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Abstract

Recurrent neural networks have achieved
state-of-the-art results in many artificial in-
telligence tasks, such as language modeling,
neural machine translation, speech recognition
and so on. One of the key factors to these
successes is big models. However, training
such big models usually takes days or even
weeks of time even if using tens of GPU
cards. In this paper, we propose an efficient
architecture to improve the efficiency of such
RNN model training, which adopts the group
strategy for recurrent layers, while exploiting
the representation rearrangement strategy be-
tween layers as well as time steps. To demon-
strate the advantages of our models, we con-
duct experiments on several datasets and tasks.
The results show that our architecture achieves
comparable or better accuracy comparing with
baselines, with a much smaller number of pa-
rameters and at a much lower computational
cost.

1 Introduction

Recurrent Neural Networks (RNNs) have been
widely used for sequence learning, and achieved
state-of-the-art results in many artificial intelli-
gence tasks in recent years, including language
modeling (Zaremba et al., 2014; Merity et al.,
2017), neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), and speech
recognition (Graves et al., 2013).

To get better accuracy, recent state-of-the-art
RNN models are designed toward big scale, in-
clude going deep (stacking multiple recurrent lay-
ers) (Pascanu et al., 2013a) and/or going wide (in-
creasing dimensions of hidden states). For exam-
ple, an RNN based commercial Neural Machine
Translation (NMT) system would employ tens of
layers in total, resulting in a large model with hun-
dreds of millions of parameters (Wu et al., 2016).
However, when the model size increases, the com-
putational cost, as well as the memory needed for

the training, increases dramatically. The training
cost of aforementioned NMT model reaches as
high as 1019 FLOPs, and the training procedure
spends several days with even 96 GPU cards (Wu
et al., 2016) – such complexity is prohibitively ex-
pensive.

While above models benefit from big neural
networks, it is observed that such networks often
have redundancy of parameters (Kim and Rush,
2016), motivating us to improve parameter ef-
ficiency and design more compact architectures
that are more efficient in training while keeping
good performance. Recently, many efficient archi-
tectures for convolution neural networks (CNNs)
have been proposed to reduce training cost in com-
puter vision domain. Among them, the group con-
volution is one of the most widely used and suc-
cessful attempts (Szegedy et al., 2015; Chollet,
2016; Zhang et al., 2017b), which splits the chan-
nels into groups and conducts convolution sepa-
rately for each group. It’s essentially a diagonal
sparse operation to the convolutional layer, which
reduces the number of parameters as well as the
computation complexity linearly w.r.t. the group
size. Empirical results for such group convolu-
tion optimization show great speed up with small
degradation on accuracy. In contrast, there are
very limited attempts for designing better archi-
tectures for RNNs.

Inspired by those works on CNNs, in this pa-
per, we generalize the group idea to RNNs to con-
duct recurrent learning in the group level. Differ-
ent from CNNs, there are two kinds of parame-
ter redundancy in RNNs: (1) the weight matrices
transforming a low-level feature representation to
a high-level one may contain redundancy, and (2)
the recurrent weight matrices transferring the hid-
den state of the current step to the hidden state of
the next step may also contain redundancy. There-
fore, when designing efficient RNNs, we need to
consider both the kinds of redundancy.
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We present a simple architecture for efficient
sequence learning which consists of group recur-
rent layers and representation rearrangement lay-
ers. First, in a recurrent layer, we split both the
input of the sequence and the hidden states into
disjoint groups, and do recurrent learning sepa-
rately for each group. This operation clearly re-
duces the model complexity, and can learn intra-
group features efficiently. However, it fails to cap-
ture dependency cross different groups. To recover
the inter-groups correlation, we further introduce
a representation rearrangement layer between any
two consecutive recurrent layers, as well as any
two time steps. With these two operations, we
explicitly factorize a recurrent temporal learning
into intra-group temporal learning and inter-group
temporal learning with a much smaller number of
parameters.

The group recurrent layer we proposed is equiv-
alent to the standard recurrent layer with a block-
diagonal sparse weight matrix. That is, our model
employs a uniform sparse structure which can be
computed very efficiently. To show the advantages
of our model, we analyze the computation cost and
memory usage comparing with standard recurrent
networks. The efficiency improvement is linear to
the number of groups. We conduct experiments
on language modeling, neural machine translation
and abstractive summarization by using a state-of-
the-art RNN architecture as baseline. The results
show that our model can achieve comparable or
better accuracy, with a much smaller number of
parameters and in a shorter training time.

The remainder of this paper is organized as fol-
lows. We first present our newly proposed archi-
tecture and conduct in depth analysis on its effi-
ciency improvement. Then we show a series of
empirical study to verify the effectiveness of our
methods. Finally, to better position our work, we
introduce some related work and then conclude
our work.

2 Architecture

In this section, we introduce our proposed archi-
tecture for RNNs. Before getting into the details
of the group recurrent layer and representation re-
arrangement layer in our architecture, we first re-
visit the vanilla RNNs.

An RNN is a neural network with recurrent lay-
ers that capture temporal dynamics of a sequence
with arbitrary length. It recursively applies a tran-

sition function to its internal hidden state for each
symbol of input sequence. The hidden state at time
step t is computed as a function f of the current in-
put symbol xt and the previous hidden state ht−1

in a recurrent form:

ht = f (xt, ht−1) . (1)

For vanilla RNN, the commonly used state-to-
state transition function is,

ht = tanh (Wxt + Uht−1) , (2)

where W is the input-to-hidden weight matrix, U
is the state-to-state recurrent weight matrix, and
tanh is the hyperbolic tangent function. Our work
is independent to the choices of the recurrent func-
tion (f in Equation 1). For simplicity, in the fol-
lowing, we take the vanilla RNN as an example to
introduce and analyze our new architecture.

We aim to design an efficient RNN architec-
ture by reducing the parameter redundancy while
keeping accuracy at the same time. Inspired by
the success of group convolution in CNN, our ar-
chitecture employs the group strategy to achieve
a sparsely connected structure between neurons
of recurrent layers, and employs the representa-
tion rearrangement to recover the correlation that
may destroyed by the sparsity. At a high level, we
explicitly factorize the recurrent learning as inter-
group recurrent learning and intra-group recurrent
learning. In the following, we will describe our
RNN architecture in detail, which consists of a
group recurrent layer for intra-group correlation
and a representation rearrangement layer for inter-
group correlation.

2.1 Group recurrent layer for intra-group
correlation

For standard recurrent layer, the model complexity
increases quadratically with the dimension of hid-
den state. Suppose the input x is with dimension
M , while the hidden state is with dimension N .
Then, for standard vanilla RNN cell, according to
Equation 2, the number of parameters, as well as
the computation cost is

N2 +N ∗M. (3)

It’s obvious that the hidden state dimension
largely determines the model complexity. Opti-
mization on reducing computation w.r.t the hid-
den state is the key to improve the overall effi-
ciency. Accordingly, we present a group recurrent
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(a) (b) (c)

Figure 1: Illustration of group recurrent network architecture. hk
t,i represents the hidden state of k-th group in i-th

layer for time step t (a) The standard recurrent neural networks. (b) The group recurrent neural networks without
representation rearrangement. This is efficient but the output only depends on the input in corresponding feature
group. (c) Our proposed group recurrent neural network architecture, constituted with group recurrent layer and
representation rearrangement layer.

layer which adopts a group strategy to approxi-
mate the standard recurrent layer. Specifically, we
consider to split both the input xt and hidden state
ht into K disjoint groups as {x1t , x2t , ..., xKt } and
{h1t , h2t , ..., hKt } respectively, where xit, h

i
t repre-

sent the input and hidden state for i-th group at
time step t. Based on this split, we then per-
form recurrent computation in every group inde-
pendently. This will captures the intra-group tem-
poral correlation within the sequence. Formally,
in the group recurrent layer, we first compute the
hidden state of each group hit as

hit = fi(x
i
t, h

i
t−1), i = 1, 2, ...,K. (4)

Then, concatenating all the hidden states from
each group together,

ht = concat(h1t , h
2
t , ..., h

K
t ) (5)

we get the output of the group recurrent layer. The
group recurrent layer is illustrated as Figure 2(a)
and Figure 1(b).

Obviously, by splitting the features and hidden
states into K groups, the number of parameters
and the computation cost of recurrent layer reduce
to

K ∗ ((N
K

)2 +
N

K
∗ M
K

) =
N2 +N ∗M

K
(6)

Comparing Equation 3 with Equation 6, the group
recurrent is K times more efficient than the stan-
dard recurrent layer, in terms of both computa-
tional cost and number of parameters.

Although the theoretical computational cost is
attractive, the speedup ratio also depends on the

(a) (b)

Figure 2: Illustration of group recurrent network along
the temporal direction. (a) The group recurrent neu-
ral network without representation rearrangement. (b)
Our proposed group recurrent neural network with rep-
resentation rearrangement.

implementation details. A naive implementation
of Equation 4 would introduce a for loop, which
is not efficient since the additional overhead and
poor parallelism. In order to really achieve linear
speed up, we employ a batch matrix multiplication
to assemble the computation of different groups in
a single round of matrix multiplication. This op-
eration is critical especially when each group isn’t
big enough to fully utilize the entire GPU compu-
tation power.

2.2 Representation rearrangement for
inter-group correlation

Group recurrent layer is K times more efficient
comparing with the standard recurrent layer. But,
it only captures the temporal correlation inside
a single feature group and fails to learn depen-
dency across features from different groups. more
specifically, the internal state of RNN only con-
tains history from corresponding group (Figure
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1(b)). Similar problem also exists in the vertical
direction of group recurrent layers (Figure 2(a)).
Consider a network with multiple stacked group
recurrent layers, the output of the specific group
are only get from the corresponding input group.
Obviously, there will be a significant drop of rep-
resentation power since many feature correlations
are cut off by this architecture.

To recover the inter-group correlations, one
simple way is adding a projection layer to trans-
form the hidden state outputted by the group re-
current layer, like the 1 × 1 convolution used
in depthwise separable convolutional (Chollet,
2016). However, such method would bring addi-
tional N2 computation complexity and model pa-
rameters.

Inspired by the idea of permuting channels be-
tween convolutional layers in recent CNN archi-
tectures (Zhang et al., 2017a,b), we propose to add
representation rearrangement layer between con-
secutive group recurrent layers (Figure 1(c)), as
well as the time steps within a group recurrent
layer (Figure 2(b)). The representation rearrange-
ment aims to rearrange the hidden representation,
to make sure the subsequent layers, or time steps,
can see features from all input groups.

The representation rearrangement layer is
parameter-free and simple. We leverage the same
implementation in (Zhang et al., 2017b) to con-
duct the rearrangement. It’s finished with basic
tensor operations reshape, and transpose, which
brings (almost) no runtime overhead in our ex-
periments. Consider the immediate representation
ht ∈ RN outputted by group recurrent layer with
group number K. First, we reshape the repre-
sentation to add an additional group dimension,
resulting in a tensor with new shape (K,N/K).
Second, we transpose the two dimensions of the
temporary tensor, changing the tensor shape to
(N/K,K). Finally, we reshape the tensor along
the first axis to restore the representation to its
original shape (a vector of size N ). Figure 3 illus-
trates the operations with a simple example whose
representation is with size 8 and group number is
2.

Combining the group recurrent layer and repre-
sentation rearrangement layer, we rebuild the re-
current layer into an efficient and effective layer.
We note that, different from convolutional neural
networks that are only deep in space, the stack
RNNs are deep in both space and time. Figure 1

illustrates our architecture along the spatial direc-
tion, and Figure 2 illustrates our architecture along
the temporal direction. By applying group op-
eration and representation rearrangement in both
space and time, we build a new recurrent neural
network with high efficiency.

3 Discussion

In this section, we analyze the relation between
group recurrent layer and standard recurrent layer,
and discuss the advantages of group recurrent net-
works.

3.1 Relation to standard recurrent layer
The group recurrent layer in Equation 4 and 5 can
be re-formulated as

ht = tanh (




W 1 0 · · · 0
0 W 2 · · · 0
...

...
. . .

...
0 0 · · · WK







x1t
x2t
...

xKt




+




U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · UK







h1t
h2t
...

hKt


)

(7)

From the reformulation, we can see group recur-
rent layer is equivalent to standard recurrent layer
with block-diagonal sparse weight matrix. Our
method employs a group level sparsity in recurrent
computation, leading to a uniform sparse struc-
ture. This uniform sparse structure can enjoy the
efficient computing of dense matrix, as we dis-
cussed in Section 2.1. This reformulation also
shows that there is no connection across neurons in
different groups. Increasing the group number will
lead to higher sparse rate. This sparse structure
may limit the representation ability of our model.
In order to recover the correlation across differ-
ent groups, we add representation rearrangement
to make up for representation ability.

3.2 Model capacity
We have shown that with same width of recur-
rent layer, our architecture with group number K
achieves a compact model, which has K times less
number of parameters than the standard recurrent
network. Therefore with same number of param-
eters, group recurrent networks can provide more
possibility to try more complex model without any

802



Figure 3: Illustration of the implementation of repre-
sentation rearrangement with basic tensor operation.

additional computation and parameter overhead.
Given a standard recurrent neural network, we can
construct a corresponding group recurrent neural
network with same number of parameters, but with
K times wider, or with K times deeper. A factor
smaller than K would make our networks still ef-
fective than standard recurrent network, but with
wider and/or deeper recurrent layers. This could
somehow compensate the potential performance
drop due to the aggressive sparsity when group
number is too large. Therefore, our architecture
provides large model space to find a better trade-
off between parameter and performance given a
fixed resource budget. And our model is a more
effective RNN architecture when the network goes
deeper and wider.

At last, we note that our architecture focuses on
improving the efficiency of recurrent layers. Thus
the whole parameter and computational cost re-
duction depend on the ratio of recurrent layer in
the entire network. Consider a text classification
task, a often used RNN model would introduce an
embedding layer for the input tokens and a soft-
max layer for the output, making the parameter re-
duction and speedup for the whole network is not
strictly linear with the group number. However,
we argue that for deeper and/or wider RNN whose
recurrent layers dominate the parameter and com-
putational cost, our method would enjoy more ef-
ficiency improvement.

4 Experiments

In this section, we present results on three se-
quence learning tasks to show the effectiveness of
our method: 1). language modeling; 2). neural
machine translation; 3). abstractive summariza-
tion.

4.1 Language modeling
For evaluating the effectiveness of our approach,
we perform language modeling over Penn Tree-
bak (PTB) dataset (Marcus et al., 1993). We
use the data preprocessed by (Mikolov et al.,
2010) 1, which consists of 929K training words,
73K validation words, and 82K test words. It
has 10K words in its vocabulary. We compare
our method (named Group LSTM) with the stan-
dard LSTM baseline (Zaremba et al., 2014) and
its two variants with Bayesian dropout (named
LSTM + BD) (Gal and Ghahramani, 2016) and
with word tying (named LSTM + WT) (Press and
Wolf, 2017). Following the big model settings
in (Zaremba et al., 2014; Gal and Ghahramani,
2016; Inan et al., 2016) , all experiments use a
two-layer LSTM with 1, 500 hidden units and an
embedding of size 1, 500. We set group number
2 in this experiment since PTB is a relative sim-
ple dataset. We use Stochastic Gradient Descent
(SGD) to train all models.

Results We compare the word level perplexity
obtained by the standard LSTM baseline mod-
els and our group variants, in which we replace
the standard LSTM layer with our group LSTM
layer. As shown in Table 1, Group LSTM achieves
comparable performance with the standard LSTM
baseline, but with a 27% parameter reduction. A
variant using Bayesian dropout (BD) is proposed
by (Gal and Ghahramani, 2016) to prevent over-
fitting and improve performance. We test our
model with LSTM + BD, achieving similar re-
sults with above comparison. Finally, we compare
our model with the recently proposed word tying
(WT) technology, which ties input embedding and
output embedding with same weights. Our model
achieves even better perplexity than the results re-
ported by (Press and Wolf, 2017). Since word ty-
ing reduces the number of parameters of embed-
ding and softmax layers, thus improving the ratio
of LSTM layer parameter. Our method achieves a
35% parameter reduction.

4.2 Neural machine translation
We then study our model in neural machine trans-
lation. We conduct experiments on two translation
tasks, German-English task (De-En for short) and
English-German task (En-De for short). For De-
En translation, we use data from the De-En ma-

1http://www.fit.vutbr.cz/˜imikolov/
rnnlm/simple-examples.tgz
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Model Parameters Validation Set Test Set
LSTM (Zaremba et al., 2014) 66M 82.2 78.4
2 Group LSTM 48M 82.0 78.6
LSTM + BD (Gal and Ghahramani, 2016) 66M 77.9 75.2
2 Group LSTM + BD 48M 79.9 75.8
LSTM + WT (Press and Wolf, 2017) 51M 77.4 74.3
2 Group LSTM + WT 33M 76.8 73.3
LSTM + BD + WT (Press and Wolf, 2017) 51M 75.8 73.2
2 Group LSTM + BD + WT 33M 75.6 71.8

Table 1: Single model complexity on validation and test sets for the Penn Treebank language modeling task. BD
is Bayesian dropout. WT is word tying.

chine translation track of the IWSLT 2014 evalua-
tion campaign (Cettolo et al., 2014). We follow the
pre-processing described in previous works (Wu
et al., 2017). The training data comprises about
153K sentence pairs. The size of validation data
set is 6, 969, and the test set is 6, 750. For En-De
translation, we use a widely adopted dataset (Jean
et al., 2015; Wu et al., 2016). Specifically, part of
data in WMT’14 is used as the training data, which
consists of 4.5M sentences pairs. newstest2012
and newstest2013 are concatenated as the valida-
tion set and newstest2014 acts as test set. These
two datasets are preprocessed by byte pair encod-
ing (BPE) with vocabulary of 25K and 30K for
De-En and En-De respectively, and the max length
of sub-word sentence is 64.

Our model is based on RNNSearch model (Bah-
danau et al., 2014), but replacing the standard
LSTM layer with our group LSTM layer. There-
fore, we name our model as Group RNNSearch
model. The model is constructed by LSTM en-
coder and decoder with attention, where the first
layer of encoder is bidirectional LSTM. For De-
En, we use two layers for both encoder and de-
coder. The embedding size is 256, which is same
as the hidden size for all LSTM layers. As for En-
De, we use four layers for encoder and decoder 2.
The embedding size is 512 and the hidden size is
1024 3. All the models are trained by Adadelta
(Zeiler, 2012) with initial learning rate 1.0. The
gradient is clipped with threshold 2.5. The mini-
batch size is 32 for De-En and 128 for En-De. We
use dropout (Srivastava et al., 2014) with rate 0.1
for all layers except the layer before softmax with
0.5. We halve the learning rate according to the
validation performance.

2For easy to implement, we still keep the first layer with
attention computation in the decoder as original LSTM layer.

3In our implementation, suppose the hidden size is d, after
the first bi-directional LSTM layer in the encoder, the hidden
size of the above LSTM layers in the encoder should be 2×d.

Model Params BLEU
NPMT (Huang et al., 2017) Unclear 30.08

RNNSearch 6.0M 31.03
2 Group RNNSearch 4.3M 31.08
4 Group RNNSearch 3.4M 30.96
8 Group RNNSearch 3.0M 30.73
16 Group RNNSearch 2.7M 30.35

Table 2: BLEU scores on IWSLT 2014 De-En test set.
We report BLEU score results together with number of
parameters of recurrent layers.

Model Params BLEU
DeepLAU (Wang et al., 2017) Unclear 23.80

GNMT (Wu et al., 2016) 160M‡ 24.61
2 Group RNNSearch 111M 23.93
4 Group RNNSearch 78M 23.61

Table 3: BLEU scores on WMT’14 En-De test set. We
report BLEU score results together with number of pa-
rameters of recurrent layers. Numbers with ‡ are ap-
proximately calculated by ourselves according to the
settings described in the paper.

Results We compute tokenized case-sensitive
BLEU (Papineni et al., 2002) 4 score as evalua-
tion metric. For decoding, we use beam search
(Sutskever et al., 2014) with beam size 5.

From Table 2, we can observe that on De-En
task, Group RNNSearch models achieve compa-
rable or better BLEU score compared with the
RNNSearch but with much less number of param-
eters. Specifically, with group number 2 and 4,
we achieve about 28% and 43% parameter reduc-
tion of recurrent layers respectively. Note that our
results also outperform the state-of-the-art result
reported in NPMT (Huang et al., 2017).

The En-De translation results are shown in
Table 3. We compare our Group RNNSearch
models with Google’s GNMT system (Wu et al.,
2016) and DeepLAU (Wang et al., 2017). Our 4

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Group RNNSearch model achieves 23.61, which
is comparable to DeepLAU (23.80). Our 2 Group
RNNSearch model achieves a BLEU score of
23.93, slightly less than GNMT (24.61), but out-
performs the DeepLAU. More importantly, our
Group RNNSearch models decrease more than
30% and 50% RNN parameters with 2 groups and
4 groups respectively compared with GNMT.

4.3 Abstractive summarization

At last, we valid our approach on abstractive sum-
marization task. We train on the Gigaword corpus
(Graff and Cieri, 2003) and pre-process it iden-
tically to (Rush et al., 2015; Shen et al., 2016),
resulting in 3.8M training article-headline pairs,
190K for validation and 2, 000 for test. Similar
to (Shen et al., 2016), we use a source and target
vocabulary consisting of 30K words.

The model is almost same as the one used in
De-En machine translation, which is a two lay-
ers RNNSearch model, except that the embedding
size is 512, and the LSTM hidden size in both en-
coder and decoder is 512. The initial values of all
weight parameters are uniformly sampled between
(−0.05, 0.05). We train our Group RNNSearch
model by Adadelta (Zeiler, 2012) with learning
rate 1.0 and gradient clipping threshold 1.5 (Pas-
canu et al., 2013b). The mini-batch size is 64.

Results We evaluate the summarization task by
commonly used ROUGE (Lin, 2004) F1 score.
During decoding, we use beam search with beam
size 10. The results are shown in Table 4.

From Table 4, we can observe that the perfor-
mance is consistent with machine translation task.
Our Group RNNSearch model achieves compa-
rable results with RNNSearch, and our 2 Group
RNNSearch model even outperforms RNNSearch
baseline. Besides, we compare with several other
widely adopted methods, our models also show
strong performance. Therefore, we can keep
the good performance even though we reduce
the parameters of the recurrent layers by nearly
50%, which greatly proves the effectiveness of our
method.

4.4 Ablation analysis

In addition to showing that group RNN can
achieve competing or better performance with
much less number of parameters, we further study
the effect of group number to training speed and
convergence, and the effect of representation rear-

Model Params R-1 R-2 R-L
(Rush et al., 2015) - 29.8 11.9 26.9

(Luong et al., 2015) - 33.1 14.4 30.7
(Chopra et al., 2016) - 33.8 15.9 31.1

RNNSearch 24.1M 34.4 15.8 31.8
2 Group RNNSearch 17.0M 34.8 15.9 32.1
4 Group RNNSearch 13.5M 34.3 15.7 31.6
8 Group RNNSearch 11.8M 34.3 15.6 31.6

16 Group RNNSearch 10.9M 33.8 15.3 31.2

Table 4: ROUGE F1 scores on abstractive summariza-
tion test set. RG-N stands for N-gram based ROUGE
F1 score, RG-L stands for longest common subse-
quence based ROUGE F1 score. Params stands for the
parameters of the recurrent layers.

Group without with (improvement)
2 82.5 78.6 (+4.7%)
4 86.6 82.6 (+4.6%)

Table 5: The effect of representation rearrangement to
model performance.

rangement to performance. Due to space limita-
tion, we only report results for language modeling
on PTB dataset; for other tasks we have similar
results.

In Figure 4, the left one shows that how num-
ber of parameters and training speed vary when
group number ranging from 1 to 16. We can see
that the number of parameters (of recurrent lay-
ers) is reduced linearly when increasing number
of groups. In the meantime, we also achieves sub-
stantial speed up about throughput when increas-
ing group number. We note that the speedup is
sub-linear instead of linear since our method fo-
cuses on the speedup on recurrent layers, as dis-
cussed in Section 3.2. Besides, we also com-
pare the convergence curve in the right of Figure
4, which shows that our method (almost) doesn’t
slow down the convergence in terms of epoch
number. Considering the throughput speedup of
our method, we can accelerate training by a large
margin.

At last, we study the role that representation re-
arrangement layer plays in our architecture. We
compare Group LSTM with and without repre-
sentation rearrangement between layers and time
steps, with the group number 2 and 4 respectively.
From Table 5, we can see that the models with
representation rearrangement consistently outper-
forms the ones without representation rearrange-
ment. This shows the representation rearrange-
ment is critical for group RNN.
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Figure 4: Illustration of group recurrent network analysis. Left: The number of parameters and the training speed
(word per second, WPS) on different group numbers. Right: The test perplexity (convergence curve) along the
training epochs.

5 Related Work

Improving RNN efficiency for sequence learning
is a hot topic in recent deep learning research. For
parameter and computation reduction, LightRNN
(Li et al., 2016) is proposed to solve big vocabu-
lary problem with a 2-component shared embed-
ding, while our work addresses the parameter re-
dundancy caused by recurrent layers. To speed up
RNN, Persistent RNN (Diamos et al., 2016) is pro-
posed to improve the RNN computation through-
put by mapping deep RNN efficiently onto GPUs,
which exploits GPU’s inverted memory hierarchy
to reuse network weights over multiple time steps.
(Neil et al., 2017) proposes delta networks for op-
timizing the matrix-vector multiplications in RNN
computation by considering the temporal proper-
ties of the data. Quasi-RNN (Bradbury et al.,
2016) and SRU (Lei and Zhang, 2017) are pro-
posed for speeding up RNN computation by de-
signing novel recurrent units which relax depen-
dency between time steps. Different from these
works, we optimize RNN from the perspective
of network architecture innovation by adopting a
group strategy.

There is a long history about the group idea
in deep learning, especially in convolutional neu-
ral networks, aiming to improve the computation
efficiency and parameter efficiency. Such works
can date back at least to AlexNet (Krizhevsky
et al., 2012), which splits the convolutional lay-
ers into 2 independent groups for the ease of
model-parallelism. The Inception (Szegedy et al.,
2015) architecture proposes a module that em-
ploys uniform sparsity to improve the parameter
efficiency. Going to the extreme of Inception, the

Xception (Chollet, 2016) adopts a depthwise sep-
arable convolution, where each spatial convolu-
tion only works on a single channel. MobileNet
(Howard et al., 2017) uses the same idea for effi-
cient mobile model. IGCNet (Zhang et al., 2017a)
and ShuffleNet (Zhang et al., 2017b) also adopt
the group convolution idea, and further permute
the features across consecutive layers. Similar to
these works, we also exploit the group strategy.
But we focus on efficient sequence learning with
RNN, which, different from CNN, contains an in-
ternal memory and an additional temporal direc-
tion. In the RNN literature, there is only one paper
(Kuchaiev and Ginsburg, 2017), to our best knowl-
edge, exploiting the group strategy. However, this
work assumes the features are group independent,
thus failing to capturing the inter-group correla-
tion. Our work employs a representational rear-
rangement mechanism, which avoids the assump-
tion and improves the performance, as shown in
our empirical experiments.

6 Conclusion

We have presented an efficient RNN architecture
for sequence learning. Our architecture employs
a group recurrent layer to learn intra-group cor-
relation efficiently, and representation rearrange-
ment layer to recover inter-group correlation for
keeping representation ability. We demonstrate
our model is more efficient in terms of parameters
and computational cost. We conduct extensive ex-
periments on language modeling, neural machine
translations and abstractive summarization, show-
ing that our method achieves competing perfor-
mance with much less computing resource.
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