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Abstract

Co-training is a popular semi-supervised
learning framework to utilize a large amount
of unlabeled data in addition to a small la-
beled set. Co-training methods exploit pre-
dicted labels on the unlabeled data and se-
lect samples based on prediction confidence
to augment the training. However, the selec-
tion of samples in existing co-training methods
is based on a predetermined policy, which ig-
nores the sampling bias between the unlabeled
and the labeled subsets, and fails to explore
the data space. In this paper, we propose a
novel method, Reinforced Co-Training, to se-
lect high-quality unlabeled samples to better
co-train on. More specifically, our approach
uses Q-learning to learn a data selection policy
with a small labeled dataset, and then exploits
this policy to train the co-training classifiers
automatically. Experimental results on click-
bait detection and generic text classification
tasks demonstrate that our proposed method
can obtain more accurate text classification re-
sults.

1 Introduction

Large labeled datasets are often required to obtain
satisfactory performance for natural language pro-
cessing tasks. However, it is time-consuming to la-
bel text corpus manually. In the meanwhile, there
are abundant unlabeled text corpora available on
the web. Semi-supervised methods permit learn-
ing improved supervised models by jointly train
on a small labeled dataset and a large unlabeled
dataset (Zhu, 2006; Chapelle et al., 2009).

Co-training is one of the widely used semi-
supervised methods, where two complementary
classifiers utilize large amounts of unlabeled ex-
amples to bootstrap the performance of each other
iteratively (Blum and Mitchell, 1998; Nigam and
Ghani, 2000). Co-training can be readily applied
to NLP tasks since data in these tasks naturally
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Figure 1: Illustration of sample-selection issues in co-
training methods. (1) Randomly sampled unlabeled ex-
amples (2) will result in high sampling bias, which
will cause bias shift towards the unlabeled dataset (←).
(2) High-confidence examples (3) will contribute little
during the model training, especially for discriminat-
ing the boundary examples (4), resulting in myopic
trained models.

have two or more views, such as multi-lingual
data (Wan, 2009) and document data (headline
and content) (Ghani, 2000; Denis et al., 2003).
In the co-training framework, each classifier is
trained on one of the two views (aka a subset of
features) of both labeled and unlabeled data, un-
der the assumption that either view is sufficient
to classify. In each iteration, the co-training al-
gorithm selects high confidence samples scored
by each of the classifiers to form an auto-labeled
dataset, and the other classifier is then updated
with both labeled data and additional auto-labeled
set. However, as shown in Figure 1, most of exist-
ing co-training methods have some disadvantages.
Firstly, the sample selection step ignores distribu-
tional bias between the labeled and unlabeled sets.
It is common in practice to use unlabeled datasets
collected differently from the labeled set, result-
ing in a significant difference in their sample dis-
tribution. After iterative co-training, the sampling
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bias may shift towards the unlabeled set, which re-
sults in poor performance of the trained model at
the testing time. To remedy such bias, an ideal al-
gorithm should select those samples according to
the target (potentially unknown) testing distribu-
tion. Secondly, the existing sample selection and
training can be myopic. Conventional co-training
methods select unlabeled examples with high con-
fidence predicted by trained models. This strategy
often causes only those unlabeled examples that
match well to the current model being picked dur-
ing iteration and the model might fail to generalize
to complete sample space (Zhang and Rudnicky,
2006). It relates to the well-known exploration-
exploitation trade-off in machine learning tasks.
An ideal co-training algorithm should explore the
space thoroughly to achieve globally better perfor-
mance. These intuitions inspire our work on learn-
ing a data selection policy for the unlabeled dataset
in co-training.

The iterate data selection steps in co-training
can be viewed as a sequential decision-making
problem. To resolve both issues discussed above,
we propose Reinforced Co-Training, a rein-
forcement learning (RL)-based framework for co-
training. Concretely, we introduce a joint formu-
lation of a Q-learning agent and two co-training
classifiers. In contrast to previous predetermined
data sampling methods of co-training, we design
a Q-agent to automatically learn a data selection
policy to select high-quality unlabeled examples.
To better guide the policy learning of the Q-agent,
we design a state representation to delivery the sta-
tus of classifiers and utilize the validation set to
compute the performance-driven rewards. Empir-
ically, we indicate that our method outperforms
previous related methods on clickbait detection
and generic text classification problems. In sum-
mary, our main contributions are three-fold:

• We are first to propose a joint formulation of
RL and co-training methods;

• Our learning algorithm can learn a good data
selection policy to select high-quality unla-
beled examples for better co-training;

• We show that our method can apply to large-
scale document data and outperform base-
lines in semi-supervised text classification.

In Section 2, we outline related work in semi-
supervised learning and co-training. We then de-
scribe our proposed method in Section 3. We show

experimental results in Section 4. Finally, we con-
clude in Section 5.

2 Related Work

Semi-supervised learning algorithms have been
widely used in NLP (Liang, 2005). As for text
classification, Dai and Le (2015) introduce a se-
quence autoencoder to pre-train the parameters for
the later supervised learning process. Johnson and
Zhang (2015, 2016) propose a method to learn
embeddings of small text regions from unlabeled
data for integration into a supervised convolutional
neural network (CNN) or long short-term mem-
ory network (LSTM). Miyato et al. (2016) further
apply perturbations to the word embeddings and
pre-train the supervised models through adversar-
ial training. However, these methods mainly focus
on learning the local word-level information and
pre-trained parameters from unlabeled data, which
fails to capture the overall text-level information
and potential label information.

Co-training can capture the text-level informa-
tion of unlabeled data and generate pseudo labels
during the training, which is especially useful on
unlabeled data with two distinct views (Blum and
Mitchell, 1998). However, the confidence-based
data selection strategies (Goldman and Zhou,
2000; Zhou and Li, 2005; Zhang and Zhou, 2011)
often focus on some special regions of the input
space and fail to generate an accurate estimation
of data space. Zhang and Rudnicky (2006) pro-
poses a performance-driven data selection strategy
based on pseudo-accuracy and energy regulariza-
tion. Meanwhile, Chawla and Karakoulas (2005)
argues that the random data sampling method of-
ten causes sampling bias shift of the trained model
towards the unlabeled set.

Comparing to previous related methods, our
Reinforced Co-Training model can learn a
performance-driven data selection policy to select
high-quality unlabeled data. Furthermore, the per-
formance estimation is more accurate due to the
validation dataset and the data selection strategy is
automatically learned instead of human designed.
Lastly, the selected high-quality unlabeled data
can not only help explore the data space but also
reduce the sampling bias shift.

Our work is also related to recent studies in
“learning to learn” (Maclaurin et al., 2015; Zoph
and Le, 2016; Chen et al., 2017; Wichrowska
et al., 2017; Yeung et al., 2017). Learning to learn
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Figure 2: The Reinforced Co-Training framework.

is one of the meta-learning methods (Schmidhu-
ber, 1987; Bengio et al., 1991), where one model
is trained to learn how to optimize the parame-
ters of another certain algorithm. While previous
studies focus more on neural network optimiza-
tion (Chen et al., 2017; Wichrowska et al., 2017)
and few-shot learning (Vinyals et al., 2016; Ravi
and Larochelle, 2016; Finn et al., 2017), we are
first to explore how to learn a high-quality data se-
lection policy in semi-supervised methods, in our
case, the co-training algorithm.

3 Method

In this section, we describe our RL-based frame-
work for co-training in detail. The conventional
co-training methods follow the framework:

1. Initialize two classifiers by training on the la-
beled set;

2. Iteratively select a subset of unlabeled data
based on a predetermined policy;

3. Iteratively update two classifiers with the se-
lected subset of unlabeled data in addition to
the labeled one.

Step 2 is the core of different co-training variants.
The original co-training algorithm is equipped
with a policy of selecting high-confidence samples
by two classifiers. Our main idea is to improve the
policy by reinforcement learning.

We formulate the data selection process as a se-
quential decision-making problem and the deci-
sion (action) at at each iteration (time step) t is
to select a portion of unlabeled examples. This
problem can be solved with an RL-agent by learn-
ing a policy. We first describe how we organize
the large unlabeled dataset to improve the compu-
tational efficiency. Then we briefly introduce the
classifier models used in co-training. After that,
we describe the Q-agent, the RL-agent used in our
framework and the environment in RL. The two
co-training classifiers are integrated into the envi-
ronment and the Q-agent can learn a good data se-
lection policy by interacting with the environment.
Finally, we describe how to train the Q-agent in
our unified framework.

3.1 Partition Unlabeled Data

Considering that the number of unlabeled samples
is enormous, it is not efficient for the RL-agent to
select only one example at each time step t. Thus,
first we want to partition documents from the unla-
beled dataset into different subsets based on their
similarity. At each time step t, the RL-agent ap-
plies a policy to select one subset instead of one
sample and then update the two co-training classi-
fiers, which can significantly improve the compu-
tational efficiency.

Suppose each example in the unlabeled dataset
as document D, where D is the concatenation of
the headline and paragraph. V is the vocabulary of
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these documents. These documents are partitioned
into different subsets based on Jaccard similarity,
which is defined as:

sim(D1, D2) =
|D1 ∩D2|
|D1 ∪D2|

, (1)

where D1, D2 ∈ R|V | are the one-hot vectors of
each document example.

Based on Jaccard similarity, the unlabeled ex-
amples can be split into different subsets using
the following three steps, which have been widely
used in large-scale web search (Rajaraman and
Ullman, 2010): 1) Shingling, 2) Min-Hashing, and
3) Locality-Sensitive Hashing (LSH).

After partition, the unlabeled set U can be con-
verted into K different subset {U1, U2, ..., UK}.
Meanwhile, for each subsetUi, the first added doc-
ument example Si is recorded as the representative
example of the subset Ui. Choosing representative
samples will help evaluate the classifiers on dif-
ferent subsets and obtain the state representations,
which will be discussed in 3.3.1.

3.2 Classifier Models

As mentioned before, much linguistic data natu-
rally has two or more views, such as multi-lingual
data (Wan, 2009) and document data (headline
+ paragraph) (Ghani, 2000; Denis et al., 2003).
Based on the two views of data, we can construct
two classifiers respectively. At the beginning of a
training episode, the two classifiers are first seeded
with a small set of labeled (seeding) training data
L. At each time step t, the RL-agent makes a se-
lection action at, and then the unlabeled subset
Uat is selected to train the two co-training clas-
sifiers. Following the standard co-training process
(Blum and Mitchell, 1998), at each time step t,
the classifier C1 annotate the unlabeled subset Uat
and the pseudo-labeled Uat and the small labeled
set L are then used to update the classifier C2, vice
versa. In this way, we can boost the performance
of C1 and C2 simultaneously.

3.3 Q-Learning Agent

Q-learning is a widely used method to find an op-
timal action-selection policy (Watkins and Dayan,
1992). The core of our model is a Q-learning
agent, which is trained to learn a good policy to se-
lect high-quality unlabeled subsets for co-training.
At each time step t, the agent observes the current
state st, and selects an action at from a discrete

set of actions A = {1, 2, ...,K}. Based on the ac-
tion at, the two co-training classifiers C1 and C2

then can be updated with the unlabeled subset Uat
as described in Section 3.2. After that, the agent
receives a performance-driven reward rt and the
next state observation st+1. The goal of our Q-
agent at each time step t is to choose the action
that can maximize the future discount reward

Rt =
T∑

t′=t

γt
′−trt′ , (2)

where a training episode terminates at time T and
γ is the discount factor.

3.3.1 State Representation

The state representation, in our framework, is de-
signed to deliver the status of two co-training clas-
sifiers to the Q-agent. Zhang and Rudnicky (2006)
have proved that training with high-confidence ex-
amples will consequently be a process that rein-
forces what the current model already encodes in-
stead of learning an accurate distribution of data
space. Thus, one insight in formulating the state
representation is to add some unlabeled examples
with uncertainty and diversity during the train-
ing iteration. However, too much uncertainty will
make two classifiers unstable, while too much di-
versity will cause the sampling bias shift towards
the unlabeled dataset (Yeung et al., 2017). In or-
der to automatically capture this insight and select
high-quality subsects during the iteration, the Q-
agent needs to fully understand the distribution of
the unlabeled data.

Based on the above intuition, we formulate the
agents state using the two classifiers’ probability
distribution on the representative example Si of
each unlabeled subset Ui. Suppose aN -class clas-
sification problem, at each time step t, we evaluate
the probability distribution of two classifiers on Si
separately. The state representation then can be
defined as:

st = {P 1
1 ||P 2

1 , P
1
2 ||P 2

2 , ..., P
1
K ||P 2

K}t, (3)

where P 1
i and P 2

i are the probability distribution
of C1 and C2 on Si separately, and || denotes
the concatenation operation. P 1

i , P
2
i ∈ RN and

P 1
i ||P 2

i ∈ R2N . Note that the state representation
is re-computed at each time step t.
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Figure 3: The structure of Q-network. It chooses a un-
labeled subset from {U1, U2, ..., UK} at each time step.
The state representation is computed according to the
two classifiers’ N -class probability distribution on the
representative example Si of each subset Ui.

3.3.2 Q-Network
The agent takes an action at at time step t using a
policy

at = max
a

Q(st, a), (4)

where st is the state representation mentioned
above. The Q-value Q(st, a) is determined by a
neural network as illustrated in Figure 3. Con-
cretely,

za = φ({F (P 1
1 ||P 2

1 ), ..., F (P
1
K ||P 2

K)}; θ), (5)

where the function F maps state representation
P 1
i ||P 2

i ∈ R2N into a common embedding space
of y dimensions, and φ(·) is a multi-layer percep-
tion.

We then use

Q(s, a) = softmax(za) (6)

to obtain the next action.

3.3.3 Reward Function
The agent is trained to select the high-quality un-
labeled subsets to improve the performance of the
two classifier C1 and C2. We capture this intuition
by a performance-driven reward function. At time
step t, the reward of each classifier is defined as
the change in the classifiers accuracy after updat-
ing the unlabeled subset Ut:

r1t = Acc1t (L
′)− Acc1t−1(L

′), (7)

where Acc1t (L
′) is the model accuracy of C1 at

time step t computed on the labeled validation set

L′. Then the r2t is defined following the similar
formulation. The final reward rt is defined as:

rt =

{
r1t × r2t if r1t > 0 and r2t > 0,

0 otherwise.

Note that this reward is only available during train-
ing process.

3.4 Training and Testing
The agent is trained with the Q-learning (Watkins
and Dayan, 1992), a standard reinforcement learn-
ing algorithm that can be used to learn policies for
an agent interacting with an environment. In our
Reinforced Co-Training framework, the environ-
ment is the classifier C1 and C2.

The Q-network parameters θ are learned by op-
timizing:

Li(θi) = Es,a[(V (θi−1)−Q(s, a; θi))
2], (8)

where i is an iteration of optimization and

V (θi−1) = Es′ [r + γmax
a′

Q(s′, a′; θi−1)|s, a].
(9)

.
We optimize it using stochastic gradient de-

scent. The detail of the training process is shown
in Algorithm 1.

At test time, the agent and the two co-training
classifiers are again run simultaneously, but with-
out access to the labeled validation dataset. The
agent selects the unlabeled subset using the
learned greedy policy:

at = maxaQ(st, a). (10)

After obtaining two classifiers from co-training,
based on the weighted voting, the final ensemble
classifier C is defined as:

C = βC1 + (1− β)C2. (11)

β is the weighted parameter, which can be learned
by maximizing the classification accuracy on the
validation set.

4 Experiments

We evaluate our proposed Reinforced Co-training
method in two settings: (1) Clickbait detection,
where obtaining the labeled data is very time-
consuming and labor-intensive in this real-world
problem; (2) Generic text classification, where
we randomly set some of the labeled data as unla-
beled and train our model in a controlled setting.
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Algorithm 1: The algorithm of our Reinforced
Co-Training method.

1 Given a set L of labeled seeding training data;
2 Given a set L′ of labeled validation data;
3 Given K subsets {U1, U2, ..., UK} of

unlabeled data;
4 for episode← 1 to M do
5 Train C1 & C2 with L
6 for time step t← 1 to T do
7 Choose the action at = maxaQ(st, a)
8 Use C1 to label the subset Uat
9 Update C2 with pseudo-labeled Uat , L

10 Use C2 to label the subset Uat
11 Update C1 with pseudo-labeled Uat , L
12 Compute the reward rt based on L′

13 Compute the state representation st+1

14 Update θ using g ∝
∇θEs,a[(V (θi−1)−Q(s, a; θi))

2]

4.1 Baselines
We compare our model with multiple baselines:

• Standard Co-Training: Co-Training with
randomly choosing unlabeled examples
(Blum and Mitchell, 1998).
• Performance-driven Co-Training: The un-

labeled examples are selected based on
pseudo-accuracy and energy regularization
(Zhang and Rudnicky, 2006).
• CoTrade Co-Training: The confidence of

either classifiers prediction on unlabeled ex-
amples is estimated based on specific data
editing techniques, and then high-confidence
examples are used to update the classifiers
(Zhang and Zhou, 2011).
• Semi-supervised Sequence Learning

(Sequence-SSL): The model uses an LSTM
sequence autoencoder to pre-train the pa-
rameters for the later supervised learning
process.(Dai and Le, 2015).
• Semi-supervised CNN with Region Em-

bedding (Region-SSL): The model learns
embeddings of small text regions from un-
labeled data for integration into a supervised
CNN (Johnson and Zhang, 2015).
• Adversarial Semi-supervised Learning

(Adversarial-SSL): The model apply pertur-
bations to word embeddings into an LSTM
and pre-train the supervised models through
adversarial training (Miyato et al., 2016).

Dataset #Tweets #Clickbait #Non-Clickbait
Training 2,495 762 1,697
Validation 9,768 2,380 7,388
Test 9,770 2,381 7,389
Unlabeled 80,012 N/A N/A

Table 1: Statistics of Clickbait Dataset.

4.2 Clickbait Detection

Clickbait is a pejorative term for web content
whose headlines typically aim to make read-
ers curious, but the documents usually have
less relevance with the corresponding headlines
(Chakraborty et al., 2016; Potthast et al., 2017;
Wei and Wan, 2017). Clickbait not only wastes the
readers’ time but also damages the publishers’ rep-
utation, which makes detecting clickbait become
an important real-world problem.

However, most of the attempts focus on news
headlines, while the relevance between headlines
and context is usually ignored (Chen et al., 2015;
Biyani et al., 2016; Chakraborty et al., 2016).
Meanwhile, the labeled data is quite limited in this
problem, but the unlabeled data is easily obtained
from the web (Potthast et al., 2017). Considering
these two challenges, we utilize our Reinforced
Co-training framework to tackle this problem and
evaluate our method.

4.2.1 Datasets
We evaluate our model on a large-size clickbait
dataset, Clickbait Challenge 2017 (Potthast et al.,
2017). The data is collected from twitter posts in-
cluding tweet headlines and paragraphs, and the
training and test sets are judged on a four-point
scale [0, 0.3, 0.66, 1] by at least five annotators.
Each sample is categorized into one class based on
its average scores. The clickbait detection then can
be defined as a two-class classification problem,
including CLICKBAIT and NON-CLICKBAIT.
There also exists an unlabeled set containing large
amounts of collected samples without annotation.
We then split the original test set into the valida-
tion set and final test set by 50%/50%. The statis-
tics of this dataset are listed in Table 1.

4.2.2 Setup
For each document example in the clickbait
dataset, naturally, we have two views, the head-
line and the paragraph. Thus, we construct the two
classifiers in co-training based on these two views.

Headline Classifier The previous state-of-the-
art model (Zhou, 2017) for clickbait detection uses
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a self-attentive bi-directional gated recurrent unit
RNN (biGRU) to model the headlines of the docu-
ment and train a classifier. Following the same set-
ting, we choose self-attentive biGRU as the head-
line classifier in co-training.

Paragraph Classifier The paragraphs usually
have much longer sequences than the headlines.
Thus, we utilize the CNN-non-static structure in
Kim (2014) as the paragraph classifier to capture
the paragraph information.

Note that the other three co-training baselines
also use the same classifier settings.

In our Reinforce Co-Training model, we set the
number of unlabeled subsets k as 80. Consider-
ing the clickbait detection as a 2-class classifica-
tion problem (N = 2), the Q-network maps 4-d
input P 1

i ||P 2
i in the state representation to a 3-d

common embedding space (y = 3), with a further
hidden layer of 128 units on top. The dimension k
of the softmax layer is also 80.

As for the other semi-supervised baselines,
Sequence-SSL, Region-SSL and Adversarial-
SSL, we concatenate the headline and the para-
graph as the document and train these models di-
rectly on the document data. To better analyze the
experimental results, we also implement another
baseline denoted as CNN (Document), which uses
the CNN structure (Kim, 2014) to model the doc-
ument with supervised learning. The CNN (Doc-
ument) model is trained on the (seeding) training
set and the validation set.

Following the previous researches (Chakraborty
et al., 2016; Potthast et al., 2017), we use Pre-
cision, Recall and F1 Score to evaluate different
models.

4.2.3 Results
The results of clickbait detection are shown in Ta-
ble 2. From the results, we observe that: (1)
Our Reinforced Co-Training model can outper-
form all the baselines, which indicates the capa-
bility of our methods in utilizing the unlabeled
data. (2) The standard co-training is unstable
due to the random data selection strategy, and
the performance-driven and high-confidence data
selection strategies both can improve the perfor-
mance of co-training. Meanwhile, the significant
improvement compared with previous co-training
methods shows that the Q-agent in our model can
learn a good policy to select high-quality subsets.
(3) The three pre-trained based semi-supervised
learning methods also show good results. We

Methods Prec. Recall F1 Score
Self-attentive biGRU 0.683 0.649 0.665
CNN (Document) 0.537 0.474 0.503
Standard Co-Training 0.418 0.433 0.425
Performance Co-Training 0.581 0.629 0.604
CoTrade Co-Training 0.609 0.637 0.623
Sequence-SSL 0.595 0.589 0.592
Region-SSL 0.674 0.652 0.663
Adversarial-SSL 0.698 0.691 0.694
Reinforced Co-Training 0.709 0.684 0.696

Table 2: The experimental results on clickbait dataset.
Prec.: precision.

Best Worst Average STDDEV
F1 Score 0.708 0.685 0.692 0.0068

Table 3: The robustness analysis on clickbait dataset.

think these pre-trained based methods learn lo-
cal embeddings during the unsupervised training,
which may help them to recognize some impor-
tant patterns in clickbait detection. (4) The self-
attentive biGRU trained only on headlines of the
labeled set actually show surprisingly good perfor-
mance on clickbait detection, which demonstrates
that most clickbait documents have obvious pat-
terns in the headline field. The reason why CNN
(Document) fails to capture these patterns may be
that the concatenation of headlines and paragraphs
dilutes these features. But for those cases with-
out obvious patterns in the headline, our results
demonstrate that the paragraph information is still
a good supplement to detection.

4.2.4 Algorithm Robustness
Previous studies (Morimoto and Doya, 2001; Hen-
derson et al., 2017) show that reinforcement
learning-based methods usually lack robustness
and are sensitive to the seeding sets and pre-
trained steps. Thus, we design an experiment
to detect whether our learned data section policy
is sensitive to the (seeding) training set. First,
based on our original data partition, we train our
reinforcement learning framework to learn a Q-
agent. During the test time, instead of using the
same seeding set when doing comparative experi-
ments, we randomly sample other 10 seeding sets
from the labeled dataset and learn 10 classifiers
based without re-training the Q-agent (data selec-
tion policy). Note that the validation set is not
available during the co-training period of the test
time. Finally, we evaluate these 10 classifiers us-
ing the same metric. The results are shown in Ta-
ble 3.

1258



Dataset AG’s News DBpedia
#Classes 4 14
#Training 12,000 56,000
#Validation 12,000 56,000
#Test 7,600 70,000
#Unlabeled 96,000 448,000

Table 4: Statistics of the Text Classification Datasets.

The results demonstrate that our learning algo-
rithm is robust to different (seeding) training sets,
which indicates that the Q-agent in our model can
learn a good and robust data selection policy to
select high-quality unlabeled subsets to help the
co-training process.

4.3 Generic Text Classification
Generic text classification is a classic problem
for natural language processing, where one needs
to categorized documents into pre-defined classes
(Kim, 2014; Zhang et al., 2015; Johnson and
Zhang, 2015, 2016; Xiao and Cho, 2016; Miyato
et al., 2016). We evaluate our model on generic
text classification problem to study our method in
a controlled setting.

4.3.1 Datasets
Following the settings in Zhang et al. (2015), we
use large-scale datasets to train and test our model.
To maintain the two-view setting of the co-training
method, we choose the following two datasets.
The original annotated training set is then split
into three sets, 10% labeled training set, 10% la-
beled validation set and 80% unlabeled set. The
original proportion of different classes remains the
same after the partition. The statistics of these two
datasets are listed in Table 4.

AG’s news corpus. The AGs corpus of news
articles is obtained from the web and each sample
has the title and description fields.

DBpedia ontology dataset. This dataset is con-
structed by picking 14 non-overlapping classes
from DBpedia 2014. Each sample contains the ti-
tle and abstract of a Wikipedia article.

4.3.2 Setup
For each document example in the above two
datasets, naturally we have two views, the headline
and the paragraph. Similar to clickbait detection,
we also construct the two classifiers in co-training
based on these two views. Following the (Kim,
2014), we set both the headline classifier and the
paragraph classifier as the CNN-non-static model.
Owing to that fact that the original datasets are

Methods AG’s News DBpedia
CNN (Training+Validation) 28.32% 9.53%
CNN (All) 8.69% 0.91%
Standard Co-Training 26.52% 7.66%
Performance Co-Training 21.73% 5.84%
CoTrade Co-Training 19.06% 5.12%
Sequence-SSL 19.54% 4.64%
Region-SSL 18.27% 3.76%
Adversarial-SSL 8.45%∗ 0.89%∗

Reinforced Co-Training 16.64% 2.45%

Table 5: The experimental results on generic text clas-
sification datasets. * Adversarial-SSL is trained on full
labeled data after pre-training.

fully labeled, we implement two other baselines:
(1) CNN (Training+Validation), which is super-
vised trained on the partitioned training and val-
idation sets; (2) CNN (All) which is supervised
trained on the original (100%) dataset.

For AG’s News dataset, we set the number of
unlabeled subsets k as 96. The number of classes
N = 4, and thus the Q-network maps 8-d input
P 1
i ||P 2

i in the state representation to a 5-d com-
mon embedding space (y = 5), with a further hid-
den layer of 128 units on top. The dimension k
of the softmax layer is also 96. As for DBpedia
dataset, k = 224, N = 14, and y = 10,.

Following the previous researches (Kim, 2014),
we use test error rate (%) to evaluate different
models.

4.3.3 Results
The results of generic text classification are shown
in Table 5. From the results, we can observe
that: (1) Our Reinforced Co-Training model out-
performs all the real semi-supervised baselines on
two generic text classification datasets, which in-
dicates that our method is consistent in differ-
ent tasks. (2) The CNN (All) and Adversarial-
SSL trained on all the original labeled data per-
form best, which indicates there is still an obvious
gap between semi-supervised methods and full-
supervised methods.

4.3.4 Algorithm Robustness
Similar to Section 4.2.4, we evaluate whether
our learned data section policy is sensitive to
the different partitions and (seeding) training
sets. First, based on our original data parti-
tion (10%/10%/80%), we train our reinforcement
learning framework. During the test time, we
randomly sample other 10 data partitions instead
of the one used in comparative experiments, and
learn 10 ensemble classifiers based on the learned
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Datasets Best Worst Average STDDEV
AG’s News 14.78 17.96 16.62 1.36
DBPedia 2.18 4.06 2.75 0.94

Table 6: The robustness analysis on generic text classi-
fication. Metric: test error rate (%).

Q-agent. Note that after sample different data par-
titions, we will also reprocess the unlabeled sets as
described in Section 3.1. We then evaluate these
10 classifiers using the same metric. The results
are shown in Table 6.

The results demonstrate that our learning algo-
rithm is robust to different (seeding) training sets
and partitions of the unlabeled set, which again in-
dicates that the Q-agent in our model is able to
learn a good and robust data selection policy to
select high-quality unlabeled subsets to help the
co-training process.

4.4 Discussion about Stability

Previous studies (Zhang et al., 2014; Reimers and
Gurevych, 2017) show that neural networks can
be unstable even with the same training parame-
ters on the same training data. As for our cases,
when the two classifiers are initialized with differ-
ent labeled seeding sets, they can be very unstable.
However, after enough iterations with the properly
selected unlabeled data, the performance would be
stable generally.

Usually, the more substantial labeled training
datasets will lead to more stable models. How-
ever, the problem is that the AGs News and DB-
pedia have 4 and 14 classes separately, while the
Clickbait dataset only has 2 classes. That means
the numbers of each class in AGs News, DBPedia
and Clickbait actually are the same order of mag-
nitude. Meanwhile, in our co-training setting, the
prediction error is easy to accumulate because the
two classifiers bootstrap the performance of each
other. The classification could be harder with the
increase of classes. Based on these reasons, the
stability does not show a very strong correlation
with the size of datasets in our experiments of Sec-
tion 4.2.4 and 4.3.4.

5 Conclusion and Future Work

In this paper, we propose a novel method, Rein-
forced Co-Training, for training classifiers by uti-
lizing both the labeled and unlabeled data. The
Q-agent in our model can learn a good data selec-
tion policy to select high-quality unlabeled data

for co-training. We evaluate our models on two
tasks, clickbait detection and generic text classifi-
cation. Experimental results show that our model
can outperform other semi-supervised baselines,
especially those conventional co-training methods.
We also test the Q-agent and prove that the learned
data selection policy is robust to different seeding
sets and data partitions.

For future studies, we will investigate the data
selection policies of other semi-supervised meth-
ods and try to learn these policies automatically.
We also plan to extend our method to multi-
source classification cases and utilize the multi-
agent communication environment to boost the
classification performance.
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