
Proceedings of NAACL-HLT 2018, pages 652–662
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

 A Meaning-based Statistical English Math Word Problem Solver

Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin and Keh-Yih Su
Institute of Information Science, Academia Sinica, Taiwan

{ccliang, yushiangwtw, lyc, kysu}@iis.sinica.edu.tw

Abstract

We introduce MeSys, a meaning-based ap-
proach, for solving English math word
problems (MWPs) via understanding and
reasoning in this paper. It first analyzes the
text, transforms both body and question
parts into their corresponding logic forms,
and then performs inference on them. The
associated context of each quantity is rep-
resented with proposed role-tags (e.g.,
nsubj, verb, etc.), which provides the flex-
ibility for annotating an extracted math
quantity with its associated context infor-
mation (i.e., the physical meaning of this
quantity). Statistical models are proposed
to select the operator and operands. A
noisy dataset is designed to assess if a
solver solves MWPs mainly via under-
standing or mechanical pattern matching.
Experimental results show that our ap-
proach outperforms existing systems on
both benchmark datasets and the noisy da-
taset, which demonstrates that the pro-
posed approach understands the meaning
of each quantity in the text more.

1 Introduction

The math word problem (MWP) (see Figure 1) is
frequently chosen to study natural language un-
derstanding and simulate human problem solving
(Bakman, 2007; Hosseini et al., 2014; Liang et
al., 2016) for the following reasons: (1) the an-
swer to the MWP cannot be simply extracted by
performing keyword/pattern matching. It thus
shows the merit of understanding and inference.

(2) An MWP usually possesses less complicated
syntax and requires less amount of domain
knowledge, so the researchers can focus on the
task of understanding and reasoning. (3) The
body part of MWP that provides the given infor-
mation for solving the problem consists of only a
few sentences. The understanding and reasoning
procedures thus could be more efficiently
checked. (4) The MWP solver has its own appli-
cations such as Computer Math Tutor (for stu-
dents in primary school) and Helper for Math in
Daily Life (for adults who are not good in solving
mathematics related real problems).

According to the approaches used to identify
entities, quantities, and to select operations and
operands, previous MWP solvers can be classified
into: (1) Rule-based approaches (Mukherjee and
Garain, 20081; Hosseini et al., 2014), which make
all related decisions based on a set of rules; (2)
Purely statistics-based approaches (Kushman et
al., 2014; Roy et al., 2015; Zhou et al., 2015;
Upadhyay et al., 2016), in which all related deci-
sions are done via a statistical classifier; (3) DNN-
based approaches (Ling et al., 2017; Wang et al.,
2017), which map the given text into the corre-
sponding math operation/equation via a DNN; and
(4) Mixed approaches, which identify entities and
quantities with rules, yet, decide operands and op-
erations via statistical/DNN classifiers. This cate-
gory can be further divided into two subtypes: (a)
Without understanding (Roy and Roth, 2015;
Koncel-Kedziorski et al., 2015; Huang et al.,
2017; Shrivastava et al., 2017), which does not
check the entity-attribute consistency between
each quantity and the target of the given question;
and (b) With understanding (Lin et al., 2015; Mi-
tra and Baral, 2016; Roy and Roth, 2017), which
also checks the entity-attribute consistency while
solving the problem.

1 It is a survey paper which reviews most of the rule-based
approaches before 2008.

Math Word Problem
Mike takes 88 minutes to walk to school. If he rides
a bicycle to school, it would save him 64 minutes.
How much time did Mike save?

Solution
88 – 64 = 22

Figure 1: An example of math word problem.

652

However, a widely covered rule-set is difficult
to construct for the rule-based approach. Also, it is
awkward in resolving ambiguity problem. In con-
trast, the performance of purely statistics-based
approaches deteriorates significantly when the
MWP includes either irrelevant information or in-
formation gaps (Hosseini et al., 2014), as it is
solved without first understanding the meaning.

For the category (4a), since the physical mean-
ing is only implicitly utilized and the result is not
generated via inference, it would be difficult to
explain how the answer is obtained in a human
comprehensible way. Therefore, the categories
(2), (3) and (4a) belong to the less favored direct
translation approach2 (Pape, 2004).

In contrast, the approaches of (4b) can avoid
the problems mentioned above. However, among
them, Mitra and Baral (2016) merely handled Ad-
dition and Subtraction. Only the meaning-based
framework proposed by Lin et al. (2015) can han-
dle general MWPs via understanding and reason-
ing. Therefore, it is possible to explain how the
answer is obtained in a human comprehensible
way (Huang et al., 2015). However, although their
design looks promising, only a few Chinese
MWPs had been tested and performance was not
evaluated. Accordingly, it is hard to make a fair
comparison between their approach and other
state-of-the-art methods. In addition, in their pro-
totype system, the desired operands of arithmetic
operations are identified with predefined lexico-
syntactic patterns and ad-hoc rules. Reusing the
patterns/rules designed for Chinese in another
language is thus difficult even if it is possible.

In this paper, we adopt the framework proposed
by Lin et al. (2015) to solve English MWPs (for
its potential in solving difficult/complex MWPs
and providing more human comprehensible ex-
planations). Additionally, we make the following
improvements: (1) A new statistical model is pro-
posed to select operands for arithmetic operations,
and its model parameters can be automatically
learnt via weakly supervised learning (Artzi and
Zettlemoyer, 2013). (2) A new informative and
robust feature-set is proposed to select the desired
arithmetic operation. (3) We show the proposed
approach significantly outperforms other existing
systems on the common benchmark datasets re-
ported in the literature. (4) A noisy dataset with

2 According to (Pape, 2004), the meaning-based approach of
solving MWPs achieves the best performance among vari-
ous behaviors adopted by middle school children.

more irrelevant quantities in MWPs is created and
released. It could be used to check if an approach
really understands what a given MWP looks for.
(5) An experiment is conducted to compare vari-
ous approaches on this new dataset. The superior
performance of our system demonstrates that the
proposed meaning-based approach has good po-
tential in handling difficult/complex MWPs.

2 System Description

The adopted meaning-based framework (Lin et
al., 2015) is a pipeline with following four stages
(see Figure 2): (1) Language Analysis, (2) Solu-
tion Type Identification, (3) Logic Form Trans-
formation and (4) Logic Inference. We use the
Stanford CoreNLP suite (Manning et al., 2014) as
the language analysis module. The other three
modules are briefly described below. Last, we
adopt the weakly supervised learning (Artzi and
Zettlemoyer, 2013; Kushman et al., 2014) to au-
tomatically learn the model parameters without
manually annotating each MWP with the adopted
solution type and selected operands benchmark.

2.1 Solution Type Identification (STI)

After language analysis, each MWP is assigned
with a specific solution type (such as Addition,
Multiplication, etc.) which indicates the stereo-
type math operation pattern that should be adopt-
ed to solve this problem. We classify the English
MWPs released by Hosseini et al. (2014) and Roy
and Roth (2015) into 6 different types: Addition,
Subtraction, Multiplication, Division, Sum and
TVQ-F3. An SVM (Chang and Lin, 2011) is used
to identify the solution type with 26 features. Most
of them are derived from some important proper-
ties associated with each quantity.

3 TVQ-F means to get the final state of a Time-Variant-
Quantity that involves both Addition and Subtraction.

Figure 2: The diagram of MeSys framework

653

In addition to the properties Entity4 and Verb
(Hosseini et al., 2014) associated with the quanti-
ty, we also introduce a new property Time which
encodes the tense and aspect of a verb into an in-
teger to specify a point in the timeline. We assign
2, 4, and 6 to the tenses Past, Present and Future,
respectively, and then adjust it with the aspect-
values -1, 0 and 1 for Perfect, Simple, and Pro-
gressive, respectively.

Another property Anchor is associated with the
unknown quantity asked in the question sentence.
If the subject of the question sentence is a noun
phrase (e.g., “how many apples does John
have?”), Anchor is the subject (i.e., John). If the
subject is an expletive nominal (e.g. “how many
apples are there in the box?”), then Anchor is the
associated nominal modifier nmod (i.e., “box”).
Otherwise, Anchor is set to “Unknown”.

Inspired by (Hosseini et al., 2014), we trans-
form Verb to Verb-Class (VC) which is positive,
negative or stative. A verb is positive/negative if it
increases/decreases the associated quantity of the
subject. For example, in the sentence “Tom bor-
rowed 3 dollars from Mike”, the verb is positive
because the money of subject “Tom” increases.

However, a positive verb does not always imply
the Addition operation. If the question is “How
much money does Mike have now?” for the above
body sentence, the operation should be Subtrac-
tion. Two new properties Anchor-Role (AR) and
Action (A) are thus proposed: ARi indicates the
role that Anchor associated with qi, and is set to
nsubj/obj/nmod/φ. Ai is determined by following
rules: (1) Ai=positive if (VCi, ARi) is either (posi-
tive, nsubj) or (negative, obj/nmod). (2)
Ai=negative if (VCi, ARi) is either (negative,

4 In our works, the term “Entity” also includes the unit of
the quantity (e.g., “cup of coffee”).

nsubj) or (positive, obj/nmod). (3) Otherwise,
Ai=VCi.

To rule out the noisy quantities introduced by
irrelevant information, we further associate each
known quantity with the property Relevance (R)
according to the unknown quantity asked in the
question sentence. Let qi denote the i-th known
quantity, Ei denote the entity of qi, Xi denote the
property X of qi, qU denote the unknown quantity
asked, and XU denote the property X of qU. Ri is
specified with following rules: (1) Ri=2 (Directly-
Related) if either {Anchor is Unknown & Ei en-
tails EU} or {Anchor is not Unknown & ARi≠φ &
Ei entails EU} (2) Ri=1 (Indirectly-Related) if
there is a qj which maps5 to qi and Rj=2 (i.e., qj is
Directly-Related). (3) Ri=0 (Unrelated) otherwise.

The solution type is identified by an SVM
based on 26 binary features. Let the symbols p, n,
s, A, E, R, T, V, SB, SQ and wQ stand for positive,
negative, stative, Action, Entity, Relevance, Time,
Verb, “a body sentence”, “the question sentence”
and “a word in question sentence” respectively.
Also, let I(x) be the indicator function to check if x
is true. The 26 features are briefly described as
follows:

(1) VCU=p; (2) ∃Ri=2 s.t. Ai=p; (3) ∃Ri=2 s.t. Ai=n;
(4) ∃Ri=2 s.t. Ai=s; (5) ∑𝑖𝑖 I(Ri =2) > 2;
(6) ∑𝑖𝑖 I(Ri=2 & Ai ∈{p, n}) = 2;
(7) ∃Ri=2 s.t. Ai=p & TU<Ti;
(8) ∃Ri=2 s.t. Ai=n & TU<Ti;
(9) ∃Ri=2 s.t. Ai=s & Ti=max Tj;
(10) ∃Ri=2 s.t. Ai=s & Ti<TU;
(11) TU ≥ max Ti; (12) TU ≤ min Ti;
(13) ∀Ri=2, Vi are the same; (14) ∀Ri=2 s.t. Ti=TU;
(15) ∀Ri=2, Ti are the same;
(16) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qi > qj;

5 That is, 𝑞𝑞𝑖𝑖 is linked to a directly-related quantity 𝑞𝑞𝑗𝑗 under
an expression such as “2 pencils weigh 30 grams”.

Figure 3: An example of logic form transformation

654

(17) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qi is associated
with a word “each/every/per/a/an”;

(18) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qj is associated
with a word “each/every/per/a/an”;

(19) ∃qi, qj, qk s.t. Ri = Rj = Rk =2 & Vi = Vj = Vk;
(20) ∃wQ ∈{total, in all, altogether, sum};
(21) ∃wQ ∈{more, than} or ∃wQ s.t. wQ-POS=RBR;
(22) ∃wQ =“left”; (23). ∃qi appears in SQ;
(24) “the rest V EU” appears in SB (V for any verb);
(25) “each NN” appears in SQ (NN for any noun);

(26) AnchorU is Unknown/nmod & VCU = s.

2.2 Logic Form Transformation (LFT)

The results of language analysis are transformed
into a logic form, which is expressed with the
first-order logic (FOL) formalism (Russell and
Norvig, 2009). Figure 3 shows how to transform
the sentence (a) “Pack 100 candies into 5 boxes.”
into the corresponding logic form (d). First, the
dependency tree (b) is transformed into the se-
mantic representation tree (c) adopted by Lin et
al., (2015). Afterwards, according to the procedure
proposed in (Lin et al., 2015), the domain-
dependent logic expressions are generated in (d).

The domain-dependent logic expressions are
related to crucial generic math facts, such as quan-
tities and relations between quantities. The FOL
function quan(quanid, unit6,entity)=number is for
describing the quantity fact. The first argument
denotes its unique identifier. The other arguments
and the function value describe its meaning. An-
other FOL predicate qmap(mapid, quanid1, quanid2)
(denotes the mapping from quanid1 to quanid2) is
for describing a relation between two quantity
facts, where the first argument is a unique identi-
fier to represent this relation.

The role-tags (e.g., verb, dobj, etc.) associated
with quanid and mapid denote entity attributes
(i.e., the physical meaning of the quantity), are
created to help the logic inference module find the

6 This second argument denotes the associated unit used to
count the entity. It is set to “#” if the unit of the entity is not
specified.

solution. For example, quan(q2,#,box) = 5 &
verb(q2,pack) &… means that q2 is the quantity of
boxes being packed. With those role-tags, the sys-
tem can select the operands more reliably, and the
inference engine can also derive new quantities to
solve complex MWPs which require multi-step
arithmetic operations (see section 2.3).

The question in the MWP is also transformed
into an FOL-like utility function according to the
solution type to ask the logic inference module to
find out the answer. For example, the utility func-
tion instance Division(quan(q1, #, candy),
quan(q2, #, box)) asks the inference module to di-
vide “100 candies” by “5 boxes”. Since associated
operands must be specified before calling those
utility functions, a statistical model (see section
2.4) is used to identify the appropriate quantities.

2.3 Logic Inference

The logic inference module adopts the inference
engine from (Lin et al., 2015). Figure 4 shows how
it uses inference rules to derive new facts from the
initial facts directly provided from the description.
The MWP (a) provides some facts (b) generated
from the LFT module. An inference rule (c) 7 ,
which implements the common sense that people
must pay money to buy something, is unified with
the given facts (b) and derives new facts (d). The
facts associated with q6 can be interpreted as
“Mary paid 0.5 dollar for two puddings”.

The inference engine (IE) also provides 5 utili-
ty functions, including Addition, Subtraction,
Multiplication and Division, and Sum. The first
four utilities all return a value by performing the
named math operation on its two input arguments.
On the other hand, Sum(function,condition) re-
turns the sum of the values of FOL function in-
stances which can be unified with the first argu-
ment (i.e., function) and satisfy the second argu-
ment (i.e., condition). For example, according to

7 In the inference rule, $q is a meta symbol to ask the infer-
ence engine to generate a unique identifier for the newly de-
rived quantity fact.

(a) A sandwich is priced at $0.75. A pudding is priced at $0.25. Tim bought 2 sandwiches and 4 puddings. Mary bought 2 puddings.
How much money should Tim pay?

(b) …price(sandwich,0.75)&price(pudding,0.25)… quan(q1,#,sandwich)=2&verb(q1,buy)&nsubj(q1,Tim)…
quan(q2,#,pudding)=4&verb(q2,buy)&nsubj(q2,Tim)… quan(q3,#,pudding)=2&verb(q3,buy)&nsubj(q3,Mary)…
ASK Sum(quan(?q,dollar,#),verb(?q,pay)&nsubj(?q,Tim))

(c) quan(?q,?u,?o)&verb(?q,buy)&nsubj(?q,?a)&price(?o,?p)  quan($q,dollar,#)=quan(?q,?u,?o)×?p & verb($q,pay) & nsubj($q,?a)
(d) quan(q4,dollar,#)=1.5&verb(q4,pay)&nsubj(q4,Tim)… quan(q5,dollar,#)=1&verb(q5,pay)&nsubj(q5,Tim)…

quan(q6,dollar,#)=0.5&verb(q6,pay)&nsubj(q6,Mary)
Figure 2: A logic inference example

(a) A sandwich is priced at $0.75. A pudding is priced at $0.25. Tim bought 2 sandwiches and 4 puddings. Mary bought 2 puddings.
How much money should Tim pay?

(b) …price(sandwich,0.75)&price(pudding,0.25)… quan(q1,#,sandwich)=2&verb(q1,buy)&nsubj(q1,Tim)…
quan(q2,#,pudding)=4&verb(q2,buy)&nsubj(q2,Tim)… quan(q3,#,pudding)=2&verb(q3,buy)&nsubj(q3,Mary)…
ASK Sum(quan(?q,dollar,#),verb(?q,pay)&nsubj(?q,Tim))

(c) quan(?q,?u,?o)&verb(?q,buy)&nsubj(?q,?a)&price(?o,?p)  quan($q,dollar,#)=quan(?q,?u,?o)×?p & verb($q,pay) & nsubj($q,?a)
(d) quan(q4,dollar,#)=1.5&verb(q4,pay)&nsubj(q4,Tim)… quan(q5,dollar,#)=1&verb(q5,pay)&nsubj(q5,Tim)…

quan(q6,dollar,#)=0.5&verb(q6,pay)&nsubj(q6,Mary)
Figure 4: A logic inference example

655

the last line in Figure 4(b), three newly derived
quantity facts q4, q5 and q6 (in 4(d)) can be uni-
fied with the first argument quan(?q,dollar,#) in
4(c), but only q4 and q5 satisfy the second ar-
gument verb(?q,pay)&nsubj(?q,Tim). As a result,
the answer 2.5 is returned by taking sum on the
values of the quantity facts quan(q4,dollar,#) and
quan(q5,dollar,#).

2.4 Probabilistic Operand Selection

The most error-prone part in the LFT module is
instantiating the utility function of math operation
especially if many irrelevant quantity facts appear
in the given MWP. Figure 5 shows the LFT mod-
ule needs to select two quantity facts (among 4)
for Addition. Please note that the question quantity
qQ, transformed from “how many flowers”, is not a
candidate for operand selection.

Lin et al., (2015) used predefined lexico-
syntactic patterns and ad-hoc rules to instantiate
utility functions. However, their rule-based ap-
proach fails when the MWP involves more quanti-
ties. Therefore, we propose a statistical model to
select operands for the utility functions Addition,
Subtraction, Multiplication and Division. The op-
erand selection procedure can be regarded as find-
ing the most likely configuration (𝑜𝑜1𝑛𝑛, 𝑟𝑟), where
𝑜𝑜1𝑛𝑛 = 𝑜𝑜1,⋯ , 𝑜𝑜𝑛𝑛 is a sequence of random indica-
tors which denote if the corresponding quantity
will be selected as an operand, and 𝑟𝑟 is a tri-state
variable to represent the relation between the val-
ues of two operands (i.e., 𝑟𝑟 = −1, 0 or 1 ; which
denote that the first operand is less than, equal to,
or greater than the second operand, respectively).
Given a solution type 𝑠𝑠, the MWP logic expres-
sions 𝕃𝕃 and the 𝑛𝑛 quantities 𝑞𝑞1𝑛𝑛 = 𝑞𝑞1,⋯ , 𝑞𝑞𝑛𝑛 in 𝕃𝕃.
The procedure is formulated as:

𝑃𝑃(𝑟𝑟, 𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠) ≈ 𝑃𝑃(𝑟𝑟|𝑠𝑠) × 𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠), (1)

𝑃𝑃(𝑟𝑟|𝑠𝑠) simply refers to Relative Frequency (as it
has only a few parameters and we have enough
training samples). 𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠) is further de-
rived as:

𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠)
≈ ∏ 𝑃𝑃(𝑜𝑜𝑖𝑖|𝑞𝑞𝑖𝑖 ,𝕃𝕃, 𝑠𝑠)𝑛𝑛

𝑖𝑖=1 ≈ ∏ 𝑃𝑃�𝑜𝑜𝑖𝑖�Φ(𝑞𝑞𝑖𝑖 ,𝕃𝕃, 𝑠𝑠)�,𝑛𝑛
𝑖𝑖=1

 (2)

where Φ(∙) is a feature extraction function to map
𝑞𝑞𝑖𝑖 and its context into a feature vector. Here, the
probabilistic factor 𝑃𝑃�𝑜𝑜𝑖𝑖�Φ(𝑞𝑞𝑖𝑖,𝕃𝕃, 𝑠𝑠)� is obtained
via an SVM classifier (Chang and Lin, 2011).
Φ(∙) extracts total 25 features (specified as fol-

lows, and 24 of them are binary) for 𝑞𝑞𝑖𝑖. The fol-
lowing 11 of them are independent on the ques-
tion in the MWP:

1. Four features to indicate if 𝑠𝑠 is Addition, Sub-
traction, Multiplication or Division.

2. A feature to indicate if 𝑞𝑞𝑖𝑖 is within a
qmap(…).

3. A feature to indicate if 𝑞𝑞𝑖𝑖 = 1.
4. Five features to indicate if 𝑛𝑛 < 2, 𝑛𝑛 = 2, 𝑛𝑛 =

3, 𝑛𝑛 = 4 or 𝑛𝑛 > 4; where 𝑛𝑛 is the number of
quantities in Eq (1).

Φ(∙) also extracts features by matching the logic
expressions of 𝑞𝑞𝑖𝑖 with those of question quantity
qQ to check the role-tag consistencies between 𝑞𝑞𝑖𝑖
and qQ. Another fourteen features are extracted
with three indicator functions 𝐼𝐼𝑚𝑚(⋅), 𝐼𝐼𝑒𝑒(⋅),
𝐼𝐼∃(⋅) and one tri-state function 𝑇𝑇𝑚𝑚(⋅) as follows:

[𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, entity), 𝐼𝐼𝑒𝑒(𝑞𝑞𝑖𝑖 , qQ, entity),
 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, verb), 𝐼𝐼𝑒𝑒(𝑞𝑞𝑖𝑖 , qQ, verb),
 𝐼𝐼∃(qQ, nsubj),𝑇𝑇𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, nsubj),
 𝐼𝐼∃(qQ, modifier), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, modifier),
 𝐼𝐼∃(qQ, place), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, place),
 𝐼𝐼∃(qQ, temporal), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, temporal),
 𝐼𝐼∃(qQ, xcomp), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, xcomp)]

where the indicator functions 𝐼𝐼𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) checks if
the 𝑧𝑧 of 𝑥𝑥 matches the 𝑧𝑧 of 𝑦𝑦, 𝐼𝐼𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑧𝑧) checks if
the 𝑧𝑧 of 𝑥𝑥 entails the 𝑧𝑧 of 𝑦𝑦 and 𝐼𝐼∃(𝑦𝑦, 𝑧𝑧) checks if
the 𝑧𝑧 of 𝑦𝑦 exists. 𝑇𝑇𝑚𝑚(𝑞𝑞𝑖𝑖, qQ, nsubj) returns “exact-
match” (if nsubj of 𝑞𝑞𝑖𝑖 matches nsubj of qQ),
“quasi-match” (if nsubj of qQ does not exist or is a
plural pronoun), and “unmatch”.
𝐼𝐼𝑒𝑒(⋅) uses the WordNet hypernym and

hyponym relationship to judge whether one
entity/verb entails another one or not via checking
if they are in an inherited hypernym-path in
WordNet. The entity, verb and nsubj of a quantity
are determined according to the logic expressions.
The modifier, place, temporal and xcomp of a
quantity are extracted from the dependency tree
with some lexico-syntactic patterns. For example,
the modifier and place of the quantity in the
sentence “There are 30 red flowers in the garden.”
are “red” and “garden” respectively. The temporal

(a) Tim bought 2 roses and 3 lilies. Mary bought 4 roses
and 5 lilies. How many flowers did Tim buy?

(b) quan(q1,#,rose)=2&verb(q1,buy)&nsubj(q1,Tim)…
quan(q2,#,lily)=3&verb(q2,buy)&nsubj(q2,Tim)…
quan(q3,#,rose)=4&verb(q3,buy)&nsubj(q3,Mary)…
quan(q4,#,lily)=5&verb(q4,buy)&nsubj(q4,Mary)…
quan(qQ,#,flower)&verb(qQ,buy)&nsubj(qQ,Tim)…

Figure 5: An example for operand selection

656

and xcomp of a quantity are extracted according to
the dependency relations “tmod” (i.e., temporal
modifier) and “xcomp” (i.e., open clausal
complement), respectively.

3 Datasets for Performance Evaluation

The AI2 dataset provided by Hosseini et al. (2014)
and the IL dataset released by Roy and Roth
(2015) are adopted to compare our approach with
other state-of-the-art methods. The AI2 dataset
has 395 MWPs on addition and subtraction, with
121 MWPs containing irrelevant information
(Hosseini et al., 2014). It is the most popular one
for comparing different approaches. On the other
hand, the IL dataset consists of 562 elementary
MWPs which can be solved by one of the four
arithmetic operations (i.e., +, −, ×, and ÷) without
any irrelevant quantity. It is the first publicly
available dataset for comparing performances that
covers all four arithmetic operations.

However, the difficulty of solving an MWP de-
pends not only on the number of arithmetic opera-
tions required, but also on how many irrelevant
quantities inside, and even on how the quantities
are described. One way to test if a proposed ap-
proach solves the MWPs with understanding is to
check whether it is robust to those irrelevant quan-
tities. Therefore, it is desirable to have a big
enough dataset that contains irrelevant quantities
which are created under different situations (e.g.,
confusing with an irrelevant agent, entity, or mod-
ifier, etc.) and allow us to probe the system weak-
ness from different angles. We thus create a new
dataset with more irrelevant quantities8. But be-
fore we do that, we need to know how difficult the
task of solving the given MWPs is. Therefore, we
first propose a way to measure how easy that a
system solves the problem by simply guessing.

3.1 Perplexity-flavor Measure

We propose to adopt the Perplexity to measure the
task difficulty, which evaluates how likely a solver
will get the correct answer by guessing. Every
MWP in the datasets can be associated with a so-
lution expression template, such as “⊡ + ⊡” or
“⊡−⊡”, where the symbol ⊡ represents a slot
to hold a quantity. The solution can be obtained by
placing correct quantities at appropriate slots. A

8 The IL dataset does not include any irrelevant information;
on the other hand, the AI2 dataset only contains 121 MWPS
with irrelevant information (but not systematically created).

random baseline is to solve an MWP by guessing.
It first selects a solution expression template ac-
cording to the prior distribution of the templates
and then places quantities into the selected tem-
plate according to the uniform distribution.

The expected accuracy of the random baseline
on solving an MWP is a trivial combination and
permutation exercise9. For example, the expected
accuracy of solving an MWP associated with “⊡
+ ⊡” template is 𝑝𝑝⊡+⊡ × 𝐶𝐶𝑛𝑛 2

−1
, where the fac-

tor 𝑝𝑝⊡+⊡ denotes the prior probability of the
template “⊡ + ⊡” and 𝑛𝑛 is the total number of
quantities (including irrelevant ones) in the MWP.
On the other hand, expected accuracy of solving
an MWP associated with “⊡−⊡”10 template is
𝑝𝑝⊡−⊡ × 𝑃𝑃𝑛𝑛 2

−1
. Let 𝐴𝐴𝑖𝑖 denote the expected accu-

racy of solving the 𝑖𝑖-th MWP in a dataset. The ac-
curacy of the random baseline on the dataset of
size 𝑁𝑁 is then computed as 𝐴𝐴 = (1/𝑁𝑁) × ∑ 𝐴𝐴𝑖𝑖𝑁𝑁

𝑖𝑖=1 .
The word “Accuracy” comprises the opposite

sense of the word “Perplexity”11 (i.e., in the sense
of how hard a prediction problem is). The lower
the Accuracy is, the higher the Perplexity is.
Therefore, we transform the Accuracy measure in-
to a Perplexity-Flavor measure (PP) via the for-
mula:

PP = 2− log2 𝐴𝐴
For instance, the Perplexity-Flavor measures of
AI2 and IL datasets are 4.46 and 8.32 respectively.

3.2 Noisy Dataset

Human Math/Science tests have been considered
more suitable for judging AI progress than Turing
test (Clark and Etzioni, 2016). In our task, solving
MWPs is mainly regarded as a test for intelligence
(not just for creating a Math Solver package). By
injecting various irrelevant quantities into original
MWPs, a noisy dataset is thus created to assess if
a solver solves the MWPs mainly via understand-
ing or via mechanical/statistical pattern matching.
If a system solves an MWP mainly via pattern
matching, it would have difficulty in solving a
similar MWP augmented from the original one
with some irrelevant quantities. Therefore, we
first create a noisy dataset by selecting some

9 Let 𝐶𝐶𝑛𝑛 𝑘𝑘 denote 𝑘𝑘-combinations of 𝑛𝑛 and 𝑃𝑃𝑛𝑛 𝑘𝑘 denote 𝑘𝑘-
permutations of 𝑛𝑛.
10 We assume the operands have different values and, there-
fore, they are not permutable for the subtraction operator.
11 The Perplexity of a uniform distribution over k discrete
events (such as casting a fair k-sided dice) is k.

657

MWPs that can be correctly solved, and then
augmenting each of them with an additional noisy
sentence which involves an irrelevant quantity.
This dataset is created to examine if the solver
knows that this newly added quantity is irrelevant.

Figure 6 shows how we inject noise into an
MWP (a). (a.1) is created by associating an ir-
relevant quantity to a new subject (i.e., Mary).
Here the ellipse symbol “…” denotes unchanged
text. (a.2) is obtained by associating an irrelevant
quantity to a new entity (i.e., books). In addition,
we also change modifiers (such as yellow, red, …)
to add new noisy sentence (not shown here). Since
the noisy dataset is not designed to assess the lexi-
con coverage rate of a solver, we reuse the words
in the original dataset as much as possible while
adding new subjects, entities and modifiers.

136 MWPs that both Illinois Math Solver 12
(Roy and Roth, 2016) and our system can correct-
ly solve are selected from the AI2 and IL datasets.
This subset is denoted as OSS (Original Sub-Set).
Afterwards, based on the 136 MWPs of OSS, we
create a noisy dataset of 396 MWPs by adding ir-
relevant quantities. This noisy dataset is named as
NDS13. Table 1 lists the size of MWPs, Perplexi-
ties (PP), and the average numbers of quantities in
each MWP of these two datasets.

4 Experimental Results and Discussion

We compare our approach with (Roy and Roth,
2015) and (Roy and Roth, 2017) because they
achieved the state-of-the-art performance on the
IL dataset. In the approach of (Roy and Roth,
2015), each quantity in the MWP was associated
with a quantity schema whose attributes are ex-
tracted from the context of the quantity. Based on
the attributes, several statistical classifiers were
used to select operands and determine the opera-
tor. They also reported the performances on the
AI2 dataset to compare their approach with those

12 We submit MWPs to Illinois Math Solver
(https://cogcomp.cs.illinois.edu/page/demo_view/Math) in
May and June, 2017.
13 The noisy dataset can be downloaded from
https://github.com /chaochun/nlu-mwp-noise-dataset. It in-
cludes 102 Addition, 147 Subtraction, 101 Multiplication
and 46 Division MWPs.

of others (e.g., Kushman et al. (2014), which is a
purely statistical approach that aligns the text with
various pre-extracted equation templates). Roy
and Roth (2017) further introduced the concept of
Unit Dependency Graphs to reinforce the con-
sistency of physical units among selected oper-
ands associated with the same operator.

To compare the performance of the statistical
method with the DNN approach, we only imple-
ment a Bi-directional RNN-based Solution Type
Identifier (as our original statistical Operand Se-
lector is relatively much better). It consists of a
word embedding layer (for both body and ques-
tion parts), and a bidirectional GRU layer as an
encoder. We apply the attention mechanism to
scan all hidden state sequence of body by the last
hidden state of question to pay more attention to
those more important (i.e., more similar between
the body and the question) words. Lastly, it out-
puts the solution type by a softmax function. We
train it for 100 epochs, with mini-batch-size = 128
and learning-rate = 0.001; the number of nodes in
the hidden layer is 200, and the drop-out rate is
0.714.

We follow the same n-fold cross-validation
evaluation setting adopted in (Roy and Roth,
2015) exactly. Therefore, various performances
could be directly compared. Table 2 lists the accu-
racies of different systems in solving the MWPs

14 Since the dataset is not large enough for splitting a devel-
opment set, we choose those hyper parameters based on the
test set in coarse grain. Therefore, the DNN performance we
show here might be a bit optimistic.

 AI2 IL
STI (Statistical) 83.0 83.1

STI (DNN) 74.5 68.8
LFT 92.1 94.8

Table 3: Performances of different STIs and LFT

(a) Tim has 10 yellow flowers and 12 red flowers. How
many flowers does Tim have?

(a.1) Tim has … Mary has 3 yellow flowers. How many …
(a.2) Tim has … Tim also has 3 books. How many …

Figure 6: Examples of noisy sentences

 OSS NDS
MWPs 136 396

Perplexity (PP) 7.42 18.83
#Quantities 2.64 3.62

Table 1: Perplexity measures of OSS and NDS

 AI2 IL
Our system (Statistical) 81.5 81.0
Our system (DNN) 69.8 70.6
(Roy and Roth, 2017) 76.2 74.4
(Roy and Roth, 2015) 78.0 73.9
(Kushman et al., 2014) 64.0 73.7

Table 2: Performances of various approaches

658

of various datasets. The performance of (Roy and
Roth, 2017) system is directly delivered by their
code15. The last two rows are extracted from (Roy
and Roth, 2015). The results show that our per-
formances of the statistical approach significantly
outperform that of our DNN approach and other
systems on every dataset.

The performances of STI and LFT modules are
listed in Table 3. As described in section 2, the
benchmark for both solution type and the operand
selection benchmark are automatically determined
by weakly supervised learning. The first and sec-
ond rows of Table 3 show the solution type accu-
racies of our statistical and DNN approaches, re-
spectively. The third row shows the operand selec-
tion accuracy obtained by given the solution type
benchmark. Basically, LFT accuracies are from
92% to 95%, and the system accuracies are domi-
nated by STI. We analyzed errors resulted from
our statistical STI on AI2 and IL datasets, respec-
tively. For AI2, major errors come from: (1) fail-
ure of ruling out some irrelevant quantities (40%),
and (2) making confusion between TVQ-F and
Sum these two solution types (20%) for those cas-
es that only involve addition operation (however,
both types would return the same answer). For IL,
major errors come from: (1) requiring additional
information (35%), and (2) not knowing Part-
Whole relation (17%). Table 4 shows a few ex-
amples for different STI error types.

The left-half of Table 5 shows the performances
on the OSS and NDS datasets. Recall that OSS is
created by selecting some MWPs which both Illi-
nois Math Solver (Roy and Roth, 2016) and our
system16 can correctly solve. Therefore, both sys-
tems have 100% accuracy in solving the OSS da-
taset. However, these two systems behave very
differently while solving the noisy dataset. The
much higher accuracy of our system on the noisy
dataset shows that our meaning-based approach
understands the meaning of each quantity more.
Therefore, it is less confused17 with the irrelevant
quantities.

One MWP in the noisy dataset that confuses Il-
linois Math Solver (IMS) is “Tom has 9 yellow
balloons. Sara has 8 yellow balloons. Bob has 5
yellow flowers. How many yellow balloons do

15 https://github.com/CogComp/arithmetic.
16 In evaluating the performances on OSS and NDS datasets,
our system is trained on the folds 2-5 of the IL dataset.
17 Since the gap between two different types of approaches
is quite big, those 396 examples on OSS and 196 examples
on NDS are sufficient to confirm the conclusion.

they have in total?”, where the underlined sen-
tence is the added noisy sentence. The solver sums
all quantities and gives the wrong answer 22,
which reveals that IMS cannot understand that the
quantity “5 yellow flowers” is irrelevant to the
question “How many yellow balloons?”. On the
contrary, our system avoids this mistake.

Although the meaning of each quantity is ex-
plicitly checked in our LFT module, our system
still cannot correctly solve all MWPs in NDS. The
error analysis reveals that the top-4 error sources
are STI, LFT, CoreNLP and incorrect problem
construction (for 27%, 27%, 18%, 18%), which
indicates that our STI and LFT still cannot com-
pletely prevent the damage caused from the noisy
sentences (which implies that more consistency
check for quantity meaning should be done). The
remaining errors are due to incorrect quantity ex-
traction, lacking common-sense or not knowing
entailment relationship between two entities.

A similar experiment is performed to check if
the DNN approach will be affected by the noisy
information more. We first select 124 MWPs (de-
noted as OSS′) from OSS that can be correctly
solved by both our statistical and DNN approach-
es and then filter out 350 derived MWPs (denotes
as NDS′) from NDS. The right-half of Table 5
shows that the performance of the DNN approach
drops more than the statistical approach does in
the noisy dataset, which indicates that our statisti-
cal approach is less sensitive to the irrelevant
quantities and more close to human’s approach.

Statis-
tical

R&R,
2016

 Statis-
tical DNN

OSS 100 100 OSS′ 100 100
NDS 82.1 28.5 NDS′ 81.4 75.4

Table 5: Performances on the OSS and NDS

Error Type Example
Confusing
TVQ-F and
Sum solu-
tion type

Sally found 9 seashells, Tom found
7 seashells, and Jessica found 5 sea-
shells on the beach. How many sea-
shells did they find together?

Requiring
additional

information

A garden has 52 rows and 15 col-
umns of bean plans. How many
plants are there in all?

Not know-
ing Part-

Whole re-
lationship

Eric wants to split a collection of
peanuts into groups of 8. Eric has 64
peanuts. How many groups will be
created?

Table 4: Examples for different STI error types

659

5 Related Work

To the best of our knowledge, MWP solvers pro-
posed before 2014 all adopted the rule-based ap-
proach. Mukherjee and Garain (2008) had given a
good survey for all related approaches before
2008. Afterwards, Ma et al. (2010) proposed a
MSWPAS system to simulate human arithmetic
multi-step addition and subtraction behavior with-
out evaluation. Besides, Liguda and Pfeiffer
(2012) proposed a model based on augmented
semantic networks, and claimed that it could solve
multi-step MWPs and complex equation systems
and was more robust to irrelevant information (al-
so no evaluation).

Recently, Hosseini et al. (2014) proposed a
Container-Entity based approach, which solved
the MWP with a sequence of state transition. And
Kushman et al. (2014) proposed the first statistical
approach, which heuristically extracts some alge-
braic templates from labeled equations, and then
aligns them with the given sentence. Since no se-
mantic analysis is conducted, the performance is
quite limited.

In more recent researches (Roy and Roth, 2015;
Koncel-Kedziorski et al., 2015; Roy and Roth,
2017), quantities in an MWP were associated with
attributes extracted from their contexts. Based on
the attributes, several statistical classifiers were
used to select operands and determine operators to
solve multi-step MWPs. Since the physical mean-
ing of each quantity is not explicitly considered in
getting the answer, the reasoning process cannot
be explained in a human comprehensible way. Be-
sides, Shi et al. (2015) attacked the number word
problem, which only deal with numbers, with a
semantic parser. Mitra and Baral (2016) mapped
MWPs into three types of problems, including
Part-Whole, Change and Comparison. Each prob-
lem was associated with a generic formula. They
used a log-linear model to determine how to in-
stantiate the formula with quantities and solve the
only one Unknown variable. They achieved the
best performance on the AI2 dataset. However,
their approach cannot handle Multiplication or
Division related MWPs. Recently, DNN-based
approaches (Ling et al, 2017; Wang et al, 2017)
have emerged. However, they only attacked alge-
braic word problems, and required a very large
training-set.

Our proposed approach mainly differs from
those previous approaches in combining the statis-
tical framework with logic inference, and also in

adopting the meaning-based statistical approach
for selecting the desired operands.

6 Conclusion

A meaning-based logic form represented with
role-tags (e.g., nsubj, verb, etc.) is first proposed
to associate the extracted math quantity with its
physical meaning, which then can be used to iden-
tify the desired operands and filter out irrelevant
quantities. Afterwards, a statistical framework is
proposed to perform understanding and reasoning
based on those logic expressions. We further
compare the performance with a typical DNN ap-
proach, the results show the proposed approach is
still better. We will try to integrate domain con-
cepts into the DNN approach to improve the
learning efficiency in the future.

The main contributions of our work are: (1)
Adopting a meaning-based approach to solve
English math word problems and showing its su-
periority over other state-of-the-art systems on
common datasets. (2) Proposing a statistical mod-
el to select operands by explicitly checking the
meanings of quantities against the meaning of the
question sentence. (3) Designing a noisy dataset to
test if a system solves the problems by under-
standing. (4) Proposing a perplexity-flavor meas-
ure to assess the complexity of a dataset.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

Yefim Bakman. 2007. Robust understanding of word
problems with extraneous information.
http://lanl.arxiv.org/abs/math.GM/0701393.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technolo-
gy, 2(3):27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/cjlin/libsvm.

Peter Clark and Oren Etzioni. 2016. My computer is
an honor student - but how Intelligent is it? Stand-
ardized Tests as a Measure of AI. AI Magazine,
pages 5–12.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb cate-
gorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Do-

660

ha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 523–533.

Chien-Tsung Huang, Yi-Chung Lin, and Keh-Yih Su.
2015. Explanation generation for a math word
problem solver. International Journal of Computa-
tional Linguistics and Chinese Language pro-
cessing (IJCLCLP), 20(2):27–44.

Danqing Huang, Shuming Shi, Chin-Yew Lin and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 816–825.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Compu-
tational Linguistics, 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 271–281.

Chao-Chun Liang, Shih-Hong Tsai, Ting-Yun Chang,
Yi-Chung Lin and Keh-Yih Su. 2016. A meaning-
based English math word problem solver with un-
derstanding, Reasoning and Explanation. In Pro-
ceedings of COLING 2016.

Christian Liguda and Thies Pfeiffer. 2012. Modeling
math word problems with augmented semantic
networks. In Gosse Bouma, Ashwin Ittoo, Elisa-
beth Metais, and Hans Wortmann, editors, Natural
Language Processing and Information Sys-
tems/17th International Conference on Applica-
tions of Natural Language to Information Systems,
volume 7337. Springer.

Yi-Chung Lin, Chao-Chun Liang, Kuang-Yi Hsu,
Chien- Tsung Huang, Shen-Yun Miao, Wei-Yun
Ma, Lun-Wei Ku, Churn-Jung Liau, and Keh-Yih
Su. 2015. Designing a tag-based statistical math
word problem solver with reasoning and explana-
tion. International Journal of Computational Lin-
guistics and Chinese Language processing
(IJCLCLP), 20(2):1–26.

Wang Ling, Dani Yogatama, Chris Dyer and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, pages 158–167.

Yuhui Ma, Ying Zhou, Guangzuo Cui, Yun Ren, and
Ronghuai Huang. 2010. Frame-based calculus of
soling arithmetic multi-step addition and subtrac-
tion word problems. Education Technology and
Computer Science, International Workshop on,
2:476–479.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David
McClosky. 2014. The Stanford CoreNLP natural
language processing toolkit. In ACL Demonstra-
tions.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pages
2144–2153.

Anirban Mukherjee and Utpal Garain. 2008. A re-
view of methods for automatic understanding of
natural language mathematical problems. Artif. In-
tell. Rev., 29(2):93–122.

Stephen J. Pape. 2004. Middle school children’s prob-
lem-solving behavior: A cognitive analysis from a
reading comprehension perspective. Journal for
Research in Mathematics Education, 35(3):187–
219.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752.

Subhro Roy and Dan Roth. 2016. Illinois Math Solv-
er: Math reasoning on the web. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations, pages 52–66.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word prob-
lem solving. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-
17).

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Rea-
soning about quantities in natural language. Trans-
actions of the Association for Computational Lin-
guistics, 3:1–13.

Stuart Russell and Peter Norvig. 2009. Artificial Intel-
ligence: A modern approach. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and
reasoning. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1132–1142.

Manish Shrivastava and Dipti Misra Sharma. 2017.
Deep neural network based system for solving
arithmetic word problems. In Proceedings of the
2017 International Joint Conference on Natural
Language Processing, pages 65–68.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit and
implicit supervision jointly for algebra word prob-

661

 lems. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 297–306.

Yan Wang, Xiaojiang Liu and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
856–865.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quad-
ratic programming. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 817–822.

662

