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Abstract

Word embeddings obtained from neural net-
work models such as Word2Vec Skipgram
have become popular representations of word
meaning and have been evaluated on a vari-
ety of word similarity and relatedness norm-
ing data. Skipgram generates a set of word
and context embeddings, the latter typically
discarded after training. We demonstrate the
usefulness of context embeddings in predict-
ing asymmetric association between words
from a recently published dataset of produc-
tion norms (Jouravlev and McRae, 2016). Our
findings suggest that humans respond with
words closer to the cue within the context em-
bedding space (rather than the word embed-
ding space), when asked to generate themati-
cally related words.

1 Introduction

Modern distributional semantic models such as
Word2Vec (Mikolov et al., 2013a,b) and GloVe
(Pennington et al., 2014) have been evaluated
on a variety of word similarity and relatedness
datasets. A considerable amount of attention has
been paid to what models and, more recently,
what parameter settings and input data produce
embedding representations that better reflect sim-
ilarity/relatedness between words, taking human
normative judgments as the gold standard (Baroni
et al., 2014; Kiela et al., 2015; Levy et al., 2015;
Melamud et al., 2016; Sahlgren and Lenci, 2016).

Similarity between two words is often assumed
to be a direction-less measure (e.g., car and truck
are similar due to feature overlap), whereas relat-
edness is inherently directional (e.g., broom and
floor share a functional relationship). In addition,
it is well established in human behavioral data
that similarity and relatedness judgments are both
asymmetric. For example, humans judge leop-
ard to be much more similar to tiger than tiger

is to leopard (Tversky and Gati, 1982). A concor-
dant asymmetry is seen in relation tasks: in free
association data, baby is a much more likely re-
sponse when cued with stork than stork would be
as a response when cued with baby (Nelson et al.,
1999). The distinction between similarity and re-
latedness, and the asymmetry of the judgments
have typically been ignored in recent evaluations
of popular embedding models.

There is ample experimental evidence in the
psycholinguistic literature that similarity and relat-
edness are both well represented in human behav-
ior (see Hutchison (2003), for a review), and are
qualitatively distinct representations or processes.
In semantic priming paradigms, a target word is
processed more efficiently when briefly preceded
by a related or similar word (e.g., honey-bee or
wasp-bee) relative to a neutral or unrelated prime
(e.g., chair-bee). Facilitation is seen for word
pairs that are purely category coordinates (lawyer-
surgeon) or purely associates (scalpel-surgeon),
and pairs that share both types of relations (nurse-
surgeon) tend to see an additive processing ben-
efit that reflects the privilege of both similarity
and relatedness, an effect generally referred to as
the “associative boost” (Chiarello et al., 1990; Lu-
cas, 2000). Asymmetries are the norm in seman-
tic priming data, leading to the early theoretical
prominence of spreading activation models to ac-
count for human data.

Free association data provide complimentary
evidence of the qualitative distinction between re-
latedness and similarity in human memory. In
a free association task, participants are provided
with a cue word and are asked to rapidly re-
spond with a word that comes to mind first. Huge
norms of human responses have been collected
over the years; for example, (Nelson et al., 1999)
early norms contain three-quarters of a million re-
sponses to over 5,000 cue words across 6,000 par-
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ticipants. More recently, (De Deyne et al., 2016)
have more than doubled the size of Nelsons norms
in multiple languages by gamifying the task1 . The
majority of responses in free association data are
based on thematic relatedness rather than similar-
ity per se (De Deyne and Storms, 2008). As with
semantic priming, free association norms are dom-
inated by asymmetric relations: While stork has
a very high probability of eliciting baby as a re-
sponse across participants, cuing with baby brings
so many competitors to mind that it is extremely
unlikely to respond with stork (Hutchison, 2003).

The difficulty of accounting for similarity and
relatedness with a single vector representation for
each word has led to the suggestion that distinct
representations, and perhaps even distinct learn-
ing models, are needed for optimal performance
on these distinct tasks (Mandera et al., 2017). It
may be unrealistic to expect a single vector repre-
sentation to account for qualitatively distinct simi-
larity and relatedness data. Further, asymmetries
in human similarity and relatedness tasks have
been used as strong evidence against spatial mod-
els of semantics such as word embedding models,
and in favor of Bayesian models (Griffiths et al.,
2007); but see (Jones et al., 2017). The cosine be-
tween two word vectors is inherently symmetric:
leopard-tiger has the same cosine as tiger-leopard.

In order to understand how distributional rep-
resentation of words reflect similarity and related-
ness one should study the algorithms. Each cell of
a word vector in a count model indicates the first-
order association between the target word and a
context word, document, or topic. Dimensionality
reduction algorithms are applied to obtain denser
representations that can demonstrate second-order
relatedness/similarity between words (e.g. ap-
plying SVD to PMI matrix). Relative to these
classic models, predictive distributional models
such as Word2Vec are generally more compli-
cated. Decomposition and interpretation of the
neural word embeddings is less straightforward
because the final vectors incrementally converge
from a predict-and-update process based on a lo-
cal objective function rather than by global count-
ing or a batch abstraction process. Most evalua-
tive studies of predictive distributional semantics
have viewed these models as a black box, consid-
ering only at the output vectors. For example, the
Word2Vec Skipgram architecture has easily taken

1https://smallworldofwords.org

the lead and become representative of the predic-
tive distributional semantic models, but little at-
tention has been paid to what statistical informa-
tion is best represented in the two resulting em-
bedding sets. The Skipgram is a feed-forward net-
work with localist input and output layers, and one
hidden layer which determines the dimensionality
of the final vectors. It is trained on word-context
pairs with an objective function trying to minimize
the error of predicting context words within a spe-
cific window around the center word. At the end
of training, two matrices are produced, one rep-
resenting word embeddings and the other repre-
senting context embeddings for each and every
vocabulary word. While word embeddings have
been used as the output of Skipgram in many pre-
vious studies, little attention has been paid to the
context embeddings and the usefulness of these
vectors in performing lexical semantic tasks (Levy
et al., 2015; Melamud et al., 2015; Aoki et al.,
2017).

Recently, Asr and Jones (2017) used an artificial
language to evaluate how hyperparameter settings
affected the Skipgrams representation of first- vs.
second-order statistical sources. In natural lan-
guages, paradigmatic and syntagmatic informa-
tion sources are non-independent, confounding
similarity and relatedness judgments. Words that
are more similar tend to also share functional,
script, or thematic relations (Hutchison, 2003; Lu-
cas, 2000); e.g., surgeon-nurse. Asr and Jones
artificial language was engineered to disentangle
the two sources of statistical information. Fol-
lowing on suggestions by Levy et al. (2015), Asr
and Jones found that averaging context vectors
with the word vectors (w+c post-processing) pro-
duced optimal organization of the semantic space
for both paradigmatic and syntagmatic structure.
The goal of the current work is to more systemat-
ically explore the integration of word and context
vectors in similarity and relatedness data; our two
core objectives are:

1. To evaluate the Skipgram model on thematic
relatedness production norms, which implic-
itly manifests asymmetric relations between
words compared to the typical evaluation on
direction-less similarity/relatedness.

2. To explore novel ways of computing relat-
edness scores by contributing both word and
context embeddings produced by Word2Vecs
Skipgram architecture.
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2 Similarity vs. Relatedness Data

One of the famous datasets on word similar-
ity/relatedness is Wordsim353 (Finkelstein et al.,
2001) including 353 English word pairs, and a re-
vised version (Agirre et al., 2009) splitting similar
from related word pairs (WrordSim). These data
have been repeatedly used in comparative studies
on distributional semantic models. Recently, the
division between similarity and relatedness judg-
ments has been highlighted in the literature, re-
sulting in development of new datasets with more
specific annotation instructions.

Hill et al. (2015) introduced the SimLex-999
dataset (SimLex) for purified evaluation of word
similarity by asking the annotators explicitly not
to score based on degree of relatedness. For ex-
ample, the word pair coast-shore received an av-
erage similarity score of 9.00 in SimLex and 9.10
in WordSim, while the related word pair clothes-
closet was assigned an average score of 1.96 in
SimLex and 8.00 in WordSim. More recently,
Jouravlev and McRae (2016) collected pure re-
latedness data through a production experiment.
They presented participants with cue words and
instructed them to response only with directly re-
lated words and not taxonomically similar words.
This database (ProNorm) includes responses to
100 object words, providing us with directional re-
latedness score for 1,169 word pairs.

The important distinction of SimLex and
ProNorm datasets compared to other available
similarity/relatedness data is the explicit instruc-
tion of participants to pay attention to one aspect
of word relations and not the other. The ProNorm
dataset, also has an advantage of a more natural
setup, where associatively related words were gen-
erated by participants, rather than being selected
by language experts and only rated by the partici-
pants. In this paper, we use ProNorm as the main
dataset to investigate how word embedings should
be used to measure relatedness between two words
and how the free recall experiment can be simu-
lated for the model. The SimLex dataset is used to
set a baseline for comparison against the similar-
ity measurement task, which is the most common
intrinsic benchmark for evaluation of word em-
beddings. Finally, we use the WordSim dataset to
explore whether the observed differences between
vector-based measures of similarity and related-
ness come out if the benchmark data is collected
in implicit setup, where participants did not know

they were rating for similarity or relatedness.

3 Word and Context Embeddings

Word embeddings produced by the Skipgram ar-
chitecture have been used in many previous stud-
ies as the word meaning representation and are the
main output of the model. In the original imple-
mentation of Word2Vec, the context embeddings
(weights on the hidden to output layer of the neural
network) were discarded after learning was com-
plete. Inspired by Pennington et al. (2014) in
the architecture of the GloVe model, Levy et al.
(2015) proposed that the final word embeddings
in Word2Vec could be obtained from the aver-
age of word and context embeddings. They im-
plemented word + context (w+c) as a useful post
processing option for the Word2Vec Skipgram al-
gorithm in their published version of the model2.
The w+c option allows computation of word sim-
ilarity based upon both first and second-order co-
occurrence information. The cosine similarity be-
tween two words based on the dot product of their
w+c embeddings, which we call the AA measure
(A standing for the average of word and context
embeddings of a word), includes the following
terms:

cos(a, b) =
WaWb + CaCb +WaCb + CaWa

2
√
WaCa + 1

√
WbCb + 1

(1)
While traditional measures, i.e., WW (cosine

similarity of the word embeddings), and AA (co-
sine similarity of the word+context embeddings)
are suitable predictors for words similarity, we
hypothesize that the asymmetric measures WC
(word embedding of the first word and context em-
bedding of the second) and CW (context embed-
ding of the first word and word embedding of the
second) should be better indicators of relatedness.
This decomposition of similarity measures is es-
pecially useful when asymmetric associations be-
tween words are being inferred: the asymmetric
measures reserve the direction and the type of re-
lation: WC reflects the likelihood of the second
word occurring in the context of the first word,
and CW reflects the likelihood of the first word oc-
curring in the context of the second word. These
two quantities are different, given that the W and
C matrices are obtained from two different layers

2https://bitbucket.org/omerlevy/
hyperwords
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of the neural network, one connected to the input
layer and the other to the output layer.

4 Experiments

SimLex and ProNorm provide complementary
scores on similarity and relatedness between
words. In order to demonstrate and examine how
word embeddings should be used in asymmetric
relatedness measurement, we designed two exper-
iments. In both experiments word and context
embeddings were obtained from Skipgram models
trained on a tokenized English Wikipedia dump3.
We slightly modified the original Word2Vec Skip-
gram implementation by Levy et al. (2015) to save
both word and context vectors.

We tested vector spaces with varying dimen-
sionalities (dim=100/200/300) and number of con-
text words (win=3/6/10), as well as minimum
occurrence cutoff (min=1/5), negative samples
(neg=1/5) and iterations (iter=1/5). These vari-
ations were tested to ensure the observed pat-
terns reported in the experiments, but we report
numerical results only for best performing mod-
els. In particular, higher dimensional vectors with
dim=300 produced consistently better alignment
with human scoring data. We also found min=1,
neg=5 and iter=5 to be the optimal parameter set-
tings across all experiments.

5 Quantitative Evaluation

Our first experiment follows an established eval-
uation strategy by computing the Spearman cor-
relation coefficient between the set of similar-
ity measures produced by the word embedding
model (WW/CC/WC/CW/AA) and the similar-
ity/relatedness scores taken from the SimLex and
ProNorm datasets. As ProNorm score of a word
pair (w1, w2), we simply use the total number of
times a response word w2 was produced by all sub-
jects given w1 as a cue word. Interested readers are
encouraged to see Jouravlev and McRae (2016) for
more details on the data collection procedure.

Our hypothesis is that for taxonomic similarity
judgment the classic WW measure, i.e., the co-
sine of the word vectors of w1 and w2 would per-
form best, especially given the fact that in collec-
tion of similarity norms the direction between two
words was not a factor. For explicit relatedness
judgment, on the other hand, we expect one of

3https://sites.google.com/site/rmyeid/
projects/polyglot

the asymmetric measures to be the best predictor.
WC, which is the cosine between the word em-
bedding of the cue w1 and the context embedding
of the response w2 tells us how likely we would
see w2 and similar words in the context of w1.
CW reflects the opposite way relatedness, mean-
ing how likely it is to see w1 and similar words
in the context of w2. Note that these two quan-
tities are different both mathematically and con-
ceptually, because they are obtained from gener-
alization over word occurrences in many different
contexts. We hypothesize that WC should be the
best predictor for the ProNorm score of (w1, w2)
given that production in the constrained setup of
the ProNorm experiment was guided by thematic
relatedness, making it more like a non-syntactic
language modeling task: guessing which other
words/concepts might appear within the context of
the current word.

SimLex and ProNorm collections have almost
the same number of word pairs. However, it is
important to note that ordering ProNorm word
pairs based on their relatedness scores is proba-
bly more difficult than ordering the SimLex list
of word pairs. This is because in the ProNorm
data collection setup, all word pairs were basically
generated based on relatedness, whereas in Sim-
Lex, experimental items were pre-designed in a
way they covered a wide range of closely simi-
lar to totally different word pairs. Ordering Sim-
Lex should in turn be harder than ordering words
in the old WordSim353 similar and related word
pair collections, because each of the latter subsets
has a much smaller number of items compared to
SimLex collection.

In order to demonstrate the difference between
the tasks of ordering words based on similarity
vs. relatedness in an explicit setup (SimLex and
ProNorm) with an implicit, i.e., a mixed setup we
include WordSim353 (Agirre et al., 2009) in our
experiment. We hypothesize that the patterns of
superiority of one vector-based measure to another
in ranking word pairs based on their similarity and
relatedness should come out even if people were
not explicitly instructed to pay attention to a spe-
cific aspect.

5.1 Results

Table 1 displays correlation scores between simi-
larity ratings in SimLex and Skipgram similarity
measures introduced in the previous section (all
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Measure 300-3 300-6 300-10

WW 0.44 0.42 0.41
CC 0.40 0.40 0.39
WC 0.34 0.36 0.37
CW 0.32 0.36 0.35
AA 0.42 0.41 0.41
AllReg 0.46 0.43 0.41

Table 1: Spearman correlation between human simi-
larity judgments (SimLex) and Skipgram measures.

Measure 300-3 300-6 300-10

WW 0.19 0.22 0.23
CC 0.18 0.19 0.20
WC 0.24 0.25 0.26
CW 0.20 0.20 0.20
AA 0.20 0.22 0.22
AllReg 0.24 0.27 0.27

Table 2: Spearman correlation between forward relat-
edness scores (ProNorm) and Skipgram measures.

significant at p < 0.001). Results on models with
dim=300 and win=3/6/10 are reported (see Ap-
pendix for supplementary results). The WW mea-
sure exhibits consistently a better alignment with
the human rating data compared to the all other
measure. This suggests that second-order co-
occurrence information plays the main role in sim-
ilarity between two words. In collection of Sim-
Lex, subjects were asked explicitly not to rate sim-
ilarity based on thematic relatedness. It is likely
that the human ratings were affected not only by
co-occurrence information encoded in word em-
beddings but also in context embeddings. As we
expected, the best predictors of this data are the
symmetric similarity measures, and in particular,
WW. The last row of the table includes Spear-
man correlation between human similarity judg-
ment and a linear regression model using all Skip-
gram measures as predictors. Thus, numbers in
this row show an upper bound for Spearman scores
of the individual measures (obtained from an opti-
mal weighting of all individual measures).

Table 2 shows the Spearman correlation be-
tween ProNorm scores and the Skipgram mea-
sures (all significant at p < 0.001). As we hypoth-
esized, WC stands out as the best predictor, sug-
gesting that human responses to a cue word (when
asked to name related words) are more likely to

be found in the vicinity of the cue word within
the context embedding space rather than within
the word embedding space. The correlation be-
tween the ProNorm scores with WC is larger than
with WW or AA scores. This indicates the im-
portance of the knowledge encoded in the context
embeddings, but specifically the prediction power
of the asymmetric similarity measure compared to
the symmetric ones. Interestingly, CW is not as
good as WC in this task. This reveals the impor-
tance of the direction in associative relatedness be-
tween words such as baby and stork, which seems
to correlate with their vector representations. Fi-
nally, the regression model, which applies an op-
timal weighing on different Skipgram measures
finds the best fit, whereas AA which gives equal
weights to symmetric and asymmetric measures
fails to compete with WC alone. Comparisons be-
tween Tables 1 and 2 suggest that, similarity and
relatedness are best approximated by symmetric
and asymmetric measures, respectively.

We next examined the WordSim353 data to
evaluate whether above implications apply also
to ratings collected in implicit setup, i.e., where
human subjects were not instructed to response
based either on taxonomic similarity or associa-
tive relatedness. We examine each subset of Word-
Sim353 separately and treat them like similarity
and relatedness data. Table 3 shows results on
these two collections of word pairs with best pa-
rameter setup; i.e., with dim=300 and win=3 and
64. Similar to our previous experiments on the
other datasets, relative ranking of similar word
pairs is best predicted with commonly used mea-
sure WW alone, which is indicative of second-
order co-occurrence similarity. For related word
pairs, asymmetric measures WC and CW, which
are indicative of first-level co-occurrence come out
as better individual predictors compared to WW.
However, the balanced combination of all, i.e., the
AA measure seems to be the consistent winner
across both datasets. This finding suggests that
when similarity/relatedness is scored by people as
an overall degree of closeness between words and
without explicit instruction to focus on one aspect,
the most reliable predictor would be a cosine mea-
sure that considers both symmetric and asymmet-
ric types of relations between words.

4Results for win=10 were not as good as in other condi-
tions for this experiment, therefore we only report the very
best setups with win=3 and 6.
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Similar pairs Related pairs

300-3 300-6 300-3 300-6

WW 0.79 0.81 0.62 0.63
CC 0.76 0.77 0.58 0.61
WC 0.76 0.79 0.65 0.69
CW 0.76 0.78 0.65 0.67
AA 0.80 0.81 0.65 0.67
AllReg 0.80 0.82 0.69 0.70

Table 3: Spearman correlation between scores from
WordSim353 subsets and Skipgram measures.

6 Qualitative Evaluation

Our first experiment focused on discovering the
best vector-based predictor for similarity and re-
latedness between two words. We found that con-
sidering context vectors in calculation of the sim-
ilarity score produces a superior predictor, spe-
cially for relatedness, compared to the tradition-
ally used measure (WW) based only on word vec-
tors. The experiment in this section is a more tan-
gible evaluation of the Word2Vec model in a relat-
edness task when a cue word is given. The aim is
to simulate the production experiment with which
the ProNorm data were collected and to evaluate
whether using the WC measure will give us more
true responses than WW.

For the purpose of this experiment, we use the
Skipgram model with dim=300 and win=10 as
these settings produced the best overall perfor-
mance in the quantitative experiment on ProNorm
data. The simulation procedure is as follows: For
each cue word w1 in the ProNorm dataset, each
model generates the n most similar words in the
vocabulary and we count how many of the human
responses were contained in each set. The first
model looks up nearest neighbors of w1 within the
word space (thus using WW as the proximity mea-
sure) and the second model searches for the near-
est neighbors of w1 within the Context space (thus
using WC as the proximity measure). Variable n
indicates the total number of guesses a model is
allowed to make when responding to a given cue
word. In other words, n is the size of the sub-
space explored around the cue word within each
distributional semantic space. Since our previous
experiment showed a higher correlation between
WC and the relatedness norms, we expect that
neighboring words within the context embedding
space (in the vicinity of the cues word embedding)

Figure 1: Number of human responses found in word
and context embedding spaces near the word embed-
ding of the cue (x-axis) as the search space is in-
creased (y-axis).

should be more populated with related words (i.e.,
human responses) compared to neighboring words
within the word embedding space. Regarding the
above procedure, we first extract the word embed-
ding of the cue w1 and then consider all human
responses for that cue, i.e. w2 of all existing pairs
(w1, w2) in the dataset, within both the word and
context embedding spaces. If, as results of the
previous experiment suggest, WC is a better mea-
sure of forward relatedness, then a larger portion
of human responses should be found in neighbor-
ing words within the context space than within the
word space surrounding the cue word.

6.1 Results

Our distributional spaces are constructed based
on Wikipedia text; therefore, the model vocabu-
lary is very large and noisy. While the top-rank
guesses of the model (both measures) are indeed
similar/related to the cue words, a lot of them are
more frequent in the training corpus genre, i.e.
Wikipedia language, than in the simpler language
humans (e.g., subjects of the ProNorm study) use
when recalling direct relations. For example, in
response to the cue word restaurant subjects of
the ProNorm study generated words such as plate,
food, menu, drink, and chef. In addition to cor-
rect guesses, both WW and WC models trained
on web corpora generated words such as bistro,
eatery, hotel, grill and buffet as closest words to
restaurant. Another example would be the cue
word house, which in the ProNorm experiment
triggered door, family, bricks, bed, window, roof,
furniture, fireplace, chimney, and kitchen. The
WW model generated the following words as top
candidates, which are in fact taxonomically sim-
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ilar, to house: mansion, farmhouse, and cottage.
WC model generates relatively more thematically
related words, some of which are correct guesses
(overlapping with human data) and some are not:
barn, residence, estate, dining, room, stables, fire-
place, family, and kitchen. On average, only one
human response per cue can be found in the top
30 model responses. Blue and candy bars in Fig-
ure 6 show the total number of correct guesses by
the model using WW and WC measures, respec-
tively. This quantity is the total correct guesses for
all 100 cues in the ProNorm dataset (x-axis), when
the n most similar neighboring words are exam-
ined in each space (y-axis). We explored n values
between 10 and 100.

Table 4 shows an example of our simulation
for the word car. As the search space widens up
to 100 most similar words in the vicinity of the
cue word embedding, more overlap is observed
between human responses and model responses.
In addition to synonymous words such as automo-
bile, the majority of incorrect guesses for the cue
word car are names of automobile models such
as suv and bmw. The W space around the cue
word embedding is more populated with such tax-
onomically similar words compared to the C space
around the cue word. On the other hand, as the
results suggest, thematically related words such
as driver and steering wheel can more easily be
found within the surrounding C space. This pat-
tern is very consistent across all the cue words
in the ProNorm dataset, suggesting that WC is a
more valid measure of forward thematic related-
ness. This qualitative observation suggests that the
differences between the Spearman correlations in
Table 2 were meaningful, and vector-based mea-
sures of similarity and relatedness, i.e., WW and
WC, return different sets of neighboring words to
a given cue word.

7 Related Work

Word embeddings learned from unlabeled text us-
ing different models such as Word2Vec and Glove
are currently being used for representation of in-
put to deep neural networks that carry out a variety
of NLP tasks. Word similarity/relatedness datasets
have been the basis for intrinsic evaluation of word
embeddings. These datasets provide researchers
with insights about how word relations are demon-
strated in a distributional space. Previous work has
employed WordSim353, SimLex999 and several

n Correct guesses by each measure

20
WW tires
WC tires|driver

50
WW tires
WC tires|driver|driving

100
WW tires
WC tires|driver|driving|steering wheel

Table 4: Human responses for the cue word car found
in top-n neighboring words within the word and con-
text embedding spaces using WW and WC measures.

other established similarity/relatedness datasets
for evaluation of word embeddings (Baroni et al.,
2014; Kiela et al., 2015; Levy et al., 2015; Mela-
mud et al., 2016; Sahlgren and Lenci, 2016).

A closely related previous study to the cur-
rent study is the comprehensive evaluation of
Word2Vec and three other distributional semantic
models by Levy et al. (2015), where they demon-
strated that all the models could learn word rela-
tions to similar extent if hyper-parameters were
carefully tuned. In particular, Levy et al. dis-
cussed the effect of averaging word and context
vectors on capturing first and second-order simi-
larity. However, the w+c option did not make it
to their result tables because it was not selected as
one of the generally optimal settings, while men-
tioned to be useful to test.

Asr and Jones (2017) looked more closely
into this optional parameter setting in their study
of count-based vs. predictive distributional se-
mantic models (Word2Vec Skipgram vs. PPMI
SVD). Using an artificial language framework,
they showed that considering the w+c option
would extend the range of word-to-word cosine
similarity scores, and directly affect the topol-
ogy of word clusters in the distributional space.
However, none of the mentioned works studied
the individual terms in the cosine similarity ob-
tained from Word2Vec Skipgram when the w+c
option is used, thus they left the question of using
these terms for replicating psycholinguistic data
on asymmetric association open. Another related
line of research in NLP is work on retrofitting
of word embeddings using additional lexical re-
sources to reflect specific relations between words
more strongly (Faruqui et al., 2015; Kiela et al.,
2015). Kiela et al. (2015) looked into the partic-
ular case of similarity and relatedness. They pro-
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posed using Thesaurus synonymy data and free-
association data in training of the word embed-
dings to obtain vectors suitable for similarity and
relatedness, respectively. In contrast to this cate-
gory of work though, the objective of our research
is elaborating the functionality of the word em-
bedding algorithms and how their general-purpose
output should be interpreted and queried rather
than trying to maximize the performance of the
model on a given task by modifying training data
or the training mechanism.

Our study adds to the existing body of re-
search by employing word relatedness data col-
lected within a standard psychology experiment
and showing how first- vs. second-order informa-
tion accumulated on the two layers of the popular
Skipgram model can be used for different tasks.
We showed that the distributional measure for cap-
turing asymmetric relatedness between two words
is different from a measure that captures taxo-
nomic similarity even though both types of infor-
mation are obtained from a unified model trained
on a single source of co-occurrence data.

8 Conclusions

Word and context embeddings produced by
Word2Vec Skipgram are two different semantic
representations of the vocabulary words within the
same Euclidean space. We proposed several mea-
sures for complementary similarity and related-
ness judgments computed based on these embed-
dings. Asymmetric measures obtained from the
inner product of a vector from the word embed-
ding space and a vector from the context embed-
ding space are representative of first-order the-
matic relations between words.

We examined our proposal using a recently
published dataset of production norms (Jouravlev
and McRae, 2016) and confirmed when people
were explicitly asked to recall thematically related
words, their responses were more likely located
within the context embedding space in the vicin-
ity of the cues word embedding. In other words,
WC, where W is the word embedding of the cue
and C is the context embedding of the response,
best measures forward thematic relatedness.

We also ran experiments on pure similarity
judgment by employing a commonly used dataset
of word pairs scored according to taxonomic sim-
ilarity rather than other types of relations (Hill
et al., 2015). Human judgments on word similar-

ity taken from this data were best predicted by a
symmetric measure, the classic WW cosine sim-
ilarity between the word vectors. This suggests
that the best measures of taxonomic similarity and
thematic relatedness are different in distributional
space, even though information involved in both
measurements is collected from the same set of co-
occurrence features.

Based on the observations made in the paper,
we can also argue that the free recall task in the
constraint manner where people are asked to name
related words (such as in Jouravlev and McRae’s
study) is similar to the task of predicting context
words for the given cue word. This is an important
finding for the psycholinguitic research trying to
study the mechanisms in lexical production tasks.
For NLP research, these findings motivate taking
different approaches in problems where thematic
relations between words is important for the task,
e.g., in assessment of text coherence, question an-
swering, or language generation.

Finally, our experiments elaborated the func-
tionality of the two transformation matrices in
Word2Vec architecture. We repeated some of
our experiments with GloVe, another popular
word embedding model with two final sets of
(word/context) vectors. We found similar patterns
of relative goodness of measures: WW was con-
sistently better in scoring similarity between two
words and WC was better in measuring the the-
matic relatedness. However, the asymmetry be-
tween WC and CW did not come out clearly in
these experiments and the overall performance of
the GloVe model in the similarity task was much
lower than Skipgram. A closer investigation of
the GloVe model architecture will be necessary for
argumentation about its different results (B Ap-
pendix includes results of our preliminary exper-
iments with GloVe). Other vector space models
obtained from non-neural architectures can also
be examined in this framework. For example,
Levy et al. (2015) showed that the w+c option (us-
ing the average of word and context embeddings
as word vectors) could be simulated in a count-
based model that applies SVD to the PMI matrix
of word-context co-occurrences. Examining these
models on similarity vs. relatedness using our pro-
posed measures will be left for the future.5

5Code for running all experiments using Word2Vec and
GloVe models is available at https://github.com/
FTAsr/wordvet
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A Appendix

Supplementary results on SimLex and ProNorm
datasets using Skipgram with dim=100 & 200 are
presented here. Patterns of how WW and CW
measures predict similarity and relatedness are
consistently repeated in these parameter settings.

Measure 100-3 100-6 100-10

WW 0.36 0.36 0.34
WC 0.31 0.32 0.33

Measure 200-3 200-6 200-10

WW 0.42 0.40 0.39
WC 0.34 0.35 0.35

Table 5: Spearman correlation between similarity
scores (SimLex) and Skipgram measures.

Measure 100-3 100-6 100-10

WW 0.18 0.19 0.19
WC 0.19 0.21 0.21

Measure 200-3 200-6 200-10

WW 0.19 0.20 0.21
WC 0.22 0.24 0.24

Table 6: Spearman correlation between similarity
scores (ProNorm) and Skipgram measures.

B Supplementary Results using GloVe

Supplementary result on SimLex and ProNorm
datasets using GloVe models with dim=300 and
win=3/6/10 are presented in this section. GloVe
had a general disadvantage in learning word simi-
larity (SimLex) compared to Skipgram. Patterns
of how WW and CW measures predict similar-
ity and relatedness are nevertheless similar across
models: WC is much better than WW for related-
ness prediction.

Measure 300-3 300-6 300-10

WW 0.25 0.26 0.16
CC 0.26 0.25 0.18
WC 0.13 0.17 0.16
CW 0.15 0.17 0.14
AA 0.26 0.27 0.20

AllReg 0.29 0.30 0.25

Table 7: Spearman correlation between similarity
scores (SimLex) and GloVe measures.

Measure 300-3 300-6 300-10

WW 0.15 0.16 0.14
CC 0.13 0.17 0.14
WC 0.22 0.21 0.21
CW 0.19 0.21 0.22
AA 0.20 0.21 0.19

AllReg 0.22 0.21 0.24

Table 8: Spearman correlation between relatedness
scores (ProNorm) and GloVe measures.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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