
Proceedings of NAACL-HLT 2018, pages 506–515
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Neural Tensor Networks with Diagonal Slice Matrices

Takahiro Ishihara1 Katsuhiko Hayashi2 Hitoshi Manabe1

Masahi Shimbo1 Masaaki Nagata3

1 Nara Institute of Science and Technology 2 Osaka University
3 NTT Communication Science Laboratories

1 {ishihara.takahiro.in0, manabe.hitoshi.me0, shimbo}@is.naist.jp
2 khayashi0201@gmail.com 3 nagata.masaaki@lab.ntt.co.jp

Abstract

Although neural tensor networks (NTNs) have
been successful in many natural language pro-
cessing tasks, they require a large number of
parameters to be estimated, which often results
in overfitting and long training times. We ad-
dress these issues by applying eigendecompo-
sition to each slice matrix of a tensor to reduce
the number of parameters. We evaluate our
proposed NTN models in two tasks. First, the
proposed models are evaluated in a knowledge
graph completion task. Second, a recursive
NTN (RNTN) extension of the proposed mod-
els is evaluated on a logical reasoning task.
The experimental results show that our pro-
posed models learn better and faster than the
original (R)NTNs.

1 Introduction

Alongside the nonlinear activation functions, lin-
ear mapping by matrix multiplication is an es-
sential component of neural network (NN) mod-
els, as it determines the feature interaction and
thus the expressiveness of models. In addition
to the matrix-based mapping, neural tensor net-
works (NTNs) (Socher et al., 2013a) employ a 3-
dimensional tensor to capture direct interactions
among input features. Due to the large expres-
sive capacity of 3D tensors, NTNs have been suc-
cessful in an array of natural language process-
ing (NLP) and machine learning tasks, includ-
ing knowledge graph completion (KGC) (Socher
et al., 2013a), sentiment analysis (Socher et al.,
2013b), and reasoning with logical semantics
(Bowman et al., 2015). However, since a 3D ten-
sor has a large number of parameters, NTNs need
longer time to train than other NN models. More-
over, the millions of parameters often make the
model suffer from overfitting (Yang et al., 2015).

To solve these problems, we propose two new
parameter reduction techniques for NTNs. These

techniques drastically decrease the number of pa-
rameters in an NTN without diminishing its ex-
pressiveness. We use the matrix decomposition
techniques that are utilized for KGC in Yang et al.
(2015) and Trouillon et al. (2016). Yang et al.
(2015) imposed a constraint that a matrix in the
bilinear term in their model had to be diagonal.
As mentioned in a subsequent section, this is es-
sentially equal to assuming that the matrix be
symmetric and performing eigendecomposition.
Trouillon et al. (2016) also applied eigendecom-
position to a matrix by regarding it as the real part
of a normal matrix. Following these studies, we
perform simultaneous diagonalization on all slice
matrices of a NTN tensor. As a result, mapping
by a 3D (n × n × k) tensor is replaced with an
array of k “triple inner products” of two input vec-
tors and a weight vector. Thus, we obtain two new
NTN models where the number of parameters is
reduced from O(n2k) to O(nk).

On a KGC task, these parameter-reduced NTNs
(NTN-Diag and NTN-Comp) alleviate overfitting
and outperform the original NTN. Moreover, our
proposed NTNs can learn faster than the original
NTN. We also show that our proposed models per-
form better and learn faster in a recursive setting
by examining a logical reasoning task.

2 Background

We consider mapping in a neural network (NN)
layer that takes two vectors as input, such as
recursive neural networks. Recurrent neural
networks also has this structure, with one input
vector being the hidden state from the previous
time step. As a mapping before activation in the
NN layer, linear mapping (matrix multiplication)
is commonly used:

W1x1 + W2x2 = [W1, W2]

[
x1

x2

]
= Wx.

506

Here, since x1, x2 ∈ Rn, W1, W2 ∈ Rk×n, this
linear mapping is a transformation from R2n to
Rk. Linear mapping, which is a standard com-
ponent of NNs, has been applied successfully in
many tasks. However, it cannot consider the in-
teraction between different components of two in-
put vectors, which renders it not ideal for model-
ing complex compositional structures such as trees
and graphs.

To alleviate this problem, some models such as
NTNs (Socher et al., 2013a) have explored 3D ten-
sors to yield more expressive mapping:

xT
1 W [1:k]x2 =




xT
1 W [1]x2

xT
1 W [2]x2

...
xT

1 W [k]x2




=




sum
(
W [1] ⊙ (x1 ⊗ x2)

)

sum
(
W [2] ⊙ (x1 ⊗ x2)

)
...

sum
(
W [k] ⊙ (x1 ⊗ x2)

)




where W [1:k] ∈ Rn×n×k. The output of this map-
ping is an array of k bilinear products in the form
of xT

1 W [i]x2. Thus, this is also a transforma-
tion from R2n to Rk. Each element of the out-
put of this mapping equals the sum of W [i] ⊙
(x1 ⊗ x2), where ⊙ and ⊗ represent, respectively,
the Hadamard and the outer products. Hence this
mapping captures the direct interaction between
different components (or “features”) in two input
vectors. Thanks to this expressiveness, NTNs are
effective in tasks such as knowledge graph com-
pletion (Socher et al., 2013a), sentiment analy-
sis (Socher et al., 2013b), and logical reasoning
(Bowman et al., 2015).

Although mapping by a 3D tensor provides ex-
pressiveness, it has a large number (O(n2k)) of
parameters. Due to this, NTNs often suffer from
overfitting and long training times.

3 Matrix Decomposition

3.1 Simple Matrix Decomposition (SMD)
To reduce the number of parameters of a slice
matrix W [i] ∈ Rn×n in a tensor, simple ma-
trix decomposition (SMD) is commonly used (Bai
et al., 2009). SMD factorizes W [i] into a prod-
uct of two low rank matrices S[i] ∈ Rn×m and
T [i] ∈ Rm×n (m ≪ n):

W [i] ≃ S[i]T [i]. (1)

By plugging (1) into bilinear term xT
1 W [i]x2, we

obtain the approximation xT
1 S[i]T [i]x2. SMD re-

duces the number of parameters of W [i] from n2

to 2nm. However, the dimension m for S and T
is a hyperparameter and must be determined prior
to training.

3.2 Simultaneous Diagonalization
This section introduces two techniques that can
simultaneously diagonalize all slice matrices
W [1], . . . , W [i], . . . , W [k] ∈ Rn×n. As described
in (Liu et al., 2017), we make use of the fact that
if matrices V [1:k] form a commuting family: i.e.,
V [i]V [j] = V [j]V [i], ∀i, j ∈ {1, 2, . . . , k}, they
can be diagonalized by a shared orthogonal or uni-
tary matrix. Both of the two techniques reduce
the number of parameters of W [i] to O(n) from
O(n2).

3.2.1 Orthogonal Diagonalization
Many NLP datasets contain symmetric patterns.
For example, if binary relation (Bob, is relative of,
Alice) holds in a knowledge graph, then (Alice,
is relative of, Bob) should also hold in it. En-
glish phrases “dog and cat” and “cat and dog”
have identical meaning. For symmetric structures,
we can reasonably suppose that each slice ma-
trix W [i] of a 3D tensor is symmetric because
xT

1 W [i]x2 must equal xT
2 W [i]x1.

When W [i] ∈ Rn×n is symmetric, it can be di-
agonalized as:

W [i] = O[i]W [i]′O[i]T

where O[i] ∈ Rn×n is an orthogonal matrix and
W [i]′ ∈ Rn×n is a diagonal matrix. Note that an
orthogonal matrix O[i] may not be equal to Oj

if i ̸= j. However, if all of the slice matrices
W [1], . . . , W [i], . . . , W [k] ∈ Rn×n are commut-
ing, we can diagonalize every slice matrix with the
same orthogonal matrix O. By substituting W [i]

with OW [i]′OT into bilinear term xT
1 W [i]x2, we

can rewrite it as follows:

xT
1 W [i]x2 = xT

1 OW [i]′OTx2

= yT
1 W [i]′y2

= ⟨y1, w
[i], y2⟩ (2)

where y1 = OTx1, y2 = OTx2, w[i] =
diag(W [i]′) ∈ Rn and ⟨a, b, c⟩ denotes a “triple
inner product” defined by ⟨a, b, c⟩ =

∑n
l=1 alblcl.

This reduces the number of parameters in a single
slice matrix from n2 to n.

507

3.2.2 Unitary Diagonalization
Since most of the structures in the NLP data are
not symmetric, the symmetric matrix assumption
is usually violated. To obtain more expressive di-
agonal matrix, we regard each slice matrix W [i] as
the real part of a complex matrix and consider its
eigendecomposition.

For any real matrix W [i], there exists a complex
normal matrix Z [i] whose real part is equal to it:
W [i] = ℜ

(
Z [i]

)
. ℜ (·) represents an operation

that takes the real part of a complex number, vec-
tor or matrix. Further, any complex normal ma-
trix can be diagonalized by a unitary matrix. With
these two properties, any real matrix W [i] can be
diagonalized as follows (Trouillon et al., 2016):

W [i] = ℜ
(
Z [i]

)
= ℜ

(
U [i]Z [i]′U [i]∗

)
.

Here, U [i] ∈ Cn×n is a unitary matrix, Z [i]′ ∈
Cn×n is a diagonal matrix, and U [i]∗ is the con-
jugate transpose of U [i]. To guarantee that ev-
ery slice matrix can be diagonalized with the same
unitary matrix U instead of U [i], we assume all
of the normal matrices Z [1], . . . , Z [i], . . . , Z [k] ∈
Cn×n are commuting as in Section 3.2.1.

Substituting ℜ
(
UZ [i]′U∗

)
whose U is the

same unitary matrix in all slice matrices, we can
rewrite every bilinear term xT

1 W [i]x2 as follows:

xT
1 W [i]x2 = ℜ

(
⟨y1, w

[i], y2⟩
)

= ⟨ℜ(y1), ℜ(w[i]), ℜ(y2)⟩
+ ⟨ℜ(y1), ℑ(w[i]), ℑ(y2)⟩
+ ⟨ℑ(y1), ℜ(w[i]), ℑ(y2)⟩
− ⟨ℑ(y1), ℑ(w[i]), ℜ(y2)⟩, (3)

where y1 = UTx1, y2 = U∗x2, w[i] =
diag(Z [i]′) ∈ Cn, and ⟨y1, w

[i], y2⟩ is the triple
Hermitian inner product of y1, w[i] and y2 de-
fined by ⟨a, b, c⟩ =

∑n
l=1 alblcl. This technique

reduces the number of parameters of the matrices
from n2 to 2n. As shown in the right-hand side
of Eq. (3), ℜ

(
⟨y1, w

[i], y2⟩
)

can be replaced with
three additions and a subtraction of the triple inner
product of real vectors.

4 Neural Network Models

This section introduces the baseline and our pro-
posed models. After describing them, we explain
how to extend them for handling compositional
structures like binary trees.

Model # of Parameters

NN (2n + 1)k
NTN (n2 + 2n + 1)k
NTN-SMD (2mn + 2n + 1)k
NTN-Diag (3n + 1)k
NTN-Comp (6n + 1)k

Table 1: Comparison of the number of parameters
among the models

4.1 Baseline Models
Neural Network (NN)
First, we describe a standard single layer neural
network (NN) model for two vectors x1, x2 ∈ Rn.
The model uses linear mapping V ∈ Rk×2n to
combine two input vectors:

f(V

[
x1

x2

]
+ b)

where b ∈ Rk is a bias term and f is a non-linear
activation function. The NN model has only (2n+
1)k parameters, and does not consider the direct
interactions between x1 and x2.

Neural Tensor Network (NTN)
Socher et al. (2013a) proposed a neural tensor net-
work (NTN) model that uses a 3D tensor W [1:k] ∈
Rn×n×k to combine two input vectors:

f(xT
1 W [1:k]x2 + V

[
x1

x2

]
+ b).

Unlike the standard NN model, NTN can directly
relate two input vectors using a tensor. However,
it has too many parameters; (n2 + 2n + 1)k.

NTN-SMD
Although the NTN model has tremendous ex-
pressive power, it is extremely time-consuming
to compute, since a naive 3D tensor product in-
cur O(n2k) computation time. To overcome this
weakness, Zhao et al. (2015) and Liu et al. (2015)
independently introduced simple matrix decompo-
sition (SMD) to the NTN model by replacing each
slice matrix W [i] with its factorized approxima-
tion given by Eq. (1):

f(xT
1 S[1:k]T [1:k]x2 + V

[
x1

x2

]
+ b)

where S[1:k] ∈ Rn×m×k, T [1:k] ∈ Rm×n×k.
When m ≪ n, the NTN-SMD model drastically
reduces the number of parameters compared to the
original NTN model; i.e., from (n2 + 2n + 1)k to
(2mn + 2n + 1)k.

508

4.2 NTNs with Diagonal Slice Matrices
In this paper, we introduce two new NTN models:
NTN-Diag and NTN-Comp, both of which reduce
the number of parameters in a 3D tensor more than
NTN-SMD with little loss in the model’s gener-
alization performance. Table 1 summarizes the
number of parameters in each model.

NTN-Diag
We replace all slice matrices W [i] of W [1:k] with
the triple inner product formulation of Eq. (2) by
assuming that they are symmetric and commuting.
As a result, we derive the following new NTN for-
mulation:

f(




⟨x1, w
[1], x2⟩
...

⟨x1, w
[k], x2⟩


 + V

[
x1

x2

]
+ b)

where w[i] ∈ Rn, ∀i ∈ {1, 2, . . . , k}. Thus, under
the symmetric and commuting matrix constraints,
we regard mapping by a 3D tensor as an array of k
triple inner products. The total number of param-
eters is just (3n + 1)k.

NTN-Comp
By assuming that W [1], . . . , W [i], . . . , W [k] are
real parts of normal matrices forming a commut-
ing family, we can replace each slice matrix of a
tensor term in NTN with the triple Hermitian in-
ner product shown in Eq. (3):

f(




ℜ
(
⟨x1, w

[1], x2⟩
)

...
ℜ

(
⟨x1, w

[k], x2⟩
)


+ℜ

(
V

[
x1

x2

])
+b)

where x1, x2 ∈ Cn, V ∈ Cn×n and w[i] ∈ Cn,
∀i ∈ {1, 2, . . . , k}. Similar to NTN-Diag, we re-
gard mapping by a 3D tensor as an array of k triple
Hermitian inner products. The total number of pa-
rameters is just (6n + 1)k. As is clear of its form,
NTN-Diag is a special case of NTN-Comp whose
vectors x1, x2 and w[i] are constrained to be real.

4.3 Recursive Neural Tensor Networks
We extend the above NTN models to handle com-
positional structures. As a representative of com-
positional structures, we consider a binary tree
where each NTN layer computes a vector repre-
sentation for a node by combining two vectors
from its child nodes in the lower layer. Except
for NTN-Comp, the models implement mappings

Rn → Rk so that each of their layers can receive
its lower layer’s output directly, if k equals to n.
Thus, the models do not have to be modified for
them. However, NTN-Comp cannot receive its
lower layer’s output as it is because NTN-Comp is
a mapping from Cn to Rk. To solve this problem,
we set k to 2n and treat the output y′ ∈ R2n as the
concatenation of vectors representing the real and
imaginary parts of y ∈ Cn:

ℜ(y) = (y′
1, · · · , y′

n), ℑ(y) = (y′
n+1, · · · , y′

2n).

Note that this approach is valid since Eq. (3) can
actually be defined in real vector space by trans-
forming the complex vectors in Cn into real vec-
tors in R2n.

5 Related Work

Knowledge Graph Completion

In KGC, researchers usually design scoring func-
tion Φ for the given triplet (s, r, o) to judge
whether it is a fact or not. Here (s, r, o) denotes
that entity s is linked to entity o by relation r.
RESCAL (Nickel et al., 2011) uses eT

s Wreo as
Φ, where es, eo are entity embedding vectors and
Wr is an embedding matrix of relation r. This
bilinear operation is effective for the task, but its
computational cost is high and it suffers from over-
fitting. To overcome these problems, DistMult
(Yang et al., 2015) adopts the triple inner prod-
uct ⟨es, wr, eo⟩ as Φ, where wr is an embed-
ding vector of relation r. This solves those prob-
lems, but it degrades the model’s ability to cap-
ture directionality of relations, because the scor-
ing function of DistMult is symmetric with re-
spect to s and o; i.e., ⟨es, wr, eo⟩ = ⟨eo, wr, es⟩.
To reconcile the complexity and expressiveness of
a model, ComplEx (Trouillon et al., 2016) uses
complex vectors for entity and relation embed-
dings. As scoring function Φ, they adopted the
triple Hermitian inner product ℜ (⟨es, wr, eo⟩),
where eo denotes the complex conjugate of eo.
Since ℜ (⟨es, wr, eo⟩) ̸= ℜ (⟨eo, wr, es⟩), Com-
plEx solves the expressiveness problem of Dist-
Mult without full matrices as relation embed-
dings. We can regard DistMult as a special case
of RESCAL with a symmetric matrix constraint
on Wr. ComplEx is also a RESCAL variant with
Wr as the real part of a normal matrix. Our re-
search is based on these works, but to the best of
our knowledge, no previous work applied this ap-

509

proach to reduce the number of parameters in a
tensor.

NN Architectures
To give additional expressiveness power to stan-
dard (R)NNs, many architectures have been pro-
posed, such as LSTM (Hochreiter and Schmid-
huber, 1997), GRU (Cho et al., 2014), and CNN
(LeCun et al., 1998). NTN (Socher et al., 2013a)
and RNTN (Socher et al., 2013b) are other such
architectures. However, (R)NTNs differ in that
they only add 3D tensor mapping to standard neu-
ral networks. Thus, they can also be regarded as
a powerful basic component of NNs because 3D
tensor mapping can be applied to more compli-
cated architectures such as those examples.

Parameter Reduction in NN
Several researchers reduced the number of param-
eters of NNs by using specific parameter shar-
ing mechanisms. Cheng et al. (2015) used circu-
lant matrix mapping instead of conventional linear
mapping and improved the time complexity of the
matrix-vector product by using Fast Fourier Trans-
formation (FFT). Circulant matrix

C(w) =




w1 wn . . . w3 w2

w2 w1 . . . w4 w3

...
...

. . .
...

...
wn−1 wn−2 . . . w1 wn

wn wn−1 . . . w2 w1




for wT = (w1, . . . , wn) can be factorized
into F−1 diag(F w) F with the Fourier matrix
F. By assuming each slice matrix W [i] of
W [1:k] is circulant, we get the same scoring
function as that in Eq. (3); xT

1 W [i]x2 =

xT
1 F−1 diag(F w[i]) F x2 = ℜ(⟨x′

1, w
[i]′, x2

′⟩)
where x′

1 = F x1, x′
2 = F x2, and w[i]′ =

1
n diag(F w[i]) are complex vectors in Cn. In this
sense, NTN-Comp is equivalent to NTN where
slice matrices of the 3D tensor are restricted to be
circulant. Hayashi and Shimbo (2017) established
a more detailed proof of the equivalence. Lu et al.
(2016) employed a Toeplitz-like structured matrix,
reducing parameters of LSTM. Chen et al. (2015)
used a feature hashing technique to reduce param-
eters in RNN. Although these techniques can also
be extended to reduce the number of tensor-related
parameters in NTN, the former needs FFT opera-
tions; i.e., O(n log n) computation time, and the
latter’s contribution is only a reduction in memory
consumption.

Dataset |E| |R| #Train #Valid #Test

FB15k 14,951 1,345 483,142 50,000 59,701
WN18 40,943 18 141,442 5,000 5,000

Table 2: Dataset statistics.

6 Experiment

6.1 Knowledge Graph Completion

To evaluate their performance for link prediction
on knowledge graphs, we compared our proposed
methods (NTN-Diag and NTN-Comp) to baseline
methods (NTN (Socher et al., 2013a) and NTN-
SMD).

Task
Let E and R denote entities and relations, respec-
tively. A relational triplet, or simply a triplet,
(s, r, o) is a triple with s, o ∈ E and r ∈ R. It
represents a proposition that relation r holds be-
tween subject entity s and object entity o. A triplet
is called a fact if the proposition it denote is true.
A knowledge graph is a collection of knowledge
triplets, with the understanding that all its mem-
ber triplets are facts. It is called a graph because
each triplet can be regarded as an edge in a di-
rected graph; the vertices in this graph represent
entities in E , and each edge is labeled by a relation
in R. Let G be a knowledge graph, viewed as a
collection of facts. Knowledge graph completion
(KGC) is the task of predicting whether unknown
triplet (s′, r′, o′) ̸∈ G such that s′, o′ ∈ E , r′ ∈ R
is a fact or not.

Models and Loss Function
The standard approach to KGC is to design a score
function Φ : E × R × E → R that assigns a large
value when a triplet seems to be a fact. Socher
et al. (2013a) defined it as follows.

uT
r f

(
eT

s W [1:k]
r eo + Vr

[
es

eo

]
+ br

)

Here, es, eo ∈ Rn are entity embeddings and
Wr, Vr, br, ur are parameters for each relation r.
ur is a k-dimensional vector to map f ’s output
Rk to R which indicates a score. f is the hy-
perbolic tangent. To compare the performances of
the baselines and proposed models, we change the
mapping before an activation. For NTN-SMD, we
change term eT

s W
[1:k]
r eo to eT

s S
[1:k]
r T

[1:k]
r eo. To

apply NTN-Diag and NTN-Comp in this model,

510

WN18 FB15K

MRR Hits@ MRR Hits@

model Filter Raw 1 3 10 Filter Raw 1 3 10

NN 0.111 0.106 7.0 11.7 18.3 0.259 0.165 17.9 28.1 41.7
NTN (k = 1) 0.740 0.512 67.6 78.4 85.2 0.347 0.188 24.1 39.3 55.2
NTN (k = 4) 0.754 0.530 69.3 79.5 86.3 0.380 0.198 27.1 43.0 59.2

NTN-SMD (m = 1) 0.243 0.216 15.9 26.1 40.9 0.278 0.172 19.3 30.1 44.7
NTN-SMD (m = 2) 0.224 0.199 15.1 23.8 37.2 0.298 0.177 20.7 32.7 47.8
NTN-SMD (m = 3) 0.299 0.255 20.4 32.4 49.2 0.312 0.183 21.7 34.5 49.9
NTN-SMD (m = 10) 0.533 0.413 42.2 59.4 74.5 0.333 0.188 22.8 37.5 53.8
NTN-SMD (m = 25) 0.618 0.463 52.1 67.8 80.0 0.341 0.187 23.2 38.6 55.5

NTN-Diag 0.824 0.590 74.8 89.6 92.7 0.443 0.238 31.5 51.2 68.5
NTN-Comp 0.857 0.610 80.1 90.9 93.1 0.490 0.246 36.3 56.7 71.9

DistMult∗ 0.822 0.532 72.8 91.4 93.6 0.654 0.242 54.6 73.3 82.4
ComplEx∗ 0.941 0.587 93.6 94.5 94.7 0.692 0.242 59.9 75.9 84.0

Table 3: Mean Reciprocal Rank (MRR) and Hits@n for the models tested on WN18 and FB15k. MRR is reported
in the raw and filtered settings. Hits@n metrics are percentages of test examples that lie in the top n ranked results.
We report Hits@n in the filtered setting. ∗Results are those in (Trouillon et al., 2016)

we assume all slice matrices of tensors among re-
lations form a commuting family. The loss func-
tion used to train the models is shown below:

N∑

i=1

C∑

c=1

max
(
0, 1 − Φ

(
T (i)

)
+ Φ

(
T (i)

c

))

+λ∥Ω∥2
2,

where λ∥Ω∥2
2 is an L2 regularization term, T (i)

denotes the i-th example of training data of size
N , and T

(i)
c is one of C randomly sampled neg-

ative examples for the i-th training example. We
generated negative samples of a triplet (s, r, o) by
corrupting its subject or object entity.

Experimental Setup
We used the Wordnet (WN18) and Freebase
(FB15k) datasets to verify the benefits of our pro-
posed methods. The dataset statistics are given
in Table 2. We selected hyper-parameters based
on Socher et al. (2013a) and Yang et al. (2015):
For all of the models, the size of mini-batches was
set to 1000, the dimensionality of the entity vector
to d = 100, and the regularization parameter to
0.0001; the tensor slice size was set to k = 4 for
all models, except NTN for which we also tested
with k = 1 to see the influence of the slice size
on the performance. We performed 300 epochs of
training for Wordnet and 100 on Freebase using
Adagrad (Duchi et al., 2011) with the initial learn-
ing rate set to 0.1.

For evaluation, we removed the subject or ob-
ject entity of each test example and then replaced

it with all the entities in E . We computed the
scores of these corrupted triplets and ranked them
in descending order of scores. We here report
the results collected in filtered and raw settings.
In the filtered setting, given test example (s, r, o),
we remove from the ranking all the other positive
triplets that appear in either training, validation,
or test dataset, whereas the raw metrics do not re-
move these triplets.

Result
Experimental results are shown in Table 3. We ob-
serve the following:

• The performance of NN and NTNs differs
considerably; Apparently, NN is inadequate
for this task.

• By comparing the results of NTNs with dif-
ferent slice sizes, we see that k = 4 performs
better than k = 1.

• NTN-SMDs perform better than NN, but are
all inferior to NTNs, although their results
improved as m (the rank of decomposed ma-
trices) is increased.

• NTN-Diag achieved better results than NTN,
although it has far fewer parameters than
NTN and the datasets contain many unsym-
metrical triplets. This demonstrates that
NTN-Diag solves the overfitting problem of
NTN without sacrificing the expressiveness
power. NTN-Diag also has fewer parameters
than the smallest (m = 1) NTN-SMD. Thus,

511

Conjunctive normal form
m∧

i=1

ni∨
j=1

Aij

Disjunctive normal form
m∨

i=1

ni∧
j=1

Aij

Table 4: Conjunctive and disjunctive normal forms in
propositional logic. Aij is a literal, which is a propo-
sitional variable or its negation. For example, p1 and
¬p2 are literal, but not ¬¬p3.

Name Symbol Set-theoretic definition

Entailment A ⊏ B A ⊂ B
Reverse entailment A ⊐ B A ⊃ B
Equivalence A ≡ B A = B
Alternation A | B A ∩ B = ∅ ∧ A ∪ B ̸= D
Negation A ∧ B A ∩ B = ∅ ∧ A ∪ B = D
Cover A ⌣ B A ∩ B ̸= ∅ ∧ A ∪ B = D
Independence A # B else

Table 5: Natural logic relations over formula pairs. A
and B denote a formula in propositional logic.

we conclude that NTN-Diag is a better alter-
native of NTN than NTN-SMD is, in terms of
both accuracy and computational cost.

• NTN-Comp outperformed NTN-Diag, show-
ing that its flexible constraint on matrices
yielded additional expressiveness. However,
NTN-Diag and NTN-Comp do not exceed
DistMult and ComplEx, respectively, in al-
most all measures.

Although not shown in the table, in this exper-
iment, NTN-Diag and NTN-Comp was, respec-
tively, 3 and 1.7 times as fast as NTN to train.

6.2 Logical Reasoning

To validate the performance of our proposed mod-
els in a recursive neural network setting, we ex-
perimentally tested them by having them solve a
semantic compositionality problem in logic.

Task
This task definition basically follows Bowman
et al. (2015): Given a pair of artificially generated
propositional logic formulas, classify the relation
between the formulas into one of the seven basic
semantic relations of natural logic (MacCartney
and Manning, 2009). Table 5 shows these seven
relation types. The formulas consist of propo-
sitional variables, negation, and conjunction and
disjunction connectives. Although Bowman et al.
(2015) generated formulas with no constraint on
its form, we restricted them to disjunctive normal

not p3
∧ p3

p3 ⊏ (p3 or p2)
(p1 or(p2 or p4))) ⊐ (p2 and not p4)

Table 6: Short examples of type of formulas and their
relations in datasets.

P (⊐) = 0.8

(p1 or (p2 or p4)) vs (p2 and not p4)

(p1 or (p2 or p4))

p1 (p2 or p4)

p2 p4

(p2 and not p4)

p2 not p4

andor

or

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N layer

Figure 1: Comparison and composition layers. not p4

is treated as an embedding.

form (DNF) or conjunctive normal form (CNF)
(Table 4). Recall that any propositional formula
can be transformed into these forms.

Models and Loss Function
Following Bowman et al. (2015), we constructed
a model that infers the relations between formula
pairs, as described in Table 6.

The model consists of two layers: composition
and comparison layers (Figure 1). The composi-
tion layer outputs the embeddings of both left and
right formulas by recursive neural networks. Sub-
sequently, the comparison layer compares the two
embeddings using a single layer neural network,
and then a softmax classifier receives its output. In
the composition layer, we set different parameters
for and and or operations. As a loss function, we
used cross entropy with L2 regularization and ap-
ply the NTNs in Section 4 to the comparison layer
and uses RNTNs for as the composition layer.

Experimental Setup
In this experiment, an example is a pair of propo-
sitional formulas, and its class label is the seven
relation types between the pair. We generated
examples following the protocol described in
Bowman et al. (2015), with the exception that
the formulas are restricted to CNF or DNF, as
mentioned above. We obtained 62,589 training
examples, 13,413 validation examples, and 55,150
test examples. Each formula in the training and
validation examples contains up to four logical
operators, whereas those in the test examples have

512

Model 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

Majority class 56.0 53.0 53.4 53.2 55.9 56.5 56.5 57.8 56.5 57.7 56.8 59.9 56.1
RNN 98.0 97.5 95.5 93.3 89.9 86.1 82.8 79.9 74.8 73.2 71.8 71.7 84.5
RNTN 99.9 99.5 98.2 95.7 92.7 88.5 84.7 81.2 78.1 77.5 74.4 74.4 87.0

RNTN-SMD (m = 1) 93.7 92.5 90.9 89.1 86.9 84.1 81.7 79.8 76.1 75.7 75.3 75.1 83.4
RNTN-SMD (m = 2) 93.0 93.4 91.7 90.3 88.2 85.5 82.7 81.4 77.6 77.0 75.4 75.8 84.3
RNTN-SMD (m = 4) 90.2 90.3 89.4 87.6 86.0 83.6 81.2 79.6 76.5 75.2 74.6 75.7 82.4
RNTN-SMD (m = 8) 86.8 84.9 83.5 82.5 81.1 79.1 76.6 75.6 72.4 71.3 70.9 71.2 77.9
RNTN-SMD (m = 16) 86.6 83.9 82.4 81.4 80.2 78.6 76.5 75.5 73.1 72.7 72.2 73.3 78.0

RNTN-Diag 99.9 98.9 98.5 97.4 94.9 91.5 87.6 85.0 80.3 78.5 77.1 75.2 88.7
RNTN-Comp 99.3 98.1 98.0 96.9 94.3 90.6 86.1 83.5 79.2 76.6 74.5 74.6 87.6

Table 7: Result of logical inference for Tests 1–12. Example in Test n has n logical operators in either or both
left and right formulas. Each score is the average accuracy of five trials of the λ that achieved best performance
on validation set. “Majority class” denotes the ratio of the majority class (relation “#”, i.e., Independence; see
Table 5).

Model Accuracy (Std. Dev.)

RNN 95.0 (0.8)
RNTN 97.2 (0.4)

RNTN-SMD (m = 1) 90.1 (3.4)
RNTN-SMD (m = 2) 91.4 (4.6)
RNTN-SMD (m = 4) 88.6 (7.1)
RNTN-SMD (m = 8) 82.7 (10.2)
RNTN-SMD (m = 16) 81.8 (11.7)

RNTN-Diag 98.1 (0.1)
RNTN-Comp 97.5 (0.1)

Table 8: Average accuracy and standard deviation on
the validation dataset. The reported values are average
over the best-performing model λ in each method.

up to 12 logical operators. Every formula consists
of up to four variables taken from six propositional
variables that are shared among all the examples.
Hyperparameters and optimization are based on
Bowman et al. (2015): Embedding size d = 25
(for RNN, d = 45) and the output size of com-
parison layer is k = 75, and we used AdaDelta
(Zeiler, 2012) for an optimizer. We searched for
the best coefficient λ of L2 regularization in λ ∈
{0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001},
whereas Bowman et al. (2015) set λ to 0.001 for
RNN and 0.0003 for RNTN.

Result
The results are shown in Table 7. From the table,
we observe the following:

• As with KGC, the large difference in per-
formance between RNN and RNTN suggests
that this logical reasoning task requires fea-
ture interactions to be captured1.

1Bowman (2016) also evaluated TreeLSTM, but its ad-
vantage over RNN was unclear in their experiment. For that

• RNTN-Diag achieved the best accuracy ex-
cept for Tests 2 and 12 and outperformed
RNTN except for Test 2. This is not surpris-
ing because both and and or are symmetric:
p1 and p2 equals p2 and p1. This matches
the tensor term in RNTN-Diag which is sym-
metric with respect to x1 and x2.

• RNTN-Comp was the second best except for
Tests 1–3 and 10–12. For all tests, its accu-
racy was comparable with or superior to that
of RNTN.

• RNTN-SMD (m = 1) was inferior to RNTN
for most test sets, although some good re-
sults were observed with m = 1, 2, 3 on
Tests 11 and 12. Indeed, except for Tests 9–
12, RNTN-SMD (m = 1) was inferior even
to RNN despite the larger number of param-
eters in RNTN-SMD. RNTN-SMD (m = 2)
obtained better results than m = 1, but it is
still worse than RNTN except for Tests 10-
12. Further increase in m (m = 4, 8, 16)
worsened the accuracy despite an increase of
the number of parameters.

We also evaluated the stability of the model
over different trials and hyperparameters. Table 8
shows the best average accuracy for each com-
pared model (among all the tested λ) on the vali-
dation set. The parenthesized figures (on the right-
most column) show the standard deviation over
five independent trials used for computing the av-
erage, i.e., all five trials used the same λ value that
achieved the best average accuracy. We see that
RNTN-SMDs have larger standard deviations than

reason, we did not test TreeLSTM in this paper.

513

(a) Validation set.

(b) Test 12.

Figure 2: Sensitivity of accuracy to λ.

RNTN, RNTN-Diag and RNTN-Comp. This indi-
cates that RNTN-SMD is a less reliable model.

RNTN-SMDs are also unstable, not only within
the same λ, but also between different λs. Fig-
ure 2 describes how accuracies are impacted by
λs. The top graph shows validation accuracies
between different λ values. RNTN, RNTN-Diag
and RNTN-Comp are stable, whereas RNN and
RNTN-SMDs have steep drops. The bottom one
describes the accuracies for Test 12. This also
shows that RNTN-SMDs are unstable and that
RNTN-Diag achieves distinctive performances.

Finally, Figure 3 shows that training times in-
crease quadratically with dimension for RNTN
that has O(n2k) parameters, but not for our meth-
ods, which have only O(nk) parameters.

7 Conclusion

We proposed two new parameter reduction meth-
ods for tensors in NTNs. The first method con-
strains the slice matrices to be symmetric, and the
second assumes them to be normal matrices. In
both methods, the number of a 3D tensor param-

Figure 3: Training times of the models.

eters is reduced from O(n2k) to O(nk) after the
constrained matrices are eigendecomposed. By re-
moving the tensor’s surplus parameters, our meth-
ods learn better and faster as was shown in exper-
iments.2 Future work will test the versatility of
our proposals, RNTN-Diag and RNTN-Comp, in
other tasks that deal with data sets exhibiting cari-
ous structures.

References
Bing Bai, Jason Weston, David Grangier, Ronan Col-

lobert, Kunihiko Sadamasa, Yanjun Qi, Corinna
Cortes, and Mehryar Mohri. 2009. Polynomial se-
mantic indexing. In Y. Bengio, D. Schuurmans, J. D.
Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems
22. Curran Associates, Inc., pages 64–72.

Samuel R. Bowman. 2016. Modeling natural language
semantics in learned representations. Ph.D. thesis,
Stanford University.

Samuel R Bowman, Christopher Potts, and Christo-
pher D Manning. 2015. Recursive neural networks
can learn logical semantics. Proceedings of the 3rd
Workshop on Continuous Vector Space Models and
their Compositionality .

Wenlin Chen, James Wilson, Stephen Tyree, Kilian
Weinberger, and Yixin Chen. 2015. Compressing
neural networks with the hashing trick. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning. pages 2285–2294.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar,
Alok Choudhary, and Shi-Fu Chang. 2015. An ex-
ploration of parameter redundancy in deep networks
with circulant projections. In Proceedings of the
IEEE International Conference on Computer Vision.
pages 2857–2865.

2Code of the two experiments will be available at
https://github.com/tkhrshhr

514

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation pages 1724–1734.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Katsuhiko Hayashi and Masashi Shimbo. 2017. On
the equivalence of holographic and complex embed-
dings for link prediction. Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics pages 554–559.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE
86(11):2278–2324.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017.
Analogical inference for multi-relational embed-
dings. In Proceedings of the 34th International Con-
ference on Machine Learning. pages 2168–2178.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. In Proceedings of
the Twenty-Fourth International Joint Conference
on Artificial Intelligence. pages 1284–1290.

Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath.
2016. Learning compact recurrent neural net-
works. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on.
IEEE, pages 5960–5964.

Bill MacCartney and Christopher D Manning. 2009.
An extended model of natural logic. In Proceedings
of the eighth international conference on compu-
tational semantics. Association for Computational
Linguistics, pages 140–156.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th international conference on machine learn-
ing. pages 809–816.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013a. Reasoning with neural ten-
sor networks for knowledge base completion. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26. pages
926–934.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013b. Recursive deep models

for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing.
pages 1631–1642.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Ma-
chine Learning. pages 2071–2080.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. International Conference on Learning Rep-
resentations .

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015.
Phrase type sensitive tensor indexing model for se-
mantic composition. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence.
pages 2195–2202.

515

