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Abstract

A number of differences have emerged be-
tween modern and classic approaches to con-
stituency parsing in recent years, with struc-
tural components like grammars and feature-
rich lexicons becoming less central while re-
current neural network representations rise in
popularity. The goal of this work is to ana-
lyze the extent to which information provided
directly by the model structure in classical sys-
tems is still being captured by neural methods.
To this end, we propose a high-performance
neural model (92.08 F1 on PTB) that is rep-
resentative of recent work and perform a se-
ries of investigative experiments. We find that
our model implicitly learns to encode much of
the same information that was explicitly pro-
vided by grammars and lexicons in the past,
indicating that this scaffolding can largely be
subsumed by powerful general-purpose neural
machinery.

1 Introduction

In the past several years, many aspects of con-
stituency parsing and natural language processing
in general have changed. Grammars, which were
once the central component of many parsers, have
played a continually decreasing role. Rich lexi-
cons and handcrafted lexical features have become
less common as well. On the other hand, recurrent
neural networks have gained traction as a power-
ful and general purpose tool for representation. So
far, not much has been shown about how neural
networks are able to compensate for the removal
of the structures used in past models. To gain in-
sight, we introduce a parser that is representative
of recent trends and analyze its learned represen-
tations to determine what information it captures
and what is important for its strong performance.

Our parser is a natural extension of recent work
in constituency parsing. We combine a common

span representation based on recurrent neural net-
works with a novel, simplified scoring model. In
addition, we replace the externally predicted part-
of-speech tags used in some recent systems with
character-level word representations. Our parser
achieves a test F1 score of 92.08 on section 23 of
the Penn Treebank, exceeding the performance of
many other state-of-the-art models evaluated un-
der comparable conditions. Section 2 describes
our model in detail.

The remainder of the paper is focused on anal-
ysis. In Section 3, we look at the decline of
grammars and output correlations. Past work in
constituency parsing used context-free grammars
with production rules governing adjacent labels
(or more generally production-factored scores) to
propagate information and capture correlations be-
tween output decisions (Collins, 1997; Charniak
and Johnson, 2005; Petrov and Klein, 2007; Hall
et al., 2014). Many recent parsers no longer have
explicit grammar production rules, but still use in-
formation about other predictions, allowing them
to capture output correlations (Dyer et al., 2016;
Choe and Charniak, 2016). Beyond this, there
are some parsers that use no context for bracket
scoring and only include mild output correlations
in the form of tree constraints (Cross and Huang,
2016b; Stern et al., 2017). In our experiments, we
find that we can accurately predict parents from
the representation given to a child. Since a simple
classifier can predict the information provided by
parent-child relations, this explains why the infor-
mation no longer needs to be specified explicitly.
We also show that we can completely remove out-
put correlations from our model with a variant of
our parser that makes independent span label deci-
sions without any tree constraints while maintain-
ing high F1 scores and mostly producing trees.

In Section 4, we look at lexical representa-
tions. In the past, parsers used a variety of cus-
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tom lexical representations, such as word shape
features, prefixes, suffixes, and special tokens
for categories like numerals (Klein and Manning,
2003; Petrov and Klein, 2007; Finkel et al., 2008).
Character-level models have shown promise in
parsing and other NLP tasks as a way to remove
the complexity of these lexical features (Balles-
teros et al., 2015; Ling et al., 2015b; Kim et al.,
2016; Coavoux and Crabbé, 2017; Liu and Zhang,
2017). We compare the performance of character-
level representations and externally predicted part-
of-speech tags and show that these two sources of
information seem to fill a similar role. We also
perform experiments showing that the representa-
tions learned with character-level models contain
information that was hand-specified in some other
models.

Finally, in Section 5 we look at the surface con-
text captured by recurrent neural networks. Many
recent parsers use LSTMs, a popular type of re-
current neural network, to combine and summa-
rize context for making decisions (Choe and Char-
niak, 2016; Cross and Huang, 2016a; Dyer et al.,
2016; Stern et al., 2017). Before LSTMs became
common in parsing, systems that included surface
features used a fixed-size window around the fen-
ceposts at each end of a span (Charniak and John-
son, 2005; Finkel et al., 2008; Hall et al., 2014;
Durrett and Klein, 2015), and the inference proce-
dure handled most of the propagation of informa-
tion from the rest of the sentence. We perform ex-
periments showing that LSTMs capture far-away
surface context and that this information is impor-
tant for our parser’s performance. We also pro-
vide evidence that word order of the far-away con-
text is important and that the amount of context
alone does not account for all of the gains seen
with LSTMs.

Overall, we find that the same sources of in-
formation that were effective for grammar-driven
parsers are also captured by parsers based on re-
current neural networks.

2 Parsing Model

In this section, we propose a span-based parsing
model that combines components from several re-
cent neural architectures for constituency parsing
and other natural language tasks. While this sys-
tem is primarily introduced for the purpose of our
analysis, it also performs well as a parser in its
own right, exhibiting some gains over comparable

work. Our model is in many respects similar to
the chart parser of Stern et al. (2017), but features
a number of simplifications and improvements.

2.1 Overview
Abstractly, our model consists of a single scoring
function s(i, j, `) that assigns a real-valued score
to every label ` for each span (i, j) in an input sen-
tence. We take the set of available labels to be the
collection of all nonterminals and unary chains ob-
served in the training data, treating the latter as
atomic units. The score of a tree T is defined as a
sum over internal nodes of labeled span scores:

s(T ) =
∑

(i,j,`)∈T
s(i, j, `).

We note that, in contrast with many other chart
parsers, our model can directly score n-ary trees
without the need for binarization or other tree
transformations. Under this setup, the parsing
problem is to find the tree with the highest score:

T̂ = argmax
T

s(T ).

Our concrete implementation of s(i, j, `) can be
broken down into three pieces: word representa-
tion, span representation, and label scoring. We
discuss each of these in turn.

2.2 Word Representation
One popular way to represent words is the use of
word embeddings. We have a separate embed-
ding for each word type in the training vocabu-
lary and map all unknown words at test time to a
single <UNK> token. In addition to word embed-
dings, character-level representations have also
been gaining traction in recent years, with com-
mon choices including recurrent, convolutional,
or bag-of-n-gram representations. These allevi-
ate the unknown word problem by working with
smaller, more frequent units, and readily capture
morphological information not directly accessi-
ble through word embeddings. Character LSTMs
in particular have proved useful in constituency
parsing (Coavoux and Crabbé, 2017), dependency
parsing (Ballesteros et al., 2015), part-of-speech
tagging (Ling et al., 2015a), named entity recogni-
tion (Lample et al., 2016), and machine translation
(Ling et al., 2015b), making them a natural choice
for our system. We obtain a character-level repre-
sentation for a word by running it through a bidi-
rectional character LSTM and concatenating the
final forward and backward outputs.
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The complete representation of a given word is
the concatenation of its word embedding and its
character LSTM representation. While past work
has also used sparse indicator features (Finkel
et al., 2008) or part-of-speech tags predicted by
an external system (Cross and Huang, 2016b) for
additional word-level information, we find these
to be unnecessary in the presence of a robust
character-level representation.

2.3 Span Representation

To build up to spans, we first run a bidirectional
LSTM over the sequence of word representations
for an input sentence to obtain context-sensitive
forward and backward representations fi and bi

for each fencepost i. We then follow past work in
dependency parsing (Wang and Chang, 2016) and
constituency parsing (Cross and Huang, 2016b;
Stern et al., 2017) in representing the span (i, j)
by the concatenation of the corresponding forward
and backward span differences:

rij = [fj − fi,bi − bj ].

See Figure 1 for an illustration.

2.4 Label Scoring

Finally, we implement the label scoring function
by feeding the span representation through a one-
layer feedforward network whose output dimen-
sionality equals the number of possible labels. The
score of a specific label ` is the corresponding
component of the output vector:

s(i, j, `) = [W2 g(W1rij + z1) + z2]` ,

where g is an elementwise ReLU nonlinearity.

2.5 Inference

Even though our model operates on n-ary trees,
we can still employ a CKY-style algorithm for ef-
ficient globally optimal inference by introducing
an auxiliary empty label ∅ with s(i, j,∅) = 0 for
all (i, j) to handle spans that are not constituents.
Under this scheme, every binarization of a tree
with empty labels at intermediate dummy nodes
will have the same score, so an arbitrary binariza-
tion can be selected at training time with no ef-
fect on learning. We contrast this with the chart
parser of Stern et al. (2017), which assigns dif-
ferent scores to different binarizations of the same
underlying tree and in theory may exhibit varying

performance depending on the method chosen for
conversion.

With this change in place, let sbest(i, j) denote
the score of the best subtree spanning (i, j). For
spans of length one, we need only consider the
choice of label:

sbest(i, i + 1) = max
`

s(i, i + 1, `).

For general spans (i, j), we have the following re-
cursion:

sbest(i, j) = max
`

s(i, j, `)

+ max
k

[sbest(i, k) + sbest(k, j)] .

That is, we can independently select the best label
for the current span and the best split point, where
the score of a split is the sum of the best scores for
the corresponding subtrees.

To parse the full sentence, we compute
sbest(0, n) using a bottom-up chart decoder, then
traverse backpointers to recover the tree achiev-
ing that score. Nodes assigned the empty label
are omitted during the reconstruction process to
obtain the full n-ary tree. The overall complex-
ity of this approach is O(n3 + Ln2), where n is
the number of words and L is the total number
of labels. We note that because our system does
not use a grammar, there is no constant for the
number of grammar rules multiplying the O(n3)
term as in traditional CKY parsing. In practice,
the O(n2) evaluations of the span scoring func-
tion corresponding to the O(Ln2) term dominate
runtime.

2.6 Training
As is common for structured prediction problems
(Taskar et al., 2005), we use margin-based training
to learn a model that satisfies the constraints

s(T ∗) ≥ s(T ) + ∆(T, T ∗)

for each training example, where T ∗ denotes the
gold output, T ranges over all valid trees, and ∆ is
the Hamming loss on labeled spans. Our training
objective is the hinge loss:

max

(
0, max

T
[s(T ) + ∆(T, T ∗)]− s(T ∗)

)
.

This is equal to 0 when all constraints are satisfied,
or the magnitude of the largest margin violation
otherwise.
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Figure 1: Span representations are computed by running a bidirectional LSTM over the input sentence and taking
differences of the output vectors at the two endpoints. Here we illustrate the process for the span (1, 4) correspond-
ing to “played soccer in” in the example sentence.

Since ∆ decomposes over spans, the inner loss-
augmented decode maxT [s(T ) + ∆(T, T ∗)] can
be performed efficiently using a slight modifica-
tion of the dynamic program used for inference.
In particular, we replace s(i, j, `) with s(i, j, `) +
1[` 6= `∗ij ], where `∗ij is the label of span (i, j) in
the gold tree T ∗.

2.7 Results

We use the Penn Treebank (Marcus et al., 1993)
for our experiments with the standard splits of sec-
tions 2-21 for training, section 22 for develop-
ment, and section 23 for testing. Details about
our model hyperparameters and training prodecure
can be found in Appendix A.

Across 10 trials, our model achieves an average
development F1 score of 92.22 on section 22 of the
Penn Treebank. We use this as our primary point
of comparison in all subsequent analysis. The
model with the best score on the development set
achieves a test F1 score of 92.08 on section 23 of
the Penn Treebank, exceeding the performance of
other recent state-of-the-art discriminative models
which do not use external data or ensembling.1

3 Output Correlations

Output correlations are information about compat-
ibility between outputs in a structured prediction
model. Since outputs are all a function of the in-
put, output correlations are not necessary for pre-
diction when a model has access to the entire in-
put. In practice, however, many models through-
out NLP have found them useful (Collins, 1997;
Lafferty et al., 2001; Koo and Collins, 2010), and

1Code for our parser is available at https://github.
com/dgaddy/parser-analysis.

Liang et al. (2008) provides theoretical results sug-
gesting they may be useful for learning efficiently.
In constituency parsing, there are two primary
forms of output correlation typically captured by
models. The first is correlations between label de-
cisions, which often are captured by either produc-
tion scores or the history in an incremental tree-
creation procedure. The second, more subtle cor-
relation comes from the enforcement of tree con-
straints, since the inclusion of one bracket can af-
fect whether or not another bracket can be present.
We explore these two classes of output correla-
tions in Sections 3.1 and 3.2 below.

3.1 Parent Classification

The base parser introduced in Section 2 scores la-
beled brackets independently then uses a dynamic
program to select a set of brackets that forms the
highest-scoring tree. This independent labeling
is an interesting departure from classical parsing
work where correlations between predicted labels
played a central role. It is natural to wonder why
modeling label correlations isn’t as important as
it once was. Is there something about the neural
representation that allows us to function without
it? One possible explanation is that the neural ma-
chinery, in particular the LSTM, is handling much
of the reconciliation between labels that was previ-
ously handled by an inference procedure. In other
words, instead of using local information to sug-
gest several brackets and letting the grammar han-
dle interactions between them, the LSTM may be
making decisions about brackets already in its la-
tent state, allowing it to use the result of these de-
cisions to inform other bracketings.

One way to explore this hypothesis would be
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to evaluate whether the parser’s learned represen-
tations could be used to predict parent labels of
nodes in the tree. If the label of a node’s parent can
be predicted with high accuracy from the repre-
sentation of its span, then little of the information
about parent-child relations provided explicitly by
a grammar has been lost. For this experiment, we
freeze the input and LSTM parameters of our base
model and train a new label scoring network to
predict the label of a span’s parent rather than the
label of the span itself. We only predict parent la-
bels for spans that have a bracket in the gold tree,
so that all but the top level spans will have non-
empty labels. The new network is trained with a
margin loss.

After training on the standard training sections
of the treebank, the network was able to correctly
predict 92.3% of parent labels on the development
set. This is fairly accurate, which supports the hy-
pothesis that the representation knows a substan-
tial amount about surrounding context in the out-
put tree. For comparison, given only a span’s la-
bel, the best you can do for predicting the parent is
43.3% with the majority class conditioned on the
current label.

3.2 Independent Span Decisions

Like other recent parsers that do not capture cor-
relations between output labels (Cross and Huang,
2016b; Stern et al., 2017), our base parser still
does have some output correlations captured by
the enforcement of tree constraints. In this section,
we set out to determine the importance of these
output correlations by making a version of the
parser where they are removed. Although parsers
are typically designed to form trees, the bracketing
F1 measure used to evaluate parsers is still defined
on non-tree outputs. To remove all output cor-
relations from our parser, we can simply remove
the tree constraint and independently make deci-
sions about whether to include a bracketed span.
The architecture is identical to the one described
in Section 2, producing a vector of label scores for
each span. We choose the label with the maximum
score as the label for a span. As before, we fix the
score of the empty label at zero, so if all other la-
bel scores are negative, the span will be left out of
the set of predicted brackets. We train with inde-
pendent margin losses for each span.

Ignoring tree well-formedness, the development
F1 score of this independent span selection parser

is 92.20, effectively matching the performance of
the tree-constrained parser. In addition, we find
that 94.5% of predicted bracketings for develop-
ment set examples form valid trees, even though
we did not explicitly encourage this. This high
performance shows that our parser can function
well even without modeling any output correla-
tions.

4 Lexical Representation

In this section, we investigate several common
choices for lexical representations of words and
their role in neural parsing.

4.1 Alternate Word Representations

We compare the performance of our base model,
which uses word embeddings and a character
LSTM, with otherwise identical parsers that use
other combinations of lexical representations. The
results of these experiments are summarized in Ta-
ble 1. First, we remove the character-level repre-
sentations from our model, leaving only the word
embeddings. We find that development perfor-
mance drops from 92.22 F1 to 91.44 F1, showing
that word embeddings alone do not capture suffi-
cient information for state-of-the-art performance.
Then, we replace the character-level representa-
tions with embeddings of part-of-speech tags pre-
dicted by the Stanford tagger (Toutanova et al.,
2003). This model achieves a comparable devel-
opment F1 score of 92.09, but unlike our base
model relies on outputs from an external system.
Next, we train a model which includes all three
lexical representations: word embeddings, char-
acter LSTM representations, and part-of-speech
tag embeddings. We find that development per-
formance is nearly identical to the base model
at 92.24 F1, suggesting that character represen-
tations and predicted part-of-speech tags provide
much of the same information. Finally, we re-
move word embeddings and rely completely on
character-level embeddings. After retuning the
character LSTM size, we find that a slightly larger
character LSTM can make up for the loss in word-
level embeddings, giving a development F1 of
92.24.

4.2 Predicting Word Features

Past work in constituency parsing has demon-
strated that indicator features on word shapes, suf-
fixes, and similar attributes provide useful infor-
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Word and Character LSTM 92.22
Word Only 91.44
Word and Tag 92.09
Word, Tag, and Character LSTM 92.24
Character Only 92.24

Table 1: Development F1 scores on section 22 of the
Penn Treebank for different lexical representations.

mation beyond the identity of a word itself, espe-
cially for rare and unknown tokens (Finkel et al.,
2008; Hall et al., 2014). We hypothesize that the
character-level LSTM in our model learns similar
information without the need for manual supervi-
sion. To test this, we take the word representa-
tions induced by the character LSTM in our parser
as fixed word encodings, and train a small feed-
forward network to predict binary word features
defined in the Berkeley Parser (Petrov and Klein,
2007). We randomly split the vocabulary of the
Penn Treebank into two subsets, using 80% of the
word types for training and 20% for testing.

We find that the character LSTM representa-
tions allow for previously handcrafted indicator
features to be predicted with accuracies of 99.7%
or higher in all cases. The fact that this simple
classifier performs so well indicates that the infor-
mation contained in these features is readily avail-
able from our model’s character-level encodings.
A detailed breakdown of accuracy by feature can
be found in Appendix B.

5 Context in the Sentence LSTM

In this section, we analyze where the information
in the sentence-level LSTM hidden vectors comes
from. Since the LSTM representations we use to
make parsing decisions come from the fenceposts
on each side of a span, we would like to under-
stand whether they only capture information from
the immediate vicinity of the fenceposts or if they
also contain more distant information. Although
an LSTM is theoretically capable of incorporating
an arbitrarily large amount of context, it is unclear
how much context it actually captures and whether
this context is important for parsing accuracy.

5.1 Derivative Analysis

First, we would like to know if the LSTM features
capture distant information. For this experiment,
we use derivatives as a measure of sensitivity to
changes in an input. If the derivative of a value
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Figure 2: Average derivative of the LSTM output with
respect to its input as a function of distance. The output
is most sensitive to the closest words, but the tail of
the distribution is fairly heavy, indicating that far-away
words also have substantial impact.

with respect to a particular input is high, then that
input has a large impact on the final value. For
a particular component of an LSTM output vec-
tor, we compute its gradient with respect to each
LSTM input vector, calculate the `2-norms of the
gradients, and bucket the results according to dis-
tance from the output position. This process is re-
peated for every output position of each sentence
in the development set, and the results are aver-
aged within each bucket. Due to the scale of the
required computation, we only use a subset of the
output vector components to compute the average,
sampling one at random per output vector.

Figure 2 illustrates how the average gradient
norm is affected by the distance between the
LSTM input and output. As would be expected,
the closest input vectors have the largest effect on
the hidden state. However, the tail of values is
fairly heavy, with substantial gradient norms even
for inputs 40 words away. This shows that far-
away inputs do have an effect on the LSTM repre-
sentation.

5.2 Truncation Analysis
Next, we investigate whether information in the
LSTM representation about far-away inputs is ac-
tually important for parsing performance. To do
so, we remove distant context information from
our span encoding, representing spans by features
obtained from LSTMs that are run on fixed-sized
windows of size k around each fencepost. Figure 3
illustrates this truncated representation. Since the
truncated representation also removes information
about the size and position of the span in addi-
tion to the context words, we learn a position-
dependent cell state initialization for each of the
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Figure 3: An example of creating a truncated span representation for the span “played soccer in” with context size
k = 2. This representation is used to investigate the importance of information far away from the fenceposts of a
span.

two LSTM directions to give a more fair compari-
son to the full LSTM. The use of a fixed-sized con-
text window is reminiscent of prior work by Hall
et al. (2014) and Durrett and Klein (2015), but here
we use an LSTM instead of sparse features. We
train parsers with different values of k and observe
how their performance varies. All other architec-
ture details and hyperparameters are the same as
for the original model.

The blue points in Figure 4 show how the con-
text size k affects parser performance for k ∈
{2, 3, 5, 10, 20, 30}. As with the derivative anal-
ysis, although most of the weight is carried by the
nearby inputs, a nontrivial fraction of performance
is due to context more than 10 words away.

5.3 Word Order

Now that we have established that long-distance
information is important for parsing performance,
we would like to know whether the order of the
far-away words is important. Is the LSTM captur-
ing far-away structure, or is the information more
like a bag-of-words representation summarizing
the words that appear?

To test the importance of order, we train a parser
where information about the order of far-away
words is destroyed. As illustrated in Figure 5,
we run a separate LSTM over the entire sentence
for each fencepost, shuffling the input depending
on the particular fencepost being represented. We
randomly shuffle words outside a context window
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Truncated
Shuffled

Figure 4: Development F1 as the amount of context
given to the sentence-level LSTM varies. The blue
points represent parser performance when the LSTM is
truncated to a window around the fenceposts, showing
that far-away context is important. The orange points
represent performance when the full context is avail-
able but words outside a window around the fenceposts
are shuffled, showing that the order of far-away context
is also important.

of size k around the fencepost of interest, keep-
ing words on the left and the right separate so that
directional information is preserved but exact po-
sitions are lost.

The orange points in Figure 4 show the per-
formance of this experiment with different con-
text sizes k. We observe that including shuffled
distant words is substantially better than truncat-
ing them completely. On the other hand, shuf-
fling does cause performance to degrade relative
to the base parser even when the unshuffled win-
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Figure 5: An example of creating a shuffled span representation for the span “played soccer in” with context size
k = 2. The light blue words are outside the context window and are shuffled randomly. Shuffled representations
are used to explore whether the order of far-away words is important.

dow is moderately large, indicating that the LSTM
is propagating information that depends on the or-
der of words in far-away positions.

5.4 LSTMs vs. Feedforward

Finally, we investigate whether the LSTM archi-
tecture itself is important for reasons other than
just the amount of context it can capture. Like
any architecture, the LSTM introduces particular
inductive biases that affect what gets learned, and
these could be important for parser performance.
We run a version of the truncation experiment
from Section 5.2 where we use a feedforward net-
work in place of a sentence-level LSTM to process
the surrounding context of each fencepost. The in-
put to the network is the concatenation of the word
representations that would be used as inputs for
the truncated LSTM, and the output is a vector of
the same size as the LSTM-based representation.
As in Section 5.2, we wish to give our representa-
tion information about span size and position, so
we also include a learned fencepost position em-
bedding in the concatenated inputs to the network.
We focus on context window size k = 3 for this
experiment. We search among networks with one,
two, or three hidden layers that are one, two, or
four times the size of the LSTM hidden state.

Of all the feedforward networks tried, the max-
imum development performance was 83.39 F1,
compared to 89.92 F1 for the LSTM-based trun-
cation. This suggests that some property of the

LSTM makes it better suited for the task of sum-
marizing context than a flat feedforward network.

6 Related Analysis Work

Here we review other works that have performed
similar analyses to ours in parsing and other areas
of NLP. See Section 2 for a description of how our
parser is related to other parsers.

Similar to our independent span prediction in
Section 3.2, several works have found that their
models still produce valid outputs for the major-
ity of inputs even after relaxing well-formedness
constraints. In dependency parsing, Zhang et al.
(2017) and Chorowski et al. (2016) found that se-
lecting dependency heads independently often re-
sulted in valid trees for their parsers (95% and
99.5% of outputs form trees, respectively). In
constituency parsing, the parser of Vinyals et al.
(2015), which produced linearized parses token by
token, was able to output valid constituency trees
for the majority of sentences (98.5%) even though
it was not constrained to do so.

Several other works have investigated what in-
formation is being captured within LSTM repre-
sentations. Chawla et al. (2017) performed analy-
sis of bidirectional LSTM representations in the
context of named entity recognition. Although
they were primarily interested in finding specific
word types that were important for making deci-
sions, they also analyzed how distance affected a
word’s impact. Shi et al. (2016) and Linzen et al.
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(2016) perform analysis of LSTM representations
in machine translation and language modeling re-
spectively to determine whether syntactic infor-
mation is present. Some of their techniques in-
volve classification of features from LSTM hid-
den states, similar to our analysis in Sections 3.1
and 4.2.

In Section 5.4, we found that replacing an
LSTM with a feedforward network hurt perfor-
mance. Previously, Chelba et al. (2017) had sim-
ilar findings in language modeling, where us-
ing LSTMs truncated to a particular distance im-
proved performance over feedforward networks
that were given the same context.

7 Conclusion

In this paper, we investigated the extent to which
information provided directly by model structure
in classical constituency parsers is still being cap-
tured by neural methods. Because neural models
function in a substantially different way than clas-
sical systems, it could be that they rely on differ-
ent information when making their decisions. Our
findings suggest that, to the contrary, the neural
systems are learning to capture many of the same
knowledge sources that were previously provided,
including the parent-child relations encoded in
grammars and the word features induced by lex-
icons.
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A Model Hyperparameters and Training Details

Component Dimensions Layers
Word Embeddings 100

Character Embeddings 50
Character LSTM 100 1
Sentence LSTM 250 2

Label Feedforward Network 250 1

Table 2: The sizes of the components used in our model.

Our model hyperparameters are summarized in Table 2. We train using the Adam optimizer (Kingma
and Ba, 2014) with its default hyperparameters for 40 epochs. We evaluate on the development set
4 times per epoch, selecting the model with the highest overall development performance as our final
model. When performing a word embedding lookup during training, we randomly replace words by
the <UNK> token with probability 1/(1 + freq(w)), where freq(w) is the frequency of a word w in the
training set. We apply dropout with probability 0.4 before and inside each layer of each LSTM. Our
system is implemented in Python using DyNet (Neubig et al., 2017).

B Character LSTM Word Feature Classification

Majority Char-LSTM
Binary Feature Class Classifier

all-letters 77.22% 99.77%
has-letter 89.18% 99.97%

all-lowercase 56.95% 99.95%
has-lowercase 85.85% 99.90%
all-uppercase 96.68% 99.90%
has-uppercase 67.77% 99.97%

all-digits 98.38% 99.99%
has-digit 87.90% 99.91%

all-punctuation 99.93% 99.98%
has-punctuation 79.04% 99.75%

has-dash 88.89% 99.95%
has-period 92.55% 99.95%
has-comma 98.02% 99.97%

Majority Char-LSTM
Binary Feature Class Classifier

suffix = “s” 82.65% 99.99%
suffix = “ed” 92.52% 99.98%
suffix = “ing” 93.26% 99.95%
suffix = “ion” 97.75% 99.93%
suffix = “er” 96.42% 99.97%
suffix = “est” 99.63% 99.98%
suffix = “ly” 97.56% 99.99%
suffix = “ity” 99.30% 99.94%
suffix = “y” 92.97% 99.93%
suffix = “al” 98.48% 99.92%

suffix = “ble” 99.30% 99.90%
suffix = “e” 89.57% 99.99%

Table 3: Classification accuracy for various binary word features using the character LSTM representations for
words induced by a pre-trained parser. Performance substantially exceeds that of a majority class classifier in all
cases, reaching 99.7% or higher for all features. The majority class is True for the first four features in the left
column and False for the rest.
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