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Abstract

Diachronic distributional models track
changes in word use over time. In this pa-
per, we propose a deep neural network di-
achronic distributional model. Instead of
modeling lexical change via a time series
as is done in previous work, we represent
time as a continuous variable and model a
word’s usage as a function of time. Ad-
ditionally, we have created a novel syn-
thetic task, which quantitatively measures
how well a model captures the semantic
trajectory of a word over time. Finally,
we explore how well the derivatives of our
model can be used to measure the speed of
lexical change.

1 Introduction

Diachronic distributional models have provided
interesting insights into how words change mean-
ing. Generally, they are used to explore how
specific words have changed meaning over time
(Sagi et al., 2011; Gulordava and Baroni, 2011;
Jatowt and Duh, 2014; Kim et al., 2014; Kulka-
rni et al., 2015; Bamler and Mandt, 2017; Hell-
rich and Hahn, 2017), but they have also been
used to explore historical linguistic theories (Xu
and Kemp, 2015; Hamilton et al., 2016a,b), to pre-
dict the emergence of novel senses (Bamman and
Crane, 2011; Rohrdantz et al., 2011; Cook et al.,
2013, 2014), and to predict world events (Kutuzov
et al., 2017a,b).

Diachronic distributional models are distribu-
tional models where the vector for a word changes
over time. Thus, we can calculate the cosine sim-
ilarity between the vectors for a word at two dif-
ferent time points to measure how much that word
has changed over time and we can perform a near-
est neighbor analysis to understand in what direc-

tion a word is changing. For example, diachronic
distributional models can detect that the word gay
has greatly changed by comparing the word vector
for gay across different time points. They can also
be used to discover that gay has shifted its mean-
ing from happy to homosexual by analyzing when
those words show up as nearest neighbors to gay.

Previous research in diachronic distributional
semantics has used models where data is par-
titioned into time bins and a synchronic model
is trained on each bin. A synchronic model is
a vanilla, time-independent distributional model,
such as skip-gram. However, there are several
technical issues associated with data binning. For
example, if the bins are too large, you can only
achieve extremely coarse grained representations
of lexical change over time. However, if the bins
are too small, the synchronic models get trained
on insufficient data.

In this paper, we have built the first diachronic
distributional model that represents time as a con-
tinuous variable instead of employing data bin-
ning. There are several advantages to treating time
as continuous. The first advantage is that it is more
realistic. Large scale change in the meaning of a
word is the result of change happening one per-
son at a time. Thus, semantic change must be a
gradual process. By treating time as a continuous
variable, we can capture this gradual shift. The
second advantage is that it allows a greater repre-
sentation of the underlying causes behind lexical
change. Words change usage in reaction to real
world events and multiple words can be affected
by the same event. For example, the usage of gay
and lesbian have changed in similar ways due to
changing perceptions of homosexuality in society.
By associating time with a vector and having word
representations be a function of that vector, we can
model a single underlying cause affecting multiple
words similarly.
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It is difficult to evaluate diachronic distribu-
tional models in their ability to capture semantic
shift as it is extremely difficult to acquire gold
data. Distributional models are traditionally eval-
uated with word similarity judgments, which we
cannot obtain for word usage in the past. Thus,
evaluation of diachronic distributional models is a
focus of research, such as work done by Hellrich
and Hahn (2016) and Dubossarsky et al. (2017).
Our approach is to create a synthetic task to mea-
sure how well a model captures gradual semantic
shifts.

We will also explore how we can use our model
to predict the speed at which a word changes. Our
model is differentiable with respect to time, which
gives us a natural way to measure the velocity, and
thus speed, of a word at a given time. We explore
the capabilities and limitations of this approach.

In short, our paper provides the following con-
tributions:

• We have developed the first continuous di-
achronic distributional model. This is also
the first diachronic distributional model using
a deep neural network.

• We have designed an evaluation of a model’s
ability to capture semantic shift that tracks
gradual change.

• We have used the derivatives of our model as
a natural way to measure the speed of word
use change.

2 Related work

Previous research in diachronic distributional
models has applied a binning approach. In this
approach, researchers partition the data into bins
based on time and train a synchronic distributional
model on that bin’s data (See Figure 1). Several
authors have used large bin models in their re-
search, such as using five year sized bins (Kulkarni
et al., 2015), decade sized bins (Gulordava and Ba-
roni, 2011; Xu and Kemp, 2015; Jatowt and Duh,
2014; Hamilton et al., 2016a,b; Hellrich and Hahn,
2016, 2017), and era sized bins (Sagi et al., 2009,
2011). The synchronic model for each time bin
was trained independently of the others. In order
to get a fine grained representation of semantic
shift, several authors have used small bins. Kim
et al. (2014) trained a synchronic model for each
time bin. To mitigate data issues, Kim et al. preini-
tialized a time bin’s synchronic model with the
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(a) Previous work

(b) Our approach

(c) Difference in
trajectories

Figure 1: Difference between our approach and previ-
ous work. Previous work in diachronic distributional
models (a) has trained synchronic distributional mod-
els on consecutive time bins. In our work (b), a neural
network takes word and time as input and produces a
time specific word vector. In (c), we sketch that previ-
ous work produces a jagged semantic trajectory (blue,
solid curve) whereas our model produces a smooth se-
mantic trajectory (pink, dotted curve).

model from the previous time bin. Bamler and
Mandt (2017) developed a small bin probabilis-
tic approach that used transition probabilities to
lessen data issues. They have two versions of their
method. The first version trains the distribution in
each bin iteratively and the second version trains
a joint distribution over all bins. In this paper, we
only explore the first version as the second ver-
sion does not scale well to large vocabulary sizes.
Following Bamler and Mandt (2017), we compare
to models used by Hamilton et al. (2016b), Kim
et al. (2014), and the first version of Bamler and
Mandt’s’s model.

There have been other models of lexical change
beside distributional ones. Topic modeling has
been used to see how topics associated to a word
have changed over time (Wijaya and Yeniterzi,
2011; Frermann and Lapata, 2016). Sentiment
analysis has been applied to determine how sen-
timents associated to a word have changed over
time (Jatowt and Duh, 2014).

As mentioned in the introduction, it is difficult
to quantitatively evaluate diachronic distributional
models due to the lack of gold data. Thus, pre-
vious research has attempted alternative routes to
quantitatively evaluate their models. One route
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is to use intrinsic evaluations, such as measur-
ing a trajectory’s smoothness (Bamler and Mandt,
2017). However, intrinsic measures do not directly
measure semantic shift, which is the main use of
diachronic distributional models. Hamilton et al.
(2016b) use attested shifts generated by historical
linguists. However, outside of first attestations,
it is a difficult task for historical linguists them-
selves to accurately detail semantic shifts (Deo,
2015). Additionally, the task used by Hamilton
et al. is unusable for model comparison as all
but one model had a 100% accuracy in this task.
Kulkarni et al. (2015) used a synthetic task to
evaluate how well diachronic distributional mod-
els can detect semantic shift. They took 20 copies
of wikipedia where each is a synthetic version of a
time bin and changed several words in the last 10
copies. Models were then evaluated on their abil-
ity to detect when those words changed. Our eval-
uation improves upon this one by having the test
data be from a diachronic corpus and we model
lexical change as a gradual process rather than
searching for a single change point.

3 Models

In this section, we describe the four diachronic dis-
tributional models that we analyze in our current
work. Three will be from previous research to be
used as benchmarks. Each of the four models we
analyze are based on skip-gram with negative sam-
pling (SGNS). The difference between the four di-
achronic distributional models we analyze is how
they apply SGNS to changes over time.

Skip-gram with negative sampling (SGNS) is a
word embedding model that learns a latent rep-
resentation of word usage (Mikolov et al., 2013).
For target words w and context words c, vector
representations ~w and ~c are learned to best predict
if c will be in context of w in a corpus. k negative
contexts are randomly sampled for each positive
context. Vector representations are computed by
optimizing the following loss function:

∑

(w,c)∈D
[log(σ(~w·~c))+

∑

c1,...ck∼PD

log(1−σ(~w·~ci))]

(1)
where D is a list of target-context pairs extracted
from the corpus, PD is the unigram distribution on
the corpus, σ is the sigmoid function, and k is the
number of negative samples.

3.1 Binning by Decade
The first diachronic distributional model we will
consider is a large time bin model proposed by
Hamilton et al. (2016b). Here, time is partitioned
into decades and an SGNS model is trained on
each decade’s worth of data. We label this model
LargeBin.

3.2 Preinitialization
The second diachronic distributional model we
will consider is a small time bin model proposed
by Kim et al. (2014). Here, time is partitioned
into years and an SGNS model is trained on each
year’s worth of data. Data issues are mitigated by
preinitializing the model1 for a given time bin with
the vectors of the preceding time bin (Kim et al.,
2014). We label this model SmallBinPreInit.

3.3 Prior and Transition Probabilities
The third diachronic distributional model we will
consider comes from Bamler and Mandt (2017).
Bamler and Mandt take a probabilistic approach
to modeling semantic change over time. The idea
is to transform the SGNS loss function into a prob-
ability distribution over the target and context vec-
tors. Then, to create a better diachronic distribu-
tional model, they apply priors to this distribution.

The first two priors are Gaussian distributions
with mean zero on the vector variables to discour-
age the vectors from growing too large (Barkan,
2017). More formally:

P1(~w) = N (0, α1I)

P2(~c) = N (0, α1I)
(2)

where α1 is a hyperparameter.
The last two priors are also Gaussian distribu-

tions on the vector variables. The means are the
vector representation from the previous bin. The
goal of this prior is to discourage a vector variable
from deviating from the previous bin’s vectors.

P3(~w) = N (−−−→wprev, α2I)

P4(~c) = N (−−→cprev, α2I)
(3)

where α2 is a hyperparameter and −−−→wprev and −−→cprev
are the vectors from the previous time bin.

We are only exploring point models, thus we
take the maximum a posteriori estimate of the

1We do not perform preinitialization in LargeBin as large
bin models are less susceptible to data issues.
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Figure 2: Diagram of DiffTime. timevec(t) encodes
temporal information as a vector. MW encodes lexical
information as a matrix. The target vector for w at time
t, useW (w, t), is found by combining Transw and
timevec(t). Context version useC(c, t) is the same ex-
cept that it has its own embedding layer.

joint distribution to recover the vectors for each
time bin. We apply a logarithm in constructing
the estimate, which transforms the joint probabil-
ity into the SGNS loss function with four regu-
larizers (each one corresponding to a prior dis-
tribution). The prior distribution P1 becomes∑

w∈W
α1
2 ||w||. The prior distribution P2 be-

comes
∑

c∈C
α1
2 ||c||. The prior distribution P3 be-

comes
∑

w∈W
α2
2 ||~w−

−−−→wprev||. The prior distribu-
tion P4 becomes

∑
c∈C

α2
2 ||~c −

−−→cprev||. W and C
are the sets of target and context words. We label
this model SmallBinReg.

3.4 DiffTime Model

Our model is a modification of the SGNS algo-
rithm to accommodate a continuous time variable.
The original SGNS algorithm produces a target
embedding ~w for target word w and a context em-
bedding ~c for context word c. Instead, we produce
a differentiable function useW (w, t) that returns a
target embedding for target word w at time t and a
differentiable function useC(c, t) that produces a
context embedding for context word c at time t.

Our model consists of three components. One
component takes time as its input and produces
an embedding that characterizes that point in time
(lower right). The second component (lower left)
takes a word as its input and produces a time-

independent word embedding, which is then re-
shaped into a set of parameters that can modify
the time embedding. The third component (top)
combines the time embedding and the word em-
bedding.

The first component of our model is a two-layer
feed-forward neural network with tanh activation
functions. These layers take a time t as input and
produces a time embedding timevec(t) as output
of those layers:

h1 = tanh(M1t+ b1)

timevec(t) = tanh(M2h1 + b2)
(4)

where M1 and M2 are the weights of the first two
layers and b1 and b2 are the biases. To produce
the input value t, a timepoint is scaled to a value
between 0 and 1, where 0 corresponds to the year
1900, and 1 corresponds to 2009, the last year for
which our corpus has data.

The second component incorporates word-
specific information into our model. For
useW (w, t), each target word w has a target
vector representation ~w. The vector ~w is then
transformed into a linear transformation Transw,
which in the third component is applied to the time
embedding timevec(t). We do this via a modified
linear layer where the weights are a three dimen-
sional tensor, the biases are a matrix and the output
is a matrix:

Transw = T~w +B (5)

where T is the tensor acting as the weights and B
is the matrix acting as the biases.

The third component combines the word-
independent time embedding timevec(t) and the
time-independent linear transformation Transw
together to produce the final result. First, Transw
is applied to timevec(t):

h3 = Transw(timevec(t)) (6)

Then, an additional linear layer is used as the
output layer, taking h3 as input:

useW (w, t) =M4h3 + b4 (7)

where M4 and b4 are the weights and biases of the
output layer.
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The above details the architecture of
useW (w, t). The corresponding function
useC(c, t) for context words has the same archi-
tecture as useW (w, t) and shares weights with
useW (w, t). The only exception is that useC(c, t)
uses a separate set of vectors ~c in the second
component instead of sharing the target vectors ~w
with useW (w, t).

We train our model using a modified version of
the SGNS loss function. In particular, our posi-
tive samples are now triples (w, c, t) where w is a
target word, c is a context word, and t is a time,
instead of pairs (w, c) which are typically used in
SGNS. For each positive sample (w, c, t), we sam-
ple k negative contexts from the unigram distribu-
tion, PD. PD is trained from all contexts in the
entire corpus and is time-independent. Explicitly,
the loss function is:

∑

(w,c,t)∈D
log(σ(useW (w, t) · useC(c, t)))+

kEcN∼PD
[log(σ(−useW (w, t) · useC(cN , t)))]

(8)

3.5 Training

All models are trained on the same training data.
We used the English Fiction section of the Google
Books ngram corpus (Lin et al., 2012). We use
the English fiction specifically, because it is less
unbalanced than the full English section and less
influenced by technical texts (Pechenick et al.,
2015). We only use the years 1900 to 2009 as there
is limited data before 1900.

We converted the ngram data for this corpus
into a set of (target word, context word, year, fre-
quency) tuples. The frequency is the expected
number of times the target word-context word pair
is sampled from that year’s data using skip-gram.
Following Hamilton et al. (2016b), we use sub-
sampling with t = 10−5. As the number of texts
published since 1900 has increased five fold, we
weigh the frequencies so that the sums across each
year are equal.

For the binned models, we train each bin’s syn-
chronic model using the subset of the training data
corresponding to that time bin. For our model, we
sample (training word, context word, year) triples
from the entire training data as the year is an input
to our function.

4 Evaluation

4.1 Synchronic Accuracy

Method Time Spearman’s ρ

LargeBin 1990s bin 0.615
SmallBinPreInit 1995 bin 0.489
SmallBinReg 1995 bin 0.564
DiffTime start of 1995 0.694

Table 1: Synchronic accuracy of the methods. Time is
the point of time we use as our synchronic model.

Before we can evaluate the methods as models
of diachronic semantics, we must first ensure that
the methods model semantics accurately. To do
this, we follow Hamilton et al. (2016b) by per-
forming the MEN word similarity task on vec-
tors extracted from a fixed time point (Bruni et al.,
2012). The hope is that the word similarity predic-
tions of a model at that point in time highly corre-
late with word similarity judgments in the MEN
dataset. For the binned models, we used the vec-
tors from the bin best corresponding to 1995 to
reflect the 1990s bin chosen by Hamilton et al.
(2016b). DiffTime represents time as a continuous
variable, so we chose a time t that corresponds to
the start of 1995.

The results of MEN word similarity tasks is
in Table 1. All of the Spearman’s ρ values are
comparable to those found in Levy and Goldberg
(2014) and Hamilton et al. (2016b). Thus, all of
these models reflect human judgments compara-
ble to synchronic models. Thus, the predictions of
the models correlate with human judgments.

4.2 Synthetic Task
The goal of creating diachronic distributional
models is to help us understand how words change
meaning over time. To that end, we have created
a synthetic task to compare models by how accu-
rately they track semantic change.

Our task creates synthetic words that change be-
tween two senses over time via a sigmoidal path.
A sigmoidal path will allow us to emulate a word
starting from one sense, shifting gradually to a sec-
ond sense, then stabilizing on that second sense.
By using sigmoidal paths, we can explore how
well a model can track words that have switched
senses over time such as gay (lively to homosex-
ual) and broadcast (scattering seeds to televising
shows). A similar task is used to evaluate word
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sense disambiguation (Gale et al., 1992; Schütze,
1992).

The synthetic words are formed by a combina-
tion of two real words, e.g. banana and lobster
are combined together to form banana◦lobster.
The real words are randomly sampled from two
distinct semantic classes from the BLESS dataset
(Baroni and Lenci, 2011). We use BLESS classes
so that we can capture how semantically similar a
synthetic word is to its component words by com-
paring to other words in the same BLESS classes
as the component word. For example, we can cap-
ture how similar banana◦lobster is to banana by
comparing banana◦lobster to words in the fruit
BLESS class. See Appendix B for preprocessing
details. We denote the synthetic words with r1◦r2
where r1 and r2 are the component real words.

We also randomly generate the sigmoidal path
by which a synthetic word changes from one sense
to another. For real words r1 and r2, this path will
be denoted shift(t; r1◦r2) and is defined by the fol-
lowing equation:

shift(t; r1◦r2) = σ(s(t−m)) (9)

The value s is uniformly sampled from ( 1.0
110 ,

10.0
110 )

and represents the steepness of the sigmoidal
path. The value m is uniformly sampled from
{1930, . . . , 1980} and represents the point where
the synthetic word is equally both senses. For
our example synthetic word banana◦lobster,
banana◦lobster can transition from meaning ba-
nana to meaning lobster via the sigmoidal path
σ(0.05(t − 1957)) where 1957 is the time where
banana◦lobster is equally banana and lobster and
0.05 represents how gradually banana◦lobster
shifts senses.

We then use shift(t; r1◦r2) to integrate r1◦r2
into the real diachronic corpus data. Our training
data is a set of (target word, context word, year,
frequency) tuples extracted from a diachronic cor-
pus (see 3.5). For every tuple where r1 is the tar-
get word, we replace the target word with r1◦r2
and we multiply the frequency by shift(t; r1◦r2).
For every tuple where r2 is the target word, we
replace the target word with r1◦r2 and we mul-
tiply the frequency by 1 − shift(t; r1◦r2). In
other words, in the modified corpus, r1◦r2 has
shift(t; r1◦r2) percent of r1’s contexts at time t
and 1 − shift(t; r1◦r2) percent of r2’s contexts at
time t.

We train a model mod on this modified train-

ing data. This provides a representation for r1◦r2
over time. We can capture how much a model pre-
dicts r1◦r2 is more semantically similar to r1 than
r2 by comparing mod’s representation of r1◦r2 to
words in the same semantic category as r1 and r2.
We use BLESS classes as our notion of semantic
category. If cls1 is the BLESS class of r1 and cls2
is the BLESS class of r2, then mod’s prediction
for how much more similar r1◦r2 is to r1 than r2,
rec(t; r1◦r2,mod), is defined as follows:

rec(t; r1◦r2,mod) =
1

|cls1|
∑

r′1∈cls1
simmod(r1◦r2, r′1, t)

− 1

|cls2|
∑

r′2∈cls2
simmod(r1◦r2, r′2, t) (10)

simmod(r1◦r2, r′1, t) is the cosine similarity be-
tween mod’s word vector for r1◦r2 at time t and
mod’s word vector for r′1 at time t.

Method
AMSE

1900–2009
AMSE

1950–2009

LargeBin 62.52 51.71
SmallBinPreInit 171.43 49.88
SmallBinReg 106.79 42.67
DiffTime 25.67 11.48

Table 2: Model performance under the synthetic eval-
uation. The values are the mean sum of squares error
(MSSE) for each method. Lower value is better. The
first column is MSSE using all times. The second col-
umn is MSSE using years 1950 to 2009.

To evaluate a model in its ability to capture
semantic shift, we use the mean sum of squares
error (MSSE) between rec(t; r1◦r2,mod) and
shift(t; r1◦r2) across all synthetic words. The
function rec(t; r1◦r2,mod) is model mod’s pre-
diction of how much more similar r1◦r2 is to r1
than r2. The gold value of rec(t; r1◦r2,mod)
would then be the sigmoidal path that defines
how r1◦r2 semantically shifts from r1 to r2 over
time, shift(t; r1◦r2). To evaluate how accurately
mod predicted the semantic trajectory of r1◦r2,
we calculate the mean squared error between
rec(t; r1◦r2,mod) and shift(t; r1◦r2) as follows:
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2009∑

t=1900

(rec(t; r1◦r2,mod)− shift(t; r1◦r2))2

(11)

As rec(t; r1◦r2,mod) and shift(t; r1◦r2)
have different scales, we Z-scale both the
rec(t; r1◦r2,mod) values and the shift(t; r1◦r2)
values before calculating the mean squared error.

We use three sets of 15 synthetic words and
the average is calculated over all 45 words. The
synthetic words and BLESS classes we used are
contained in the supplementary material. The re-
sults are in Table 2. The column AMSE is MSSE
when all years are taken into account. Kim et al.
(2014) noted that small bin models require an ini-
tialization period, so the column AMSE (1950-)
is MSSE when only years 1950 to 2009 are taken
into account and the years 1900 to 1949 are used
as the initialization period. From the table, we see
our model outperforms the three benchmark mod-
els in both cases. Using a paired t-test, we found
that the reduction in MSSE between our model
and the benchmark models are statistically signif-
icant.
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Figure 3: Graph Comparisons between shift(t; r1◦r2)
(red) and rec(t; r1◦r2,) (blue) for the synthetic word
pistol◦elm. The x-axis are the years and the y-axis are
the values of shift(t; r1◦r2). rec(t; r1◦r2,mod) and
shift(t; r1◦r2) have been Z-scaled.

In Figure 3, we plot shift(t; r1◦r2) and
rec(t; r1◦r2,mod) for the synthetic word
pistol◦elm. Each method has a subgraph. The
predictions of the large bin model LargeBin
appear as a step function with large steps (top
left graph). These large steps seem to cause the
predicted shift (blue curve) to poorly correlate
with the gold shift (red curve). Next, we consider
the small bin models SmallBinPreInit (top right

graph) and SmallBinReg (bottom left graph).
Both predicted shifts have an initial portion that
poorly fits the generated shift (between 1900 and
1950). From Kim et al. (2014), it takes several
iterations for small bin models to stabilize due
to each bin being fed limited data. Additionally,
there are fluctuations in the graphs of the predicted
shift, which we attribute to the high variance of
data per bin. In contrast to the other models, our
predicted shift tightly fits the gold shift (bottom
right graph).

Although this evaluation provides useful infor-
mation on the quality of an diachronic distribu-
tional model, it has some weaknesses. The first is
that it is a synthetic task that operates on synthetic
words. Thus, we have limited ability to under-
stand how well a model will perform on real world
data. Second, we only generate words that shift
from one sense to another. This fails to account
for other common changes, such as gaining/losing
senses and narrowing/broadening. Finally, by us-
ing a sigmoidal function to generate how words
change meaning, we may have privileged contin-
uous models that incorporate a sigmoidal function
in their architecture. We are working towards im-
proving this evaluation to remove these issues.

4.3 Speed of word use change

In this section, we evaluate our model’s ability to
measure the speed at which a word is changing.
Our model is differentiable with respect to time.
Thus, we can get the derivative of useW (w, t)
with respect to t to model how word w is chang-
ing usage at time t. We l2-normalize useW (w, t)
beforehand to reduce frequency effects. We then
get the magnitude of this normalized derivative to
model the speed at which a word is changing at a
given time.

We explore the connection between speed and
the nearest neighbors to a word in Figure 4. First,
we use apple as a baseline for discussion. We
chose apple, because the meaning of the word has
remained relatively stable throughout the 1900s.
With apple, we see a low speed over time and
a consistency in the cosine similarity to apple’s
nearest neighbors. While it is true that apple has
other meanings beyond the fruit, such as referring
to Apple Inc., those meanings are much rarer, es-
pecially in the fiction corpus we use.

In contrast to apple, the word gay has a very
high speed and a drastic change for gay’s nearest
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Figure 4: Speed and nearest neighbors over time of selected words. The top graphs as the speed at which a word
changes usage according to our model. The bottom graphs are selected nearest neighbors for those words. Each of
the chosen nearest neighbors appear as a top 10 nearest neighbor to the word at some year.

neighbors. This makes sense as gay is well estab-
lished to have experienced a drastic sense change
in the mid to late 1900s (Harper, 2014).

Next, we explore the word mail. The word mail
has a moderately high speed. This may be re-
flective of the fact that there have been incredible
changes in the medium by which we send mail,
e.g. changing from cables to email. A possible
reason for the speed only being moderately high is
that, even though the medium by which we send
mail has changed, many of the same uses of mail,
e.g. sending, receiving, opening, etc., remain the
same. We see this reflected in the nearest neigh-
bors as well as mail shifts from a high similarity
to cable to a high similarity to e (as in email),
yet mail is consistently similar to postal and sta-
tionery.

The next word we will explore is the word cana-
dian. We chose this word as we were surprised to
find that canadian has one of the fastest speeds
in the 1930s to 1940s. The nearest neighbors to
canadian have shifted from geographic terms like
port and railhead to civil terms like federal and

national. In further analysis, we discovered that
this may be reflective of a larger push to form
a Canadian identity in the early 1900s (Francis,
1997). The nearest neighbors to canadian may re-
flect the change from being a part of the British
Empire to having its own unique national identity.

The final word we will explore is cell. The word
cell also has a high speed over time. However,
there is a spike in the speed during the 1980s. An-
alyzing the nearest neighbors we see a rapid rise
in similarity to pager and handset, which indi-
cates that this spike may be related to the rapid
rise of cell phone use. Additionally, this exam-
ple demonstrates a weakness in our approach. Our
graph shows that our model predicts that the word
cell gradually changed meaning over time and that
cell started changing meaning much earlier than
expected. This prediction error comes from the
smoothing out of the output caused by represent-
ing time as a continuous variable.

Even though we are able to extract interesting
insights from the speed of word use change, Fig-
ure 4 also exhibits some limitations. In particu-

481



lar, most words have a sharp rise in speed in the
1930s and a steep decline in speed in the 1980s.
We believe this is an artifact of our representation
of word use as a function of time as there is a sin-
gle time vector that influences all words. In the
future, we will explore model variants to address
this.

4.4 Automatic extraction of time periods

Figure 5: Distribution of time points where a node in
h1 is zero. We could interpret these points as barriers
between time periods.

We can inspect h1, the first layer in the time sub-
network, to gain further understanding of what our
model is doing. We do this by analyzing the time
points where a node in h1 is zero.

As the activation function in h1 is tanh, a node
in h1 switches from positive to negative (or vice
versa) at the time points where it is zero. Thus, the
time points where a node is zero should indicate
barriers between time periods.

We visualize the time points where a node is
zero in Figure 5. We see that we have a fairly
even distribution of points until the 1940s, a large
burst of points in the 1950s-1960s, and two points
in the 1980s. Thus, there are many time periods
before the 1940s (which may be caused by noisi-
ness of the data in the first half of the century), a
big transition between time periods in the 1950s-
1960s, and a transition between time periods in the
1980s. Thus, these are time points that the model
perceives as having increased semantic change.

However, there is a weakness to this analysis.
Only 16% of the 100 nodes in h1 are zero for time
points between 1900 and 2009. Thus, a vast ma-
jority of nodes do not correspond to transitions be-
tween time periods.

5 Conclusion

Diachronic distributional models are a helpful tool
in studying semantic shift. In this paper, we intro-
duced our model of diachronic distributional se-

mantics. Our model incorporates two hypothe-
ses that better help the model capture how words
change usage over time. The first hypothesis is
that semantic change is gradual and the second
hypothesis is that words can change usage due to
common causes.

Additionally, we have developed a novel syn-
thetic task to evaluate how accurately a model
tracks the semantic shift of a word across time.
This task directly measures semantic shift, is
quantifiable, allows model comparison, and fo-
cuses on the trajectory of a word over time.

We have also used the fact that our model is
differentiable to create a measure of the speed at
which a word is changing. We then explored this
measure’s capabilities and limitations.
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A Hyperparameters and preprocessing
details

We used data from the English Fiction section of
the Google Books ngram corpus (Lin et al., 2012).
We use the English fiction specifically, because it
is less unbalanced than the full English section
and less influenced by technical texts (Pechenick
et al., 2015). We only use the years 1900 to 2009
as there is limited data before 1900. Both the
set of target words and the set of context words
are the top 100,000 words by average frequency
across the decades as generated by Hamilton et al.
(2016b). We take a sampling approach to gener-
ating word vectors, so the corpus was converted
into a list of (target word, context word, year, fre-
quency) tuples. Frequency is the expected number
of times the target word is in context of the context
word that year. As the number of texts published
since 1900 has increased five fold, we weigh the
the frequencies so that the sums across each year
are equal.

For every model, the representation of a word’s
use at time t is a 300 dimensional vector. For
SmallBinReg, α1 is set to 1000 and α2 is set
to 1. This choice of hyperparameters comes from
Bamler and Mandt (2017). For DiffT ime, ev-
ery hidden layer is 100 dimensional, except for
embedW (w) which is 300 dimensional.

We trained each method using random mini-
batching with 10,000 samples each iteration and
990 epochs total. For LargeBin, since our study

spans 11 decades (1900-2009), the synchronic
model for each decade is trained for 99 epochs.
For SmallBinPreInit and SmallBinReg, since our
study spans 110 years, the synchronic model for
each year is trained for 9 epochs.

B BLESS class preprocessing

BLESS Class Size

bird 10
building 7
clothing 10
fruit 7
furniture 8
ground mammal 17
tool 12
tree 6
vehicle 6
weapon 7

Table 3: BLESS classes with the number of elements
in each class after our preprocessing.

In this section, we discuss the BLESS prepro-
cessing details. In the original dataset, there are
200 words categorized into 17 classes. How-
ever, we remove words that do not rank in the top
20,000 by frequency in any decade in our training
data to ensure that the synthetic words do not lack
context words at a given time. We then remove
BLESS classes with less than 6 members to ensure
that there are a sufficient number of words in each
class. See Table 3 for the resulting list of BLESS
classes and the number of members of each class.
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