
Proceedings of NAACL-HLT 2018, pages 541–550
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Learning Domain Representation for Multi-Domain Sentiment
Classification

Qi Liu1, Yue Zhang1 and Jiangming Liu2

Singapore University of Technology and Design, Singapore1

University of Edinburgh, UK2

{qi liu, yue zhang}@sutd.edu.sg
jiangming.liu@ed.ac.uk

Abstract
Training data for sentiment analysis are abun-
dant in multiple domains, yet scarce for other
domains. It is useful to leveraging data avail-
able for all existing domains to enhance per-
formance on different domains. We investigate
this problem by learning domain-specific rep-
resentations of input sentences using neural
network. In particular, a descriptor vector is
learned for representing each domain, which
is used to map adversarially trained domain-
general Bi-LSTM input representations into
domain-specific representations. Based on this
model, we further expand the input representa-
tion with exemplary domain knowledge, col-
lected by attending over a memory network
of domain training data. Results show that our
model outperforms existing methods on multi-
domain sentiment analysis significantly, giv-
ing the best accuracies on two different bench-
marks.

1 Introduction

Sentiment analysis has received constant research
attention due to its importance to business (Pang
et al., 2002; Hu and Liu, 2004; Choi and Cardie,
2008; Socher et al., 2012; Vo and Zhang, 2015;
Tang et al., 2014). For multiple domains, such as
movies, restaurants and digital products, manu-
ally annotated datasets have been made available.
A useful research question is how to leverage re-
sources available across all domains to improve
sentiment classification on a certain domain.

One naive domain-agnostic baseline is to com-
bine all training data, ignoring domain differ-
ences. However, domain knowledge is one valu-
able source of information available. To utilize
this, there has been recent work on domain-aware
models via multi-task learning (Liu et al., 2016;
Nam and Han, 2016), building an output layer for
each domain while sharing a representation net-
work. Given an input sentence and a specific test

domain, the output layer of the test domain is cho-
sen for calculating the output.

These methods have been shown to improve
over the naive domain-agnostic baseline. How-
ever, a limitation is that outputs for different do-
mains are constructed using the same domain-
agnostic input representation, which leads to weak
utilization of domain knowledge. For different do-
mains, sentiment words can differ. For example,
the word “beast” can be a positive indicator of
camera quality, but irrelevant to restaurants or
movies. Also, “easy” is frequently used in the elec-
tronics domain to express positive sentiment (e.g.
the camera is easy to use), while expressing nega-
tive sentiment in the movie domain (e.g. the end-
ing of this movie is easy to guess).

We address this issue by investigating a model
that learns domain-specific input representations
for multi-domain sentiment analysis. In particular,
given an input sentence, our model first uses a bi-
directional LSTM to learn a general sentence-level
representation. For better utilizing data from all
domains, we use adversarial training (Ganin and
Lempitsky, 2015; Goodfellow et al., 2014) on the
Bi-LSTM representation.

The general sentence representation is then
mapped into a domain-specific representation by
attention over the input sentence using explic-
itly learned domain descriptors, so that the most
salient parts of the input are selected for the spe-
cific domain for sentiment classification. Some ex-
amples are shown in Figure 2, where our model
pays attention to word “engaging” for movie re-
views, but not for laptops, restaurants or cameras.
Similarly, the word “beast” receives attention for
laptops and cameras, but not for restaurants or
movies.

In addition to the domain descriptors, we further
introduce a memory network for explicitly repre-
senting domain knowledge. Here domain knowl-

541

I am satisfied with this cameraSequence:

Embedding LayerLookup:

Bi-LSTM:

Average Pooling:

Softmax:

𝑦"

(a) Mix: shared parameters for all domains.

I am satisfied with this cameraSequence:

Embedding LayerLookup:

Bi-LSTM:

Average Pooling:

Softmax:

𝑦"1
𝑦"2

…… 𝑦"𝑚

(b) Multi: shared input representations and domain-
specific prediction layers.

Domain i Memory

Update

Self-Attention

Attention

I am satisfied with this camera

Embedding Layer

𝑦"𝑖

Domain-General
Layers

Context	Vector

Domain-Specific
Input	Representation

…

Domain	Descriptors

Domain-Specific	Layers	 Domain	Classifier	Layers	

ai1 ai2 ai3 ai4 ai5
ai6 Average

Pooling

𝑑% 𝑖

(c) Our model: domain knowledge is better utilized by do-
main descriptors, memories and adversarial training.

Figure 1: Models.

edge refers to example training data in a specific
domain, which can offer useful background con-
text. For example, given a sentence ‘Keep cool
if you think it’s a wonderful life will be a heart-
warming tale about life like finding nemo’, algo-
rithms can mistakenly classify it as positive based
on ‘wonderful’ and ‘heartwarming’, ignoring the
fact that ‘it’s a wonderful life’ is a movie. In
this case, necessary domain knowledge revealed in
other sentences, such as ‘The last few minutes of
the movie: it’s a wonderful life don’t cancel out all
the misery the movie contained’ is helpful. Given
a domain-specific input representation, we make
attention over the domain knowledge memory net-
work to obtain a background context vector, which
is used in conjunction with the input representa-

tion for sentiment classification.
Results on two real-world datasets show that our

model outperforms the aforementioned multi-task
learning methods for domain-aware training, and
also generalizes to unseen domains. Our code is
released1.

2 Problem Definition

Formally, we assume the existence ofm sentiment
datasets {Di}mi=1, each being drawn from a do-
main i. Di contains |Di| data points (sij , di, y

i
j),

where sij is a sequence of words w1, w2...w|sij |,

each being drawn from a vocabulary V , yij in-
dicates the sentiment label (e.g. yij ∈ {−1,+1}
for binary sentiment classification) and di is a do-
main indicator (since we use 1 to m to number
each domain, di = i). The task is to learn a func-
tion f which maps each input (sij , di) to its cor-
responding sentiment label yij . The challenge of
the task lies in how to improve the generaliza-
tion performance of mapping function f both in-
domain and cross-domain by exploring the corre-
lations between different domains.

3 Baselines

3.1 Domain-Agnostic Model

One naive baseline solution ignores the domain
characteristics when learning f . It simply com-
bines the datasets {Di}mi=1 into one and learns a
single mapping function f . We refer to this base-
line as Mix, which is depicted in Figure 1 (a).

Given an input sij , its word sequence
w1, w2...w|sij | is fed into a word embedding
layer to obtain embedding vectors x1, x2...x|sij |.
The word embedding layer is parameterized by an
embedding matrix Ew ∈ RK×|V |, where K is the
embedding dimension.

Bidirectional LSTM: To acquire a seman-
tic representation of input sij , a bidirectional
extension (Graves and Schmidhuber, 2005) of
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is applied to capture
sentence-level semantics both left-to-right and
right-to-left. As a result, two sequences of hid-

den states are obtained, denoted as
�
h1,

�
h2...

�
h|sij |

and
�
h1,

�
h2...

�
h|sij |, respectively. We concatenate

�
ht

1https://github.com/leuchine/
multi-domain-sentiment

542

and
�
ht at each time step to obtain the hidden states

h1, h2...h|sij |, which are of sizes 2K.
Output Layer: Average pooling (Boureau

et al., 2010) is applied on the hidden states
h1, h2...h|sij | to obtain an input representation Iij
for sij ,

Iij =

∑|sij |
t=1 ht
|sij |

(1)

Finally, softmax is applied over Iij to obtain
a probability distribution of all sentiment labels.
During training, cross entropy is used as loss
function, denoted as L(f(sij), y

i
j) for data points

(sij , di, y
i
j), and AdaGrad (Duchi et al., 2011) is

applied to update parameters.

3.2 Multi-Domain Training

We build a second baseline for domain-aware
sentiment analysis. A state-of-the-art architecture
(Liu et al., 2016; Nam and Han, 2016) is used
as depicted in Figure 1 (b), where m mapping
functions fi are learned for each domain. Given
the input representation Iij obtained in Equation 1,
multi-task learning is conducted, where each do-
main has a domain-specific set of parameters for
softmax to predict sentiment labels with shared
input representation layers. The input domain in-
dicator di instructs which set of softmax param-
eters to use here and each domain has its own
cross entropy loss Li(fi(sij , di), y

i
j) for data points

(sij , di, y
i
j). We denote this baseline as Multi.

4 Method

4.1 Domain-Aware Input Representation

The above baseline Multi achieves state-of-the-
art performance for multi-domain sentiment anal-
ysis (Liu et al., 2016), yet the domain indica-
tor di is used solely to select softmax parame-
ters. As a result, domain knowledge is hidden and
under-utilized. Similar to Mix and Multi, we use
a Bi-LSTM to learn representations shared across
domains. However, we introduce domain-specific
layers to better capture domain characteristics as
shown in Figure 1 (c).

Different domains have their own sentiment lex-
icons and domain differences largely lie in which
words are relatively more important for deciding
the sentiment signals. We use the neural atten-
tion mechanism (Bahdanau et al., 2014) to select

words, obtaining domain-specific input represen-
tations.

In our model, domain descriptors are intro-
duced to explicitly capture domain characteristics,
which are parametrized by a matrix N ∈ R2K×m.
Each domain descriptor corresponds to one col-
umn of N and has a length of 2K, the same as the
bidirectional LSTM hidden states ht. This matrix
is automatically learned during training.

Given an input (sij , di), we apply an embed-
ding layer and Bi-LSTM to generate its domain-
general representation h1, h2, ..., h|sij | and use the
corresponding domain descriptor Ni to weigh
h1, h2, ..., h|sij | for obtaining a domain-specific
representation. To this end, there are two most
commonly used attention mechanisms: additive
attention (Bahdanau et al., 2014) and dot prod-
uct attention (Ashish Vaswani, 2017). We choose
additive attention here, which utilizes a feed-
forward network with a single hidden layer, since
it achieves better accuracies in our development.
The input representation Iij becomes a weighted
sum of hidden states:

Iij =

|sij |∑

t=1

aijtht s.t.

|sij |∑

t=1

aijt = 1 (2)

The weight aijt reflects the similarity between the
domain i’s descriptor Ni and the hidden state ht.
aijt is evaluated as:

lijt = vT tanh(PNi +Qht)

aijt =
exp(lijt)

∑|sij |
p=1 exp(l

i
jp)

(3)

Here P ∈ R4K×2K , Q ∈ R4K×2K and v ∈ R4K

are parameters of additive attention. P and Q lin-
early project Ni and ht to a hidden layer, respec-
tively. The projected space is set as 4K empiri-
cally, since we find it beneficial to project the vec-
tors into a larger layer. v serves as the output layer.
Softmax is applied to normalize lijt. We name this
method DSR for learning domain-specific repre-
sentations.

4.2 Self-Attention over Domain Descriptors
DSR uses a single domain descriptor to attend
over input words. However, relations between do-
mains are not considered (e.g. sentiment lexicons
for domain ‘camera’ are more similar to the lex-
icons of domain ‘laptop’ than those of domain

543

‘restaurant’). To model the interaction between
domains, a self-attention layer is applied using dot
product attention empirically, as shown in Figure
1 (c):

Nnew
i = N softmax(NTNi) (4)

We compute dot products between Ni and every
domain descriptors. The dot products are normal-
ized using the softmax function, and Nnew

i is a
weighted sum of all domain descriptors. Nnew

i is
used to attend over hidden states, employing Equa-
tion 2 and 3. During back propagation training, do-
main descriptors of similar domains could be up-
dated simultaneously. We name this method DSR-
sa, which denotes domain-specific representation
with self-attention.

4.3 Explicit Domain Knowledge
To further capture domain characteristics, we de-
vise a memory network (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2016) frame-
work to explicitly represent domain knowledge.
Our memory networks hold example training data
of a specific domain for retrieving context data
during predictions.

Formally, we use a memory M i ∈ R2K×|Di|

(|Di| is the total number of training instances of
domain i) to hold domain-specific representations
Iij of training instances for the domain i.

Memory Network: We directly set Iij as the jth
column of the memory M i. Formally,

M i
j = Iij (5)

Obtaining A Context Vector Using Back-
ground Knowledge: Given an input Iij , we gen-
erate a context vector Cij to support predictions by
memory reading:

Cij =M i softmax((M i)T Iij) (6)

Dot product attention is applied here, which is
faster and more space-efficient than additive at-
tention, since it can be implemented using highly
optimized matrix multiplication. Dot products are
performed between Iij and each column ofM i and
the scores are normalized using the softmax func-
tion. The final context vector is a weighted sum of
M i’s columns.

Output: We concatenate the context vector and
the domain-specific input representation, feed-
ing the result to softmax layers. Similar to the

baseline Multi, each domain has its own loss
Li(fi(s

i
j , di), y

i
j). We name this method as DSR-

ctx for context vector enhancements.
Reducing Memory Size: In the naive imple-

mentation, the memory size |M i| is equal to the to-
tal number of saved sequences, which can be very
large in practice. We explore two ways to reduce
memory size.

(1) Organizing memory by the vocabulary. We
set |M i| = |V |, where each memory column of
M i corresponds to a word in the vocabulary. Dur-
ing memory writing, Iij updates all the columns
that correspond to the words w in its input se-
quence sij by exponential moving average:

M i
w = decay ∗M i

w + (1− decay)Iij

In this way, two input representations update the
same column of the memory network if and only
if they share at least one common word.

(2) Fixing the memory size by clustering. |M i|
is set to a fixed size and Iij only updates the mem-
ory column that is most similar to Iij , i.e. Iij only
update the column argmax (M i)T Iij . In this way,
semantically similar inputs are clustered and up-
date the same column.

4.4 Adversarial Training
We use embeddings and Bi-LSTM, parametrized
by θdg, to generate domain-general represen-
tations. However, the distributions of domain-
general representations for all domains can be dif-
ferent (Goodfellow et al., 2014), which contami-
nates the representations (Liu et al., 2017) and im-
poses negative effects for in-domain predictions.
For cross-domain testing, the discrepancies cause
domain shift, which harms prediction accuracies
on target domains (Ganin and Lempitsky, 2015).
Thus, models that can generate domain-invariant
representations for all domains are favorable for
utilizing multi-domain datasets.

We incorporate adversarial training to enhance
the domain-general representations. As shown in
Figure 1 (c), domain classifier layers are intro-
duced, parametrized by θdc, which predicts how
likely the input sequence sij comes from each
domain i. We denote its cross entropy loss as
Lat(fat(s

i
j), di) for data points (sij , di, y

i
j) from

domain i (note that we use di as its label instead
of input here).

Now consisting of domain-general layers,
domain-specific layers and domain classifier lay-

544

ers, the model is trained by a minimax game.
For dataset Di drawn from domain i, we mini-
mize its loss Li(fi(sij , di), y

i
j) for sentiment pre-

dictions, while maximizing the domain classifier
loss Lat(fat(sij), di), controlled by λ:

min
θdg ,θds

∑

Di

Li(fi(s
i
j , di), y

i
j)− λLat(fat(sij), di),

(7)
where θds is the set of domain-specific parameters
including domain descriptors, attention weights
and softmax parameters. We fix θdc and update
θdg and θds here. Its adversarial part maximizes
the loss by updating θdc, while fixing θdg and θds.

max
θdc

∑

Di

Li(fi(s
i
j , di), y

i
j)− λLat(fat(sij), di)

(8)
Equations 7 and 8 are performed iteratively to gen-
erate domain-invariant representations. We name
this method DSR-at.

5 Experiments

We evaluate the effectiveness of the model both in-
domain and cross-domain. The former refers to the
setting where the domain of the test data falls into
one of the m training data domains, and the latter
refers to the setting where the test data comes from
one unknown domain.

5.1 Experimental Settings
We conduct experiments on two benchmark
datasets. The datasets are balanced, so we use ac-
curacy as the evaluation metric in the experiments.

The dataset 1 contains four domains. The statis-
tics are shown in Table 1 , which also shows the
accuracies using baseline method Mix trained and
tested on each domain. Camera2 consists of re-
views with respect to digital products such as cam-
eras and MP3 players (Hu and Liu, 2004). Lap-
top and Restaurant are laptop and restaurant re-
views, respectively, obtained from SemEval 2015
Task 123. Movie4 are movie reviews provided by
Pang and Lee (2004).

The dataset 2 is Blitzer’s multi-domain senti-
ment dataset (Blitzer et al., 2007), which contains

2http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

3Since the original dataset targets aspect-level sentiment
analysis, we remove the sentences with opposite polarities on
different aspects. The remaining sentences are labeled with
the unambiguous polarity.

4https://www.cs.cornell.edu/people/
pabo/movie-review-data/

Domain Instance Vocab Size Accuracy
Camera (CR) 3770 5340 0.802
Laptop (LT) 1907 2837 0.871
Restaurant (RT) 1572 2930 0.783
Movie (M) 10662 18765 0.773

Table 1: Dataset 1 statistics.

product reviews taken from Amazon.com, includ-
ing 25 product types (domains) such as books,
beauty and music. More statistics can be found at
its official website5.

Given each dataset, we randomly select 80%,
10% and 10% of the instances as training, devel-
opment and testing sets, respectively.

5.2 Baselines and Hyperparameters

In addition to the Mix baseline, the Multi baseline
(Liu et al., 2016) and our domain-aware models,
DSR, DSR-sa, DSR-ctx, DSR-at, we also experi-
ment with the following baselines:

MTRL (Zhang and Yeung, 2012) is a state-of-
the-art multi-task learning method with discrete
features. The method models covariances between
task classifiers, and in turn the covariances regu-
larize task-specific parameters. The feature extrac-
tion for MTRL follows (Blitzer et al., 2007). We
use this baseline to demonstrate the effectiveness
of dense features generated by neural models.

MDA (Chen et al., 2012) is a cross-domain
baseline, which utilizes marginalized de-noising
auto-encoders to learn a shared hidden represen-
tation by reconstructing pivot features from cor-
rupted inputs.

FEMA (Yang and Eisenstein, 2015) is a cross-
domain baseline, which utilizes techniques from
neural language models to directly learn feature
embeddings and is more robust to domain shift.

NDA (Kim et al., 2016) is a cross-domain base-
line, which uses m+ 1 LSTMs, where one LSTM
captures global information across all m domains
and the remaining m LSTM capture domain-
specific information.

We set the size of word embeddings K to 300,
which are initialized using the word2vec model6

on news. To obtain the best performance, the
parameters are set using grid search based on
development results. The dropout ratio is cho-
sen from [0.3, , 1]. Learning rate is chosen from

5https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

6https://code.google.com/archive/p/
word2vec/

545

Dataset Method
Train Test MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at

LT+RT LT 0.817 0.896 0.90 0.908 0.911 0.914 0.92*
LT+RT RT 0.781 0.820 0.85 0.860 0.859 0.863 0.883*
LT+M LT 0.825 0.882 0.90 0.887 0.90 0.904 0.913*
LT+M M 0.743 0.778 0.772 0.788 0.79 0.803 0.811*
LT+CR LT 0.869 0.904 0.906 0.921 0.915 0.92 0.925
LT+CR CR 0.774 0.800 0.802 0.822 0.826 0.832 0.844*
RT+M RT 0.792 0.830 0.833 0.853 0.86 0.883 0.9*
RT+M M 0.729 0.765 0.785 0.795 0.801 0.816 0.83*
RT+CR RT 0.783 0.828 0.822 0.847 0.851 0.878 0.887*
RT+CR CR 0.756 0.804 0.814 0.812 0.817 0.831 0.84*
M+CR M 0.745 0.775 0.788 0.798 0.802 0.830 0.839*
M+CR CR 0.758 0.799 0.811 0.819 0.812 0.817 0.812
Average 0.778 0.818 0.832 0.842 0.845 0.857 0.867*

Table 2: Results using two training domains on dataset
1. * denotes p < 0.01 VS. the second best using Mc-
Nemar’s test.

[0.0001, 0.001, , 1]. The vocabulary size is cho-
sen from [6000, 8000, , 16000]. The batch size
is chosen from [10, , 100]. λ is chosen from
[0.0001, 0.001, , 1]. As a result, the mini-batch
size, the size of the vocabulary V , dropout rate,
learning rate for AdaGra and λ for adversarial
training are set to 50, 10000, 0.4, 0.5 and 0.1, re-
spectively. Also, gradient clipping (Pascanu et al.,
2013) is adopted to prevent gradient exploding
and vanishing during training process. Since all
datasets only have thousands of instances, we set
memory network sizes as training instance sizes in
the experiments.

5.3 Working with Known Domains

In this section, we perform in-domain validations.
We first combine two datasets for training and test
on each domain’s hold-out testing dataset. The re-
sults on dataset 1 are shown in Table 2 (the results
on Blitzer’s dataset exhibit similar results and are
omitted due to space constraints).

The accuracies of MTRL are significantly
lower than the neural models, which demonstrates
the effectiveness of dense features over discrete
features. The baseline Mix improves the average
accuracy from 0.778 to 0.818, and most multi-
domain training accuracies are better compared
to single-domain training in Table 1. Mix sim-
ply combines the two datasets for trainings and
ignores domain characteristics, yet improves over
single dataset training. This demonstrates that
more data reduces over-fitting and leads to bet-
ter generalization capabilities. Multi further im-
proves the average accuracy by 1.4%, which con-
firms the effectiveness of utilizing domain infor-
mation.

Among our models, DSR further improves the
accuracy over Multi by 1%, which confirms the

effectiveness of domain-specific input representa-
tions in multi-domain sentiment analysis. DSR-sa
slightly outperforms DSR by 0.03%. Adopting an
additional self-attention layer, DSR-sa trains simi-
lar domain descriptors together, thus better model-
ing domain relations, which will be further studied
in Section 5.5.2. DSR-ctx outperforms DSR-sa
by 1.2%, which demonstrates the effectiveness of
memory networks in utilizing domain-specific ex-
ample knowledge. DSR-at gives significantly the
best results, confirming that domain-invariant rep-
resentations achieved by adversarial training in-
deed benefit in-domain training. The results are
significant using McNeymar’s test.

The results combining all the 4 domains and the
25 domains of the two datasets are shown in the ‘In
domain’ sections of Table 3 and Table 4, respec-
tively. Here the models are trained using all do-
mains’ training data, and tested on each domain’s
hold-out test data. Similar patterns are observed
as in Table 2 and DSR-at achieves significantly
the best accuracies (0.867 and 0.907 for the two
datasets, respectively).

5.4 Working with Unknown New Domains

We validate the algorithms cross-domain. For
dataset 1, models are trained on three domains,
yet validated and tested on the other domain. For
dataset 2, models are trained on 24 domains, yet
validated and tested on the 25th.

Since DSR-at hasm outputs (one for each train-
ing domain), we adopt an ensemble approach to
obtain a single output for unknown test domains.
In particular, since the domain classifier outputs
probabilities on how likely the test data come from
each training domain, we use these probabilities as
weights to average the m outputs.

For NDA, Multi, DSR and DSR-sa and DSR-
ctx, we use average pooling to combine them out-
puts. Since MDA and FEMA are devised to train
on a single source domain, we combine the train-
ing data of m domains for training.

The results are shown in the ‘Cross domain’
section of Table 3 and Table 4, respectively. One
observation is that cross-domain accuracies are
worse than in-domain accuracies, showing chal-
lenges in unknown-domain testing.

Contrast between our models and FEMA/NDA
shows the advantage of leveraging resources from
all domains, versus a single source domain for
cross-domain modelling. Among the baselines,

546

In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at

LT 0.813 0.831 0.900 0.897 0.902 0.898 0.915* 0.763 0.792 0.801 0.808 0.811 0.816 0.822 0.823 0.854 0.878*
RT 0.776 0.801 0.825 0.841 0.845 0.855 0.870* 0.772 0.786 0.789 0.779 0.774 0.776 0.78 0.784 0.814 0.847*
M 0.800 0.803 0.783 0.807 0.812 0.820 0.828* 0.616 0.636 0.642 0.668 0.679 0.684 0.692 0.695 0.725 0.729
CR 0.775 0.786 0.819 0.825 0.828 0.836 0.854* 0.714 0.721 0.736 0.735 0.741 0.745 0.751 0.753 0.789 0.809*

Average 0.791 0.805 0.832 0.843 0.847 0.852 0.867* 0.716 0.734 0.742 0.748 0.751 0.755 0.761 0.764 0.796 0.815*

Table 3: In-domain learning and cross-domain results on dataset 1. * denotes p < 0.01 VS. the second best.

In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at
Apparel 0.883 0.912 0.921 0.927 0.928 0.92 0.938* 0.828 0.843 0.863 0.854 0.865 0.873 0.882 0.899 0.896 0.909*

Electronics 0.853 0.881 0.899 0.884 0.879 0.883 0.891 0.804 0.826 0.836 0.849 0.845 0.834 0.857 0.859 0.861 0.875*
Office 0.863 0.88 0.89 0.903 0.914 0.925 0.933* 0.824 0.825 0.818 0.824 0.843 0.839 0.854 0.876 0.883 0.894*

Automotive 0.842 0.864 0.873 0.886 0.891 0.902 0.917* 0.791 0.786 0.791 0.797 0.816 0.826 0.835 0.847 0.857 0.867*
Gourmet 0.814 0.838 0.84 0.852 0.856 0.858 0.863* 0.777 0.775 0.764 0.784 0.796 0.803 0.814 0.826 0.832 0.828
Outdoor 0.853 0.889 0.899 0.903 0.907 0.915 0.927* 0.785 0.796 0.805 0.815 0.836 0.829 0.856 0.861 0.867 0.887*

Baby 0.816 0.853 0.86 0.875 0.877 0.892 0.91* 0.803 0.816 0.814 0.821 0.834 0.84 0.845 0.878 0.873 0.895*
Grocery 0.862 0.886 0.898 0.907 0.911 0.917 0.933* 0.806 0.817 0.826 0.846 0.846 0.862 0.88 0.873 0.865 0.886*
Software 0.851 0.876 0.88 0.893 0.898 0.904 0.92* 0.795 0.811 0.816 0.836 0.845 0.836 0.85 0.862 0.884 0.897*
Beauty 0.816 0.843 0.8567 0.862 0.867 0.864 0.889* 0.756 0.768 0.775 0.785 0.795 0.804 0.812 0.812 0.838 0.851*
Health 0.871 0.901 0.904 0.896 0.897 0.896 0.907 0.785 0.807 0.819 0.832 0.845 0.848 0.843 0.834 0.857 0.871*
Sports 0.851 0.883 0.899 0.889 0.882 0.895 0.9 0.759 0.768 0.775 0.784 0.816 0.819 0.821 0.836 0.848 0.864*
Book 0.743 0.803 0.79 0.804 0.809 0.815 0.822* 0.694 0.705 0.716 0.723 0.745 0.743 0.751 0.758 0.779 0.798*

Jewelry 0.816 0.891 0.881 0.893 0.891 0.894 0.909* 0.762 0.769 0.774 0.785 0.795 0.808 0.815 0.835 0.857 0.874*
Camera 0.912 0.937 0.968 0.966 0.959 0.968 0.989* 0.869 0.878 0.886 0.896 0.894 0.908 0.917 0.925 0.942 0.963*
Kitchen 0.815 0.858 0.863 0.875 0.887 0.894 0.913* 0.759 0.768 0.775 0.776 0.794 0.818 0.826 0.856 0.865 0.884 *

Toy 0.823 0.863 0.875 0.881 0.884 0.88 0.892* 0.814 0.824 0.815 0.803 0.813 0.832 0.826 0.843 0.845 0.857*
Phone 0.879 0.936 0.94 0.943 0.949* 0.941 0.933 0.805 0.813 0.808 0.818 0.821 0.833 0.836 0.856 0.874 0.894*

Magazine 0.835 0.874 0.872 0.883 0.895 0.917 0.937* 0.805 0.819 0.817 0.816 0.83 0.841 0.845 0.857 0.871 0.896*
Video 0.851 0.873 0.882 0.891 0.896 0.912 0.925* 0.754 0.774 0.794 0.795 0.815 0.822 0.834 0.845 0.855 0.875*

Games 0.867 0.886 0.89 0.883 0.886 0.887 0.9* 0.681 0.684 0.708 0.718 0.723 0.734 0.746 0.765 0.781 0.778
Music 0.752 0.782 0.8 0.798 0.8 0.798 0.81* 0.775 0.769 0.779 0.784 0.795 0.824 0.815 0.823 0.842 0.858*
Dvd 0.795 0.826 0.834 0.847 0.854 0.867 0.889* 0.801 0.794 0.804 0.794 0.814 0.827 0.835 0.845 0.851 0.875*

Instrument 0.873 0.943 0.957* 0.896 0.906 0.898 0.9 0.814 0.805 0.813 0.815 0.825 0.836 0.833 0.835 0.845 0.865*
Tools 0.887 0.915 0.931 0.928 0.93 0.932 0.94* 0.805 0.814 0.828 0.835 0.846 0.857 0.864 0.866 0.873 0.897*

Average 0.841 0.875 0.884 0.887 0.89 0.895 0.907* 0.786 0.794 0.801 0.807 0.82 0.827 0.835 0.847 0.858 0.873*

Table 4: In-domain learning and cross-domain results on dataset 2. * denotes p < 0.01 VS. the second best.

NDA also considered domain-specific representa-
tions. On the other hand, it duplicates the full set of
model parameters for each domain, yet underper-
forms DSR and DSR-sa, which records only one
domain descriptor vector for each domain. The
contrast shows the advantages of learning domain
descriptors explicitly in terms of both efficiency
and accuracy.

Similar to the known domain results, DST-
sa and DSR-ctx further improve upon DSR
and DSR-sa, showing the effectiveness of do-
main memory and adversarial learning. On both
datasets, DSR-at achieves significantly the best
performances, which shows the advantages of
domain-invariant representations for unknown-
domain testing.

5.5 Case Study

5.5.1 Input Attention

To obtain a better understanding of input attention
with domain descriptors, we examine the attention
weights of inputs and three examples are displayed
in Figure 2, where the x axis denotes the four do-
mains from the first dataset and the y axis shows
the words.

In Figure 2 (a), the domain-specific word ‘ease’
is only selected for the domains LT and CR, while
the domain-independent word ‘great’ is salient in
all domains. Similarly, in Figure 2 (b), ‘meaty’ and
‘engaging’ are only salient in RT and M, respec-
tively. In Figure 2 (c), the domain-specific word
‘beast’ is chosen in LT and CR.

These confirm the effectiveness of input at-
tention and DSR-ctx has the capability to pick
out sentiment lexicons in conformity with domain
characteristics.

5.5.2 Domain Descriptors
With the self-attention layer, one interesting ques-
tion is whether learned domain descriptors can re-
flect domain similarities/dissimilarities.

We take out the twenty-five domain descriptors
for Blitzer’s dataset and calculate the cosine sim-
ilarities between each pair. Also, we calculate the
cosine similarities of twenty-five domains based
on unigram and bigram representations for ground
truth. Pearson correlation coefficient is used to
measure the correlations between two sets of co-
sine values. The final score is 0.796, which shows
that domain descriptor similarities can serve as in-
dicators for domain similarities.

547

LT RT M CR
display

great

a

with

and

ease

with

videos

my

watch

and

music

my

to

listen

Can

0.320.400.480.560.640.720.800.880.96

(a) Example1

LT RT M CR
zingers

memorable

with

pages

the

peppering

while

characters

engaging

drew

and

subject

meaty

a

tackled

Jones

0.400.480.560.640.720.800.880.96

(b) Example2

LT RT M CR

it

recommend

highly

I

.

beast

flawless

almost

an

is

really

iPod

the

Overall

0.320.400.480.560.640.720.800.880.96

(c) Example3

Figure 2: Attention values (0: black, 1: white).

5.5.3 Memory Network Attention
We further study the attention of memory net-
works by randomly picking instances in the test
sets and listing the context instances with the
greatest attention weights obtained from Equation
6. The results of three test instances and their con-
text instances are shown in Table .

One observation is that semantically similar in-
stances are selected to provide extra knowledge
for predictions (e.g. a1, a2, b3, c1, c2, c3). An-
other observation is that the sentiment polarities
between test instances and selected context in-
stances are usually the same. We conclude that the
memory networks are capable of selecting instruc-
tive instances for facilitating predictions.

6 Related Work

Domain Adaptation (Blitzer et al., 2007; Titov,
2011; Yu and Jiang, 2015) adapts classifiers
trained on a source domain to an unseen target
domain. One stream of work focuses on learn-
ing a general representation for different domains
based on the co-occurrences of domain-specific
and domain-independent features (Blitzer et al.,
2007; Pan et al., 2011; Yu and Jiang, 2015; Yang
et al., 2017). Another stream of work tries to
identify domain-specific words to improve cross-
domain classification (Bollegala et al., 2011; Li
et al., 2012; Zhang et al., 2014; Qiu and Zhang,
2015). Different from previous work, we utilize
multiple source domains for cross-domain valida-
tion, which makes our method more general and
domain-aware.

Multi-domain Learning jointly learn multiple
domains to improve generalization. One strand of
work (Dredze and Crammer, 2008; Saha et al.,
2011; Zhang and Yeung, 2012) uses covari-

This place blew me away. By far my new favorite
restaurant on the upper-east side.
(a1) This is one of my favorite spot, very relaxing. The food
is great all the times. Celebrated my engagement and my
wedding here. It was very well organized.
(a2) This is one of my favorite restaurants and it is not to be
missed.
(a3) I didn’t complain. I liked the atmosphere so much.
I started accessing and transferring files to find it to be
extremely slow.
(b1) Only thing I don’t like about it is slow in changing apps,
boot up, and sometime it has problem connect through
bluetooth.
(b2) I must say, this one is quite slow to open an application.
(b3) The subscription files are still a little slower to transfer,
but it ’s only by about 10% or so.
Keep cool if you think it’s a wonderful life will be a
heartwarming tale about life like finding nemo.
(c1) I heard so much about It’s a wonderful life’s happy ending
and I just wasn’t prepared for so much misery.
(c2) The last few minutes of the movie: its a wonderful life
dont cancel out all the misery the movie contained.
(c3) It’s a wonderful life was so incredibly over-sentimental
and highly manipulative.

Table 5: Memory Network Attention.

ance matrix to model domain relatedness, jointly
learns domain-specific parameters and domain-
independent parameters of linear classifiers. An-
other strand of work (Liu et al., 2016; Nam and
Han, 2016) adopts neural network with shared in-
put layers and multiple output layers for predic-
tion. Our work belongs to the latter, yet we intro-
duce domain descriptor matrix and memory net-
works to better capture domain characteristics and
achieve better performance.

Memory Networks reason with inference com-
ponents combined with a long-term memory com-
ponent. Weston et al. (2014) devise a memory net-
work to explicitly store the entire input sequences
for question answering. An end-to-end memory
network is further proposed by Sukhbaatar et al.
(2015) by storing embeddings of input sequences,
which requires much less supervision compared to
Weston et al. (2014). Kumar et al. (2016) intro-
duces a general dynamic memory network, which
iteratively attends over episodic memories to gen-
erate answers. Xiong et al. (2016) extends Kumar
et al. (2016) by introducing a new architecture to
cater image inputs and better capture input depen-
dencies. In similar spirits, our memory network
stores the domain-specific training instances for
obtaining context knowledge.

7 Conclusion

We investigated domain representations in multi-
task learning for multi-domain sentiment anal-
ysis, showing that leveraging domain descrip-
tors, examples and adversarial training to learn
domain representations give significant improve-

548

ments compared with strong multi-task learning
baselines.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. Yue Zhang is the correspond-
ing author.

References
Noam Shazeer Niki Parmar Ashish Vaswani. 2017.

Attention is all you need. arXiv preprint
arXiv:1706.03762 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classifi-
cation. In Proceedings of the 45nd ACL. volume 7,
pages 440–447.

Danushka Bollegala, David Weir, and John Carroll.
2011. Using multiple sources to construct a senti-
ment sensitive thesaurus for cross-domain sentiment
classification. In Proceedings of the 49th ACL. As-
sociation for Computational Linguistics, pages 132–
141.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. 2010.
A theoretical analysis of feature pooling in visual
recognition. In ICML. pages 111–118.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and
Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. arXiv preprint
arXiv:1206.4683 .

Yejin Choi and Claire Cardie. 2008. Learning with
compositional semantics as structural inference for
subsentential sentiment analysis. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, pages 793–801.

Mark Dredze and Koby Crammer. 2008. Online meth-
ods for multi-domain learning and adaptation. In
EMNLP. pages 689–697.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research pages 2121–2159.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation. In In-
ternational Conference on Machine Learning. pages
1180–1189.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works pages 602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. MIT Press, volume 9, pages
1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD. ACM, pages 168–177.

Young-Bum Kim, WA Redmond, Karl Stratos, and
Ruhi Sarikaya. 2016. Frustratingly easy neural do-
main adaptation. In Proceedings of COLING 2016.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and Richard Socher. 2016. Ask
me anything: Dynamic memory networks for natural
language processing. In ICML. pages 1378–1387.

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and
Xiaoyan Zhu. 2012. Cross-domain co-extraction of
sentiment and topic lexicons. In ACL. Association
for Computational Linguistics, pages 410–419.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101 .

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. arXiv preprint arXiv:1704.05742 .

Hyeonseob Nam and Bohyung Han. 2016. Learning
multi-domain convolutional neural networks for vi-
sual tracking. In CVPR. pages 4293–4302.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2011. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural
Networks 22(2):199–210.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In ACL. Associa-
tion for Computational Linguistics, page 271.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In ACL. Association
for Computational Linguistics, pages 79–86.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML 28:1310–1318.

549

Likun Qiu and Yue Zhang. 2015. Word segmentation
for chinese novels. In AAAI. pages 2440–2446.

Avishek Saha, Piyush Rai, and Hal Daumé III Suresh
Venkatasubramanian. 2011. Online learning of mul-
tiple tasks and their relationships. update .

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and compu-
tational natural language learning. Association for
Computational Linguistics, pages 1201–1211.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). volume 1, pages 1555–1565.

Ivan Titov. 2011. Domain adaptation by constraining
inter-domain variability of latent feature representa-
tion. In Proceedings of the 49th ACL. Association
for Computational Linguistics, pages 62–71.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent
twitter sentiment classification with rich automatic
features. In IJCAI. pages 1347–1353.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In ICML. pages 2397–
2406.

Yi Yang and Jacob Eisenstein. 2015. Unsupervised
multi-domain adaptation with feature embeddings.
In HLT-NAACL. pages 672–682.

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. arXiv
preprint arXiv:1703.06345 .

Jianfei Yu and Jing Jiang. 2015. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. Conference on Empiri-
cal Methods in Natural Language Processing pages
236–246.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Type-supervised domain adaptation for
joint segmentation and pos-tagging. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics.
pages 588–597.

Yu Zhang and Dit-Yan Yeung. 2012. A convex for-
mulation for learning task relationships in multi-task
learning. arXiv preprint arXiv:1203.3536 .

550

