc acc amb F1-m F1-m amb acc acc amb F1-m F1-m amb
Fr

am
eN

et

Data Baseline 79.06 69.73 33.00 37.42 79.06 69.73 33.00 37.42
Lexicon Baseline 79.89 55.52 65.61 30.95 – – – –
Data-Lexicon Baseline 86.32 69.73 64.54 37.42 – – – –

Hermann et al. (2014) 88.41 73.10 – – – – – –
Hartmann et al. (2017) 87.63 73.80 – – 77.49 – – –

our uni 88.66 74.92 76.65 53.86 79.96 71.70 57.07 47.40
our mm (im, synsV) 88.82 75.28 76.77 54.80 81.21 72.51 57.81 49.38

SA
L

SA

Data Baseline 77.00 70.51 37.40 28.87 77.00 70.51 37.40 28.87
Lexicon Baseline 61.57 52.5 19.36 15.68 – – – –
Data-Lexicon Baseline 77.16 70.51 38.48 28.87 – – – –

our uni 80.76 75.59 48.42 41.38 80.59 75.52 47.64 41.17
our mm (im) 80.71 75.58 48.29 41.19 80.51 75.51 47.36 40.93

Table 3: FrameId results (in %) on English (upper) and German (lower) with and without using the lexicon.
Reported are accuracy and F1-macro, both also for ambiguous predicates (mean scores over ten runs). Models:
(a) Data, Lexicon, and Data-Lexicon Baselines. (b) Previous models for English. (c) Ours: unimodal our-uni,
multimodal on top of our-uni – our-mm – with IMAGINED embeddings (and synset visual embeddings for English).
Best results highlighted in bold. The best run’s results for English were:
our uni: acc: 89.35 ; acc amb: 76.45 ; F1-m: 76.95 ; F1-m amb: 54.02 (with lexicon)
our mm (im, synsV): acc: 89.09 ; acc amb: 75.86 ; F1-m: 78.17 ; F1-m amb: 57.48 (with lexicon)

the most helpful one is the concatenation of IMAG-
INED embeddings and visual synset embeddings:
it outperforms the unimodal approach slightly in
all measurements. We observe that the improve-
ments are more pronounced for difficult cases,
such as for rare and ambiguous cases (one point
improvement in F1-macro), as well as in the ab-
sence of a lexicon (up to two points improvement).

Significance tests. We conduct a single sample
t-test to judge the difference between previous
state-of-the-art accuracy (Hermann et al., 2014)
and our unimodal approach. The null hypothe-
sis (expected value of our sample of ten accuracy
scores equals previous state-of-the-art accuracy)
is rejected at a significance level of α = 0.05
(p = 0.0318). In conclusion, even our unimodal
approach outperforms prior state of the art in terms
of accuracy.

To judge the difference between our unimodal
and our multimodal approach, we conduct a t-test
for the means of the two independent samples.
The null hypothesis states identical expected val-
ues for our two samples of ten accuracy scores.
Regarding the setting with lexicon, the null hy-
pothesis cannot be rejected at a significance level
of α = 0.05 (p = 0.2181). However, concern-
ing accuracy scores without using the lexicon, the
null hypothesis is rejected at a significance level
of α = 0.05 (p < 0.0001). In conclusion, the
multimodal approach has a slight overall advan-

tage and, interestingly, has a considerable advan-
tage over the unimodal one when confronted with
a more difficult setting of not using the lexicon.

7.2 German SALSA versus English data

German results. Our system evaluated on Ger-
man data sets a new state of the art on this corpus
with 80.76 % accuracy, outperforming the base-
lines (77.16 %; no other system evaluated on this
dataset). The difference in F1-macro between the
majority baselines and our system is smaller than
for the English FrameNet. This indicates that the
majorities learned from data are more powerful in
the German case with SALSA than in the English
case, when comparing against our system. Multi-
modal context representations cannot show an im-
provement for SALSA with this general dataset.

Lexicon. We report results achieved without the
lexicon to evaluate independently of its quality
(Hartmann et al., 2017). On English data, our sys-
tems outperforms Hartmann et al. (2017) by more
than two points in accuracy and we achieve a large
improvement over the Data Baseline. Comparing
the F1-macro with and without lexicon, it can be
seen that the additional information stored in the
lexicon strongly increases the score by about 20
points for English data. For German data, the in-
crease of F1-macro with lexicon versus without is
small (one point).
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8 Discussion

8.1 English data

Insights from the baseline. Many indicators
point to our approach not just learning the data
majority: our trained models have better F1-macro
and especially much higher ambiguous F1-macro
scores with lexicon. This clearly suggests that our
system is capable of acquiring more expressive-
ness than the baselines do by counting majorities.

Impact of multimodal representations. Mul-
timodal context representations improve results
compared to unimodal ones. It helps to incorpo-
rate visual common sense knowledge about the sit-
uation’s participants. Referring back to our exam-
ple of the ambiguous predicate sit, the multimodal
approach is able to transfer the knowledge to the
test sentence ‘Al-Anbar in general, and Ramadi in
particular, are sat with the Americans in Jordan.’
by correctly identifying the frame Being located
whilst the unimodal approach fails with predict-
ing Change posture. The increase in performance
when adding information from visual synset em-
beddings is not simply due to higher dimensional-
ity of the embedding space. To verify, we further
investigate extending the unimodal system with
random word embeddings. This leads to a drop
in performance compared to using just the uni-
modal representations or using these in combina-
tion with the proposed multimodal embeddings,
especially in the setting without lexicon. Interest-
ingly, replacing visual synset embeddings with lin-
guistic synset embeddings (AutoExtend by Rothe
and Schütze (2015), see Sec. 4) in further investi-
gations also showed that visual embeddings yield
better performance. This points out the potential
for incorporating even more image evidence to ex-
tend our approach.

8.2 German versus English data

Difficulties for German data. The impact of
multimodal context representations is more dif-

ficult to interpret for the German dataset. The
fact that they have not helped here may be due to
mismatches when translating the English nouns of
a synset to German in order to train the IMAG-
INED embeddings. Here, we see room for future
work to improve on simple translation by sense-
based translations. In SALSA, a smaller portion
of sentences has at least one synset embedding,
see Table 2. For further investigations, we re-
duced the dataset to only sentences actually con-
taining a synset embedding. Then, minor improve-
ments of the multimodal approach were visible for
SALSA. This points out that a dataset containing
more words linking to implicit knowledge in im-
ages (visual synset embeddings) can profit more
from visual and IMAGINED embeddings.

Impact of lexicon: English versus German.
Even if both lexica approximately define the same
number of frames (see Table 1), the number of de-
fined lexical units (distinct predicate-frame combi-
nations) in SALSA is smaller. This leads to a lexi-
con that is a magnitude smaller than the FrameNet
lexicon. Thus, the initial situation for the Ger-
man case is more difficult. The impact of the lexi-
con for SALSA is smaller than for FrameNet (best
visible in the increase of F1-macro with using
the lexicon compared to without), which can be
explained by the larger percentage of ambiguous
predicates (especially evoking proto-frames) and
the smaller size of the lexicon. The evaluation on
two different languages highlights the impact of an
elaborate, manually created lexicon: it boosts the
performance on frame classes that are less present
in the training data. English FrameId benefits from
the large high-quality lexicon, whereas German
FrameId currently lacks a high-quality lexicon that
is large enough to benefit the FrameId task.

Dataset properties: English versus German.
To better understand the influence of the dataset on
the prediction errors, we further analyze the errors
of our approach (see Table 4) following Palmer

with lexicon without lexicon

model correct e uns e unsLab e n correct e uns e unsLab e n

Fr
am

eN our uni 89.35 0.40 3.04 7.22 80.36 1.32 7.68 10.65
our mm (im, synsV) 89.79 0.58 3.55 6.08 80.63 1.91 8.50 8.96

SA
L

SA our uni 80.99 0.49 0.97 17.54 80.80 0.49 1.10 17.61
our mm (im) 81.24 1.94 1.88 14.94 80.96 1.94 2.05 15.05

Table 4: Error analysis of best uni- and multimodal systems. correct, errors: unseen, unseen label and normal.
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and Sporleder (2010). A wrong prediction can ei-
ther be a normal classification error, or it can be
the result of an instance that was unseen at train-
ing time, which means that the error is due to the
training set. The instance can either be completely
unseen or unseen with the target label. We observe
that FrameNet has larger issues with unseen data
compared to SALSA, especially data that was un-
seen with one specific label but seen with another
label. This is due to the uneven split of the docu-
ments in FrameNet, leading to data from different
source documents and domains in the training and
test split. SALSA does not suffer from this prob-
lem as much since the split was performed dif-
ferently. It would be worth considering the same
splitting method for FrameNet.

8.3 Future work

As stated previously, FrameId has commonalities
with event prediction. Since identifying frames is
only one way of capturing events, our approach is
transferable to other schemes of event prediction
and visual knowledge about participants of situ-
ations should be beneficial there, too. It would
be interesting to evaluate the multimodal archi-
tecture on other predicate-argument frameworks,
e.g., script knowledge or VerbNet style Semantic
Role Labeling. In particular the exploration our
findings on visual contributions to FrameId in the
context of further event prediction tasks forms an
interesting next step.

More precisely, future work should consider us-
ing implicit knowledge not only from images of
the participants of the situation, but also from
the entire scene in order to directly capture rela-
tions between the participants. This could pro-
vide access to a more holistic understanding of the
scene. The following visual tasks with accompa-
nying datasets could serve as a starting point: (a)
visual Verb Sense Disambiguation with the VerSe
dataset (Gella et al., 2016) and (b) visual SRL with
several datasets, e.g., imSitu (Yatskar et al., 2016)
(linked to FrameNet), V-COCO (Gupta and Ma-
lik, 2015) (verbs linked to COCO), VVN (Ronchi
and Perona, 2015) (visual VerbNet) or even SRL
grounded in video clips for the cooking-domain
(Yang et al., 2016) and visual Situation Recogni-
tion (Mallya and Lazebnik, 2017). Such datasets
could be used for extracting visual embeddings
for verbs or even complex situations in order to
improve the visual component in the embeddings

for our FrameId system. Vice versa: visual tasks
could profit from multimodal approaches (Bal-
trušaitis et al., 2017) in a similar sense as our
textual task, FrameId, profits from additional in-
formation encoded in further modalities. More-
over, visual SRL might profit from our multi-
modal FrameId system to a similar extend as any
FrameNet SRL task profits from correctly identi-
fied frames (Hartmann et al., 2017).

Regarding the combination of embeddings from
different modalities, we suggest to experiment
with different fusion strategies complementing the
middle fusion (concatenation) and the mapping
(IMAGINED method). This could be a late fusion
at decision level operating like an ensemble.

9 Conclusion

In this work, we investigated multimodal repre-
sentations for Frame Identification (FrameId) by
incorporating implicit knowledge, which is bet-
ter reflected in the visual domain. We presented
a flexible FrameId system that is independent of
modality and language in its architecture. With
this flexibility it is possible to include textual and
visual knowledge and to evaluate on gold data in
different languages. We created multimodal rep-
resentations from textual and visual domains and
showed that for English FrameNet data, enriching
the textual representations with multimodal ones
improves the accuracy toward a new state of the
art. For German SALSA data, we set a new state
of the art with textual representations only and dis-
cuss why incorporating multimodal information is
more difficult. For both datasets, our system is
particularly strong with respect to ambiguous and
rare classes, considerably outperforming our new
Data-Lexicon Baseline and thus addressing a key
challenge in FrameId.
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