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Abstract

Languages with productive morphology pose
problems for language models that generate
words from a fixed vocabulary. Although
character-based models allow any possible
word type to be generated, they are linguis-
tically naive: they must discover that words
exist and are delimited by spaces—basic lin-
guistic facts that are built in to the structure
of word-based models. We introduce an open-
vocabulary language model that incorporates
more sophisticated linguistic knowledge by
predicting words using a mixture of three gen-
erative processes: (1) by generating words as a
sequence of characters, (2) by directly gener-
ating full word forms, and (3) by generating
words as a sequence of morphemes that are
combined using a hand-written morphological
analyzer. Experiments on Finnish, Turkish,
and Russian show that our model outperforms
character sequence models and other strong
baselines on intrinsic and extrinsic measures.
Furthermore, we show that our model learns
to exploit morphological knowledge encoded
in the analyzer, and, as a byproduct, it can
perform effective unsupervised morphological
disambiguation.

1 Introduction

Language modelling of morphologically rich lan-
guages is particularly challenging due to the vast
set of potential word forms and the sparsity with
which they appear in corpora. Traditional closed
vocabulary models are unable to produce word
forms unseen in training data and unable to gen-
eralize sub-word patterns found in data.

The most straightforward solution is to treat
language as a sequence of characters (Sutskever
et al,, 2011). However, models that operate at
two levels—a character level and a word level—
have better performance (Chung et al., 2016). An-
other solution is to use morphological information,
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which has shown benefits in non-neural models
(Chahuneau et al., 2013). In this paper, we present
a model that combines these approaches in a fully
neural framework.

Our model incorporates explicit morphological
knowledge (e.g. from a finite-state morphological
analyzer/generator) into a neural language model,
combining it with existing word- and character-
level modelling techniques, in order to create a
model capable of successfully modelling morpho-
logically complex languages. In particular, our
model achieves three desirable properties.

First, it conditions on all available (intra-
sentential) context, allowing it, in principle, to
capture long-range dependencies, such as that the
verb agreement between “students” and “are” in
the sentence “The students who studied the hardest
are getting the highest grades”. While traditional
n-gram based language models lack this property,
RNN-based language models fulfill it.

Second, it explicitly captures morphological
variation, allowing sharing of information be-
tween variants of the same word. This allows
faster, smoother training as well as improved pre-
dictive generalization. For example, if the model
sees the phrase “gorped the ball” in data, it is able
to infer that “gorping the ball” is also likely to
be valid. Similarly, the model is capable of un-
derstanding that morphological consistency within
noun phrases is important. For example in Rus-
sian, one might say malen’kaya chérniya koshka
("small black cat", nominative), or malen’kuyu
chérniyu koshku (accusative), but malen’kiy chér-
nuyu koshke (mixing nominative, accusative and
dative) would have much lower probability.

Third, the language model seamlessly handles
out of vocabulary items and their morphological
variants. For example, even if the word Obama
was never seen in a Russian corpus, we expect
Ya dal eto prezidentu Obame (““1 gave it to presi-
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dent Obama”) to have higher probability using the
dative Obame than Ya dal eto prezidentu Obama,
which uses the nominative. The model can also
learn to decline proper nouns, including OOVs.
Here it can recognize that dal (“gave”) requires a
dative, and that nouns ending with “a” generally
do not meet that requirement.

In order to capture these properties, our model
combines two pieces: an alternative embedding
module that uses sub-word information such as
character and morpheme-level information, and a
generation module that allows us to output words
at the word, morpheme, or character-level. The
embedding module allows for the model to share
information between morphological variants of
surface forms, and produce sensible word embed-
dings for tokens never seen during training. The
generation model allows us to emit tokens never
seen during training, either by combining a lemma
and a sequence of affixes to create a novel sur-
face form, or by directly spelling out the desired
word character by character. We then demonstrate
the effectiveness both intrinsically, showing re-
duced perplexity on several morphologically rich
languages, and extrinsically on machine transla-
tion and morphological disambiguation tasks.

2 Multi-level RNNLMs

Recurrent neural network language models are
composed of three parts: (a) an encoder, which
turns a context word into a vector, (b) a recur-
rent backbone that turns a sequence of word vec-
tors that represent the ordered sequence of con-
text vectors into a single vector, and (c) a genera-
tor, which assigns a probability to each word that
could follow the given context. RNNLMs often
use the same process for (a) and (c), but there is
no reason why these processes cannot be decou-
pled. For example, Kim et al. (2016) and Ling
et al. (2015) compose character-level representa-
tions for their word encoder, but generate words
using a softmax whose probabilities rely on inner
products between the current context vector and
type-specific word embeddings.

In our model both the word generator (§2.1) and
the word encoder (§2.2) compute representations
that leverage three different views of words: fre-
quent words have their own parameters, words that
can be analyzed/generated by an analyzer are rep-
resented in terms of sequences of abstract mor-
phemes, and all words are represented as a se-

quence of characters.

2.1 Word generation mixture model

In typical RNNLMs the probability of the ¢th word
in a sentence, w; given the preceding words is
computed by using an RNN to encode the context
followed by a softmax:

p(wi | w<i) = p(wi | hi = pan(wi, ..., wiz1))
= softmax(Wh; + b)

where rny 1S an RNN that reads a sequence of
words and returns a fixed sized vector encoding,
W is a weight matrix, and b is a bias.

In this work, we will use a mixture model over
M different models for generating words in place
of the single softmax over words (Miyamoto and
Cho, 2016; Neubig and Dyer, 2016):

M
p(wi | hi) = > p(wi,m; | hy)
m;=1
M
= Y p(mi [ hi)p(w; | hy,my),

m;=1

where m; € [1, M] indicates the model used to
generate word w;. To ensure tractability for train-
ing and inference, we assume that m; is condition-
ally independent of all m;, given the sequence of
word forms w ;.

We use three (M = 3) component models:
(1) directly sampling a word from a finite vocabu-
lary (m; = WORD), (2) generating a word as a se-
quence of characters (m; = CHARS), and (3) gen-
erating as a sequence of (abstract) morphemes
which are then stitched together using a hand-
written morphological transducer that maps from
abstract morpheme sequences to surface forms
(m; = MORPHS). Figure 1 illustrates the model
components, and we describe in more detail here:

Word generator. Select a word by directly sam-
pling from a multinomial distribution over surface
form words. Here the vocabulary is the |V, | most
common full-form words seen during training. All
less frequent words are assigned zero probability
by this model, and must be generated by one of
the remaining models.

Character sequence generator. Generate a
word as a sequence of characters. Each character
is predicted conditioned on the LM hidden state
h; and the partial word generated so far, encoded
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with an RNN. The product of these probabilities is
the total probability assigned to a full word form.

Morpheme sequence generator. Similarly to
the character sequence generator, we can gener-
ate a word as a sequence of morphemes. We first
generate a root -, followed by a sequence of affixes
a1, as, . ... For example the word “devours” might
be generated as devour+3P+SG+EOW. Since mul-
tiple sequences of abstract morphemes may in
general give rise to a single output form,' we

marginalize these, i.e.,
p(w; | hj;m; = MORPHS) =

Z pmorphs(ai ’ hz)

a;€{a|GEN(a)=w;}

where GEN(a) gives the surface word form pro-
duced from the morpheme sequence a.

Due to the model’s ability to produce output at
the character level, it is able to produce any out-
put sequence at all within the language’s alpha-
bet. This is critical as it allows the model to gen-
erate unknown words, such as novel names or de-
clensions thereof. Furthermore, the morphologi-
cal level facilitates the model’s generation of word
forms whose lemmas may be known, but whose
surface form was nevertheless unattested in the
training data. Finally the word-level generation
model handles generating words that the model
has seen many times during training.

2.2 Morphologically aware context vectors

Word vectors are typically learned with a single,
independent vector for each word type. This inde-
pendence means, for example, that the vectors for
the word “apple” and the word “apples” are com-
pletely unrelated. Seeing the word “apple” gives
no information at all about the word “apples”.

Ideally we would like to share information be-
tween such related words. Nevertheless, some-
times words have idiomatic usage, so we’d like not
to tie them together too tightly.

We accomplish this by again using three differ-
ent types of word vectors for each word in the vo-
cabulary. The first is a standard per-type word vec-
tor. The second is the output of a character-level

'In general analyzers encode many-to-many relations, but
our model assumes that any sequence of morphs in the under-
lying language generates a single surface form. This is gen-
erally true, although free spelling variants of a morph (e.g.,
American -ize vs. British -ise as well as alternative realiza-

tions like shined/shone and learned/learnt) violate this as-
sumption.

p(m; | hy

sum

Figure 1: We allow the model to generate an output
word at the word, morpheme, or character level,
and marginalize over these three options to find
the total probability of a word.

RNN using Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997). The
third is the output of a morphology-level LSTM
over a lemma and a sequence of affixes, as output
by a morphological analyzer.

Typically language models first generate a word
w; given some (initially empty) prior context c¢;_1,
and then that word is combined with the context
to generate a new context ¢; that includes the new
word. Since we have just used one or more of our
three modes to generate each word, intuitively we
would like to use the same mode(s) to generate the
embedding used to progress the context.

Unfortunately, doing so introduces dependen-
cies among the latent variables p(mode | ¢;) in
our model, making exact inference intractable. As
such, we instead drop the dependency on how
a word was generated and instead represent the
word at all three levels, regardless of the mode(s)
actually used to generate it, and combine them by
concatenating the three representations. A visual
representation of the embedding process is shown
in Figure 2.

Additionally, should a morphological analyzer
produce more than one valid analysis for a surface
form, we independently produce embeddings for
each candidate analysis, and combine them using
a per-dimension maximum operation. Mathemati-
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Figure 2: We concatenate word- morpheme- and
character-level vectors to build a better input vec-
tor for our RNNLM.

cally, the ith dimension of the morphological em-
bedding e, is given by

emi = m?x €a;;
where e,; is the embedding of the jth possi-
ble analysis, as computed by the LSTM over the
lemma and its sequence of affixes.

The intuition behind the use of all analyses plus
a pooling operation can be seen by observing the
case of the word “does”, which could be do+3-
person+singular or doe+plural. If this word ap-
pears after the word “he”, what we care about
more is whether “does” could feasibly be a third
person singular verb, thus agreeing with the sub-
ject. The max-pooling operation captures this in-
tuition by ensuring that if a feature is active for
one of these two analyses, it will also be active in
the pooled representation. This procedure affords
us the capability to efficiently marginalize over all
three possible values of the latent variable at each
step, and compute the full marginal of the word w;
given the context c;—; during generation.

This formulation allows words with the same
stem to share vector information through the char-
acter or morphological embeddings, but still af-
fords each word the ability to capture idiomatic us-
ages of individual words through the word embed-
dings. Furthermore, it allows a language model to
explicitly capture morphological information, for
example that third person singular subjects should
co-occur with third person singular verbs. Finally,

the character-level segment of the embedding al-
lows the model to at least attempt to build sensible
embeddings for completely unknown words. For
example in Russian where names can decline with
case this formulation allows the model to know
that Obame is probably dative, even if it’s an OOV
at the word level, and even if the morphological
analyzer is unable to produce any valid analyses.

We combine our three-layer input vectors, our
factored output model, and a standard LSTM
backbone to create a morphologically-enabled
RNNLM that, as we will see in the next section,
performs well on morphologically complex lan-
guages.

3 Intrinsic Evaluation

We demonstrate the effectiveness of our model by
experimenting on three languages: Finnish, Turk-
ish, and Russian. For Finnish we use version 8 of
the Europarl corpus, for Turkish we use the SE-
TIMES?2 corpus, and for Russian we use version
12 of the News Commentary corpus. Statistics of
our experimental corpora can be found in Table 1.

Each data set was pre-processed by UNKing all
but the top ~20k words and lemmas by frequency.
No characters or affixes were UNKed. This step is
not strictly required—our model is, after all, ca-
pable of producing arbitrary words— but it speeds
up training immensely by reducing the size of the
word and lemma softmaxes. Since the morphol-
ogy and/or character-level embeddings can still
capture information about the original forms of
these words, the degradation in modelling perfor-
mance is minimal.

For morphological analysis we use Omorfi> for
Finnish, the analyzer of Oflazer (1994) for Turk-
ish, and PyMorphy? for Russian.

3.1 Baseline Models

Since models are not accurately comparable un-
less they share output vocabularies, our baselines
must also allow for the generation of arbitrary
word forms, including out-of-vocabulary items.
We compare to three such models: an improved
Kneser-Ney (Kneser and Ney, 1995) 4-gram base-
line, with an additional character-level backoff
model for OOVs, an RNNLM with character-level
backoff, and a pure character-based RNN lan-
guage model (Sutskever et al., 2011).

https://github.com/flammie/omorfi
‘https://github.com/kmike/pymorphy
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Finnish: “Russian President Vladimir Putin has an ace up his sleeve in the Ukrainian relationship.”

Figure 3: An example of the priors (left) and posteriors (right) over modes used to generate each word in
a sample sentences. Probability given to the word-, morpheme-, and character-level models are shown in
red, blue, and gold respectively. More examples can be found in the appendix.

Since Kneser-Ney language models (and other
count-based models) are typically word-level and
do not model out-of-vocabulary items, we employ
a two-level approach with separate Kneser-Ney
models at the word and character levels. We train
the word-level model after UNKing low frequency
words, and we train the character-level model on
the same list of low frequency words. Now when
we want to predict a word w; given some con-
text ¢ we can use the word-level model to directly
predict p(w;|c) unless w; is an out-of-vocabulary
item. In that case we model p(w; | ¢) as

p(wi | ¢) = p(UNK | ¢) - p(uw; | UNK)

where the first factor is the probability of the word-
level model emitting UNK, and the second is the
probability of the actual out-of-vocabulary word
form under the character-level model.

Secondly we compare to a similar hybrid RNN
model that first predicts the word-level proba-
bility for each word, and if it predicted UNK
then also predicts a sequence of characters us-
ing a separate network. This model uses 256-
dimensional character and word embeddings, and
a 1024-dimensional recurrent hidden layer.

Finally we also compare to a standard RNN lan-
guage model trained purely on the character level.
For this baseline we also use 256-dimensional
character embeddings and a 1024-dimensional re-
current hidden layer.

3.2 Multi-factored Models

For our model we use 128-dimensional word and
root embeddings, 64-dimensional affix and char-
acter embeddings, 128-dimensional word-internal

recurrent hidden layers for characters and mor-
phemes, and a 256-dimensional recurrent hidden
layer for the main inter-word LSTM.

The network is trained to stochastically opti-
mize the log likelihood of the training data using
Adam (Kingma and Ba, 2014). After each 10k
training examples (Finnish, Turkish) or 100k train-
ing examples (Russian) we evaluate the model on
a development set.* If the perplexity on the de-
velopment set represents a new best, we save the
current model to disk, thereby mitigating overfit-
ting via early stopping. No other regularization is
used.

For each language we run four variants of our
model. In order to preserve the ability to model
and emit any word in the modelled language, it
is essential that we keep the character-level part
of our model intact. The morpheme- and word-
level models, however, may be removed without
compromising the generality of the model. As
such, we present our model using only character-
level input and outputs (C), using character- and
morpheme-level inputs and outputs (CM), using
character- and word-level inputs, but no morphol-
ogy (CW), and using all three levels as per the full
model (CMW).

3.3 Results and Analysis

Our experimental results (Table 2) show that our
multi-modal model significantly outperforms all
three baselines: a naive n-gram model, a purely
character-level RNNLM, and a hybrid RNNLM

“We evaluate less frequently on Russian since the dev set
is much larger.
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Finnish Russian Turkish
Train Sents | 2.1M 1.1IM 188K
Train Words | 38M 26M 3.9M
Dev Sents | 1K 38K 1K
Dev Words | 16K 705K 16K
Test Sents | 500 91K 3K
Test Words | 7.6K 1.6M 51K
Word Vocab | 20K 21K 42K
Lemma Vocab | 20K 20K 13K
Affix Vocab | 140 34 180
Char Vocab | 229 150 80

Table 1: Details of our data sets. Each cell indi-
cates the number of sentences and the number of
words in each set.

for open-vocabulary language models. Further-
more, they confirm that morphological analyz-
ers can improve performance of such language
models on particularly morphologically rich lan-
guages. We observe that across all three lan-
guages the space-aware character-level model out-
performs the purely character-based model that
treats spaces just as any other character. Further-
more we see that the Kneser-Ney language model
performs admirably well on this task, underscor-
ing the difference in setting between the familiar,
traditional closed-vocabulary LMs, and the open-
vocabulary language modelling task. Additionally
we find that the relative success of the n-gram
model and the hybrid model over the character
only models underscores the importance of access
to word-level information, even when using a less
sophisticated model.

Table 3 shows some examples of sentences on
which our model heavily outperforms the RNN
baseline and vice-versa. We find that the sentences
on which our model peforms well contain much
less frequent word forms. For each sentence we
examine the frequency with which each token ap-
pears in our training corpus. The sentences on
which our model performs best have a median to-
ken frequency of 305 times, while the sentences
where the RNN performs better has an average to-
ken frequency of 3031 times. Overall our model
has better log-likelihood than the RNN baseline on
88.1% of sentences.

Our methods outperform the n-gram model in
all languages with either set of just two mod-
els, CM or CW. The same models outperform
the hybrid baseline in Turkish and Russian, and
achieves comparable results in Finnish. Finally, in

the agglutinative languages, using all three modes
performs best, while in Russian, a fusional lan-
guage, characters and words alone edge out the
model with morphology. We hypothesize that
our morphology model is better able to model the
long strings of morphemes found in Turkish and
Finnish, but gains little from the more idiosyn-
cratic fusional morphemes of Russian.

Some examples of the priors and posteriors of
the modes used to generate some randomly se-
lected sentences from the held out test set can be
seen in Figure 3 and the appendix (Figure 4). The
figures show that all of the models tend a priori
to prefer to generate words directly when possi-
ble, but that context can certainly influence its pri-
ors. In Finnish, after seeing the word Viadmir, the
model suddenly assigns significantly more weight
to the character-level model to generate the fol-
lowing word, which is likely to be a surname.
In Russian, after the preposition o, the following
noun is required to be in a rare case. As such,
the model suddenly assigns more probability mass
to the following word being generated using the
morpheme-level model.

The posteriors tell a similarly encouraging
story. In Finnish we see that the word presiden-
tilld is overwhelmingly likely to be produced by
the morphology model due to its peculiar adessive
(“at”) case marking. Vladmir is common enough
in the data that it can be generated wholly, but the
last name Putin is again inflected into the adessive
case, forming Putinilla. Unfortunately the mor-
phological analyzer is unfamiliar with the stem
Putin, forcing the word to be generated by the
character-level model. In our Turkish example, all
of the short words are generated at the word level,
while the primary nouns infernetten (“internet”)
and ders (“lecture”) are possible to generate ei-
ther as words or as a sequence of morphemes. The
verb, which has much more complex morphology
(progressive past tense with a third person singular
agent), is generated via the morphological model.

4 Extrinsic Evaluation

In addition to evaluating our model intrinsically
using perplexity, we evaluate it on two down-
stream tasks. The first is machine translation be-
tween English and Turkish. The second is Turkish
morphological analysis disambiguation.
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(a) Finnish (b) Turkish (c) Russian
Model | Dev Test Model | Dev Test Model | Dev Test
KN4+OOV | 2.04 1.94 KN4+O0V | 2.01 2.06 KN4+O0V | 1.68 1.70
RNN+OOV | 2.03 1.92 RNN+OOV | 1.99 2.05 RNN+OOV | 1.62 1.66
PureC | 2.69 2.63 PureC | 2.21 2.30 PureC | 1.91 2.05
C|240 232 C|205 216 C| 185 1.87
CM | 195 1.85 CM | 1.88 1.99 CM | 147 1.50
CW | 2.03 194 CW | 1.78 1.85 CW | 1.44 147
CWM | 191 1381 CWM | 1.74 1.82 CWM | 149 1.52

Table 2: Intrinsic evaluation of language models for three morphologically rich languages. Entropy for
each test set is given in bits per character on the tokenized data. Lower is better, with 0.0 being perfect.

Komiinizm pesinde kosan Arnavut pek yok

Parlakhigimi kaybeden miicevher: Kirlilik Karadeniz’i esir aliyor
Olaylarin baskisiyla karsilasan rejim tutumunu yavasca yumusatti, 1991 yilinda ¢ok partili
— secimleri diizenledi ve sonunda da ertesi yil tiimden iktidar1 birakti.

Southeast European Times i¢in Belgrad’dan Dusan Kosanovi¢’in haberi - 24/06/04

23 Temmuz’dan bu yana Balkanlar’la ilgili is ve ekonomi haberlerine genel bakis:

AB’nin Geniglemeden Sorumlu Komisyon Uyesi Olli Rehn (solda) Arnavutluk Bagbakani Sali
— Beriga ile 15 Mart Persembe giinii Tiran’da bir araya geldi.

Table 3: Some examples of Turkish sentence on which our morphological model heavily outperforms
the baseline RNNLM (top) and some examples of the opposite (bottom). The sentences that our model
performs well on have many particularly rare words, whereas the sentences the RNNLM performs well
on were seen hundreds or thousands of times in the training corpus. Words in bold were seen fewer than
25 times in the training corpus. Arrows indicate line wrapping.

4.1 Machine Translation

As an extrinsic evaluation we test whether our
language model improves machine translation be-
tween Turkish and English. While we could trans-
form our model into a source-conditioned trans-
lation model, we choose here to focus on testing
our model as an external unconditional language
model, leaving the conditional version for future
work. Since neural machine translation systems
struggle with low-resource languages (Koehn and
Knowles, 2017), we choose to introduce the score
of our LM as an additional feature to a cdec (Dyer
et al., 2010) hierarchical MT system. We train on
the WMT 2016 Turkish—English data set, and per-
form n-best reranking after re-tuning weights with
the new feature.

The results, shown in Table 4 demonstrate small
but significant gains in both directions, particu-
larly into Turkish, where modelling productive
morphology should be more important.

4.2 Morphological Disambiguation

Our model is a joint model over words and the
latent processes giving rise to those words (i.e.,
which generation process was selected and, for the

Lang. Pair System BLEU
TR-EN Baseline 15.0
Morph. Input 15.2
EN-TR Baseline 10.1
Morph. Output  10.5

Table 4: Machine Translation Results

morpheme process, which morpheme sequence
was generated). While our model is not directly
trained to perform morphological disambiguation,
it still performs this task quite admirably. Given
a trained morphological language model, a sen-
tence s, and a set of morphological analyses
z, we can query the model to find p(s,z) =
p(wi, wa, ..., wy) for a given sentence. Most no-
tably, each w; may have a set of possible mor-
phological analyses {ay, as, ... ap;} from which
we would like to choose the most likely a pos-
teriori. 'To perform this task, we simply query
the model M; times, each time hiding all but
the jth possible analysis from the model. We
can then re-normalize the resulting probabilities to
find p(a,|s) foreach j € 1...M;.

To make training and inference with our model
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Model Supervised? Ambiguous Words All words
Random Chance no 34.08% 52.66%
Unidirectional no 55.15% 80.28%
Bidirectional no 63.85% 84.11%
Shen et. al yes 91.03% 96.43%

Table 5: Morphological disambiguation accuracy results for Turkish.

tractable, we have assumed independence between
previous adjacent events and the next word gen-
eration given the previous surface word forms
(§2.1). Thus, the posterior probability over the
analysis is only determined by the left context—
subsequent decisions are independent of the pro-
cess used to generate a word at time t. However,
since disambiguating information may be present
in either direction, we introduce a model variant
that conditions on information in both directions.
Bidirectional dependencies mean that we can no
longer use the chain rule to factor the probability
distribution from left-to-right. Rather we have to
switch to a globally normalized, undirected model
(i.e., a Markov random field) to define the prob-
abilities of selecting the mode of generation and
generation probability (conditional on the mode).
The factors used to parameterize the model are de-
fined in terms of two LSTMs, one encoding from
left-to-right the prefix of the ith word (h;, defined
exactly as above), and a second encoding from
right-to-left its suffix (h}). These two vector rep-
resentations are used to compute a score using a
locally normalized mixture model for each word.
Intuitively, the morphological analysis generated
at each time step should be compatible with both
the preceding words and the following words.

Optimizing this model with the same MLE cri-
terion we used in the direct model is, unfortu-
nately, intractable since a normalizer would need
to be computed. Instead, we use a pseudo-
likelihood objective (Besag, 1975).

LpL = Hp(wi | w_;)
— H Zp(mi =m | w_;)p(w; | m, w_;)

We note that although this model has a very differ-
ent semantics from the directed one, the PL train-
ing objective is identical to the directed model’s,
the only difference is that features are based both
on the past and future, rather than only the past.
Similarly to training, evaluating sentence like-
lihoods using this model is intractable, but poste-

rior inference over m; and a; is feasible since the
normalization factors cancel and therefore do not
need to be computed.

For our experiments we use the data set of
Yuret and Tiire (2006) who manually disam-
biguated from among the possible forms identified
by an FST. We significantly out-perform the sim-
ple baseline of randomly guessing, and our results
are competitive with Yatbaz and Yuret (2009), al-
though they evaluated on a different dataset so
they are not directly comparable. Furthermore, we
also compare to a supervised model (Shen et al.,
2016). While unsupervised techniques can’t hope
to exceed supervised accuracies, this comparison
provides insight into the difficulty of the problem.
See Table 5 for results.

5 Related Work

Purely Character-based or Subword-based
LMs have a rich history going all the way
back to Markov (1906)’s work modelling Russian
character-by-character with his namesake models.
More recently Sutskever et al. (2011) were the first
to apply RNNs to character-level language mod-
elling, leveraging their ability to handle the long-
range dependencies required to model language at
the character level. It is also possible to alleviate
the closed vocabulary problem by training models
on automatically acquired subword units (Mikolov
etal., 2012; Sennrich et al., 2015). While these ap-
proaches allow for an open vocabulary (or nearly
open, in the case of subwords) they discard a
large amount of higher-level information, inhibit-
ing learning.

Character-aware language models, which
combine character- and word-level information
have shown promise (Kang et al., 2011; Ling
et al., 2015; Kim et al., 2016). Unsupervised
morphology has also been shown to improve the
representations used by a log-bilinear LM (Botha
and Blunsom, 2014). Jozefowicz et al. (2016)
explore many interesting such architectures,
and compare with fully character-based models.
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While these models allow for the elegant encoding
of novel word forms they lack an open vocabulary.

Open-vocabulary hybrid models alleviate this
problem, extending the benefits of character-level
representations to the generation. Such hybrid
models with open vocabularies have been around
since Brown et al. (1992). More recently, Chung
etal. (2016) and Hwang and Sung (2016) describe
methods of modelling sentences at both the word
and character levels, using mechanisms to allow
both a word-internal model that captures short-
range dependencies and a word-external model to
capture longer-range dependencies. These mod-
els have been successfully applied to machine
translation by Luong and Manning (2016), who
use a character-level model to predict translations
of out of vocabulary words. Our work falls in
this category—we combine multiple representa-
tion levels while maintaining the ability to gener-
ate any character sequence. In contrast to these
previous works, we demonstrate the utility of in-
corporating morphological information in these
open-vocabulary models.

Mixture model language generation where the
mixture coefficients are predicted by a neural net
are becoming quite common. Neubig and Dyer
(2016) use this strategy to combine a count-based
model and a neural language model. Ling et al.
(2016) interpolate between character- and word-
based models to translate between natural lan-
guage text and computer code. Merity et al. (2016)
also use multiple output models, allowing a word
to either be generated by a standard softmax or by
copying a word from earlier in the input sentence.

6 Conclusion

We have demonstrated a technique for language
modelling that works particularly well on mor-
phologically rich languages where having an open
vocabulary is desirable. We achieve this by us-
ing a multi-modal architecture that allows words
to be input and output at the word, morpheme,
or character levels. We show that knowledge of
the existence of word boundaries is of critical im-
portance for language modelling tasks, even when
otherwise operating entirely at the character level,
resulting in a surprisingly large reduction in per-
character entropy across all languages studied.
Furthermore, we demonstrate that if we have ac-
cess to a morphological analyzer we can leverage

it to further improve our LM, reinforcing the no-
tion that the explicit inclusion of linguistic infor-
mation can indeed aid learning of neural models.
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A Example sentences

p(mode | context)

,,/3 ol y{, 2 J’(—S, "’e o/,[ "s,,ﬁr ;’/9 0%0/; J’&—s, éfeo/,t
/7/0' 0?; iy % @e /0' /;{ A % e@
s " ///e.

Finnish: “Russian President Vladimir Putin has an ace up his sleeve in the Ukrainian relationship.”

0.9 z 0.9
208 Z o8
go7 5 0.7
506 £ 0.6
Zos g o5
204 5 0.4
203 303
0.2 £02
0.1 2 0.1
O'Obys//X—o'v O'Obys//X—dv
y Y e%czfe y e/ o er%r v Yy easc’;te,/) e/ Sy @/“g',;)f
(‘[@/) O'(/ Q@/) O'(/
Turkish: “He gave only two lectures on the internet this year.”
0.9
£ 0.8
g 0.7
S 06
— 0.5
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2o0.
= 0.2
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e C/?@ 'Q/VG) G@pco A707~ OOJ/ ¥ C-’]e ‘0/7@7~ GG,OCO A’O) 10, )
Cre - a5 %,\, ”76/((/ Crg - a5 5’6* %/Q/

e,
“y,
4]

ey,

%,

Yy
Russian: “The investigation does not theorize about the attacker’s motives.”

Figure 4: Some examples of the priors (left) and posteriors (right) over modes used to generate each word

in some sample sentences. Probability given to the word-, morpheme-, and character-level models are
shown in red, blue, and gold respectively. The Finnish example is a reprint of Figure 3
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