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Abstract

We investigate grounded sentence representa-
tions, where we train a sentence encoder to
predict the image features of a given caption—
i.e., we try to “imagine” how a sentence would
be depicted visually—and use the resultant fea-
tures as sentence representations. We examine
the quality of the learned representations on
a variety of standard sentence representation
quality benchmarks, showing improved perfor-
mance for grounded models over non-grounded
ones. In addition, we thoroughly analyze the
extent to which grounding contributes to im-
proved performance, and show that the system
also learns improved word embeddings.

1 Introduction

Following the word embedding upheaval of the
past few years, one of NLP’s next big challenges
has become the hunt for universal sentence rep-
resentations: generic representations of sentence
meaning that can be “plugged into” any kind of sys-
tem or pipeline. Examples include Paragraph2Vec
(Le and Mikolov, 2014), C-Phrase (Pham et al.,
2015), SkipThought (Kiros et al., 2015) and Fast-
Sent (Hill et al., 2016a). These representations
tend to be learned from large corpora in an unsu-
pervised setting, much like word embeddings, and
effectively “transferred” to the task at hand.
Purely text-based semantic models, which rep-
resent word meaning as a distribution over other
words (Harris, 1954; Turney and Pantel, 2010;
Clark, 2015), suffer from the grounding problem
(Harnad, 1990). It has been shown that ground-
ing leads to improved performance on a variety
of word-level tasks (Baroni, 2016; Kiela, 2017).
Unsupervised sentence representation models are
often doubly exposed to the grounding prob-
lem, especially if they represent sentence mean-
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ings as a distribution over other sentences, as in
SkipThought (Kiros et al., 2015).

Here, we examine whether grounding also leads
to improved sentence representations. In short, the
grounding problem is characterized by the lack of
an association between symbols and external infor-
mation. We address this problem by aligning text
with paired visual data and hypothesize that sen-
tence representations can be enriched with external
information—i.e., grounded—by forcing them to
capture visual semantics. We investigate the per-
formance of these representations and the effect of
grounding on a variety of semantic benchmarks.

There has been much recent interest in gener-
ating actual images from text (Goodfellow et al.,
2014; van den Oord et al., 2016; Mansimov et al.,
2016). Our method takes a slightly different ap-
proach: instead of predicting actual images, we
train a deep recurrent neural network to predict
the latent feature representation of images. That
is, we are specifically interested in the semantic
content of visual representations and how useful
that information is for learning sentence represen-
tations. One can think of this as trying to imag-
ine, or form a “mental picture”, of a sentence’s
meaning (Chrupata et al., 2015). Much like a sen-
tence’s meaning in classical semantics is given by
its model-theoretic ground truth (Tarski, 1944), our
ground truth is provided by images.

Grounding is likely to be more useful for con-
crete words and sentences: a sentence such as
“democracy is a political system” does not yield
any coherent mental picture. In order to accommo-
date the fact that much of language is abstract, we
take sentence representations obtained using text-
only data (which are better for representing abstract
meaning) and combine them with the grounded
representations that our system learns (which are
good for representing concrete meaning), leading
to multi-modal sentence representations.
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In what follows, we introduce a system for
grounding sentence representations by learning to
predict visual content. Although it is not the pri-
mary aim of this work, it is important to first exam-
ine how well this system achieves what it is trained
to do, by evaluating on the COCOS5K image and
caption retrieval task. We then analyze the per-
formance of grounded representations on a variety
of sentence-level semantic transfer tasks, showing
that grounding increases performance over text-
only representations. We then investigate an im-
portant open question in multi-modal semantics:
to what extent are improvements in semantic per-
formance due to grounding, rather than to having
more data or data from a different distribution? In
the remainder, we analyze the role that concrete-
ness plays in representation quality and show that
our system learns grounded word embedding pro-
jections that outperform non-grounded ones. To
the best of our knowledge, this is the first work to
comprehensively study grounding for distributed
sentence representations on such a wide set of se-
mantic benchmark tasks.

2 Related work

Sentence representations Although there ap-
pears to be a consensus with regard to the method-
ology for learning word representations, this is
much more of an open problem for sentence rep-
resentations. Recent work has ranged from try-
ing to learn to compose word embeddings (Le and
Mikolov, 2014; Pham et al., 2015; Wieting et al.,
2016; Aroraetal.,2017), to neural architectures for
predicting the previous and next sentences (Kiros
et al., 2015) or learning representations via large-
scale supervised tasks (Conneau et al., 2017). In
particular, SkipThought (Kiros et al., 2015) led to
an increased interest in learning sentence repre-
sentations. Hill et al. (2016a) compare a wide se-
lection of unsupervised and supervised methods,
including a basic caption prediction system that
is similar to ours. That study finds that “differ-
ent learning methods are preferable for different
intended applications”, i.e., that the matter of opti-
mal universal sentence representations is as of yet
far from decided.

InferSent (Conneau et al., 2017) recently showed
that supervised sentence representations can be of
very high quality. Here, we learn grounded sen-
tence representations in a supervised setting, com-
bine them with standard unsupervised sentence
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representations, and show how grounding can help
for a variety of sentence-level tasks.

Multi-modal semantics Language grounding in
semantics has been motivated by evidence that
human meaning representations are grounded in
perceptual experience (Jones et al., 1991; Perfetti,
1998; Andrews et al., 2009; Riordan and Jones,
2011). That is, despite ample evidence of hu-
mans representing meaning with respect to an ex-
ternal environment and sensorimotor experience
(Barsalou, 2008; Louwerse, 2008), standard se-
mantic models rely solely on textual data. This
gives rise to an infinite regress in text-only seman-
tic representations, i.e., words are defined in terms
of other words, ad infinitum.

The field of multi-modal semantics, which aims
to address this issue by enriching textual repre-
sentations with information from other modalities,
has mostly been concerned with word representa-
tions (Bruni et al., 2014; Baroni, 2016; Kiela, 2017,
and references therein). Learning multi-modal rep-
resentations that ground text-only representations
has been shown to improve performance on a va-
riety of core NLP tasks. This work is most closely
related to that of Chrupata et al. (2015), who also
aim to ground language by relating images to cap-
tions: here, we additionally address abstract sen-
tence meaning; have a different architecture, loss
function and fusion strategy; and explicitly focus
on grounded universal sentence representations.

Bridging vision and language There is a large
body of work that involves jointly embedding im-
ages and text, at the word level (Frome et al., 2013;
Joulin et al., 2016), the phrase level (Karpathy
etal., 2014; Li et al., 2016), and the sentence level
(Karpathy and Fei-Fei, 2015; Klein et al., 2015;
Kiros et al., 2015; Chen and Zitnick, 2015; Reed
et al., 2016). Our model similarly learns to map
sentence representations to be consistent with a
visual semantic space, and we focus on studying
how these grounded text representations transfer to
NLP tasks.

Moreover, there has been a lot of work in re-
cent years on the task of image caption generation
(Bernardi et al., 2016; Vinyals et al., 2015; Mao
etal., 2015; Fang et al., 2015). Here, we do the op-
posite: we predict the correct image (features) from
the caption, rather than the caption from the image
(features). Similar ideas were recently success-
fully applied to multi-modal machine translation



(Elliott and Kadar, 2017; Gella et al., 2017; Lee
et al., 2017). Recently, Das et al. (2017) trained
dialogue agents to communicate about images, try-
ing to predict image features as well.

3 Approach

In the following, let D = {(I, Ck)},iv:1 be a dataset
where each image Iy, is associated with one or more
captions Cx = {Cy,...,Cic| }. A prominent ex-
ample of such a dataset is COCO (Lin et al., 2014),
which consists of images with up to 5 correspond-
ing captions for each image. The objective of our
approach is to encode a given sentence, i.e., a cap-
tion C, and learn to ground it in the corresponding
image /. To encode the sentence, we train a bidirec-
tional LSTM (BiLSTM) on the caption, where the
input is a sequence of projected word embeddings.
We combine the final left-to-right and right-to-left
hidden states of the LSTM and take the element-
wise maximum to obtain a sentence encoding. We
then examine three distinct methods for grounding
the sentence encoding.

In the first method, we try to predict the image
features (Cap2Img). That is, we learn to map the
caption to the same space as the image features that
represent the correct image. We call this strong
perceptual grounding, where we take the visual
input directly into account.

An alternative method is to exploit the fact
that one image in COCO has multiple captions
(Cap2Cap), and to learn to predict which other
captions are valid descriptions of the same image.
This approach is strictly speaking not perceptu-
ally grounded, but exploits the fact that there is an
implicit association between the captions and the
shared underlying image, and so could be consid-
ered a weaker version of grounding.

Finally, we experiment with a model that opti-
mizes both these objectives jointly: that is, we pre-
dict both images and alternative captions for the
same image (Cap2Both). Thus, Cap2Both incor-
porates both strong perceptual and weak implicit
grounding. Please see Figure 1 for an illustration
of the various models. In what follows, we discuss
them in more technical detail.

3.1 Bidirectional LSTM

To learn sentence representations, we employ a
bidirectional LSTM architecture. In particular, let
x = (x1,...,xr) be an input sequence where each
word is represented via an embedding x, € R".

410

Using a standard LSTM (Hochreiter and Schmid-
huber, 1997), the hidden state at time ¢, denoted
h, € R, is computed via

h;;1,¢;41 = LSTM(x;, by, ¢; | ©)

where ¢, denotes the cell state of the LSTM and
where ® denotes its parameters.

To exploit contextual information in both input
directions, we process input sentences using a bidi-
rectional LSTM, that reads an input sequence in
both normal and reverse order. In particular, for
an input sequence x of length 7, we compute the
hidden state at time ¢, h, € R¥" via

'

f =LSTM(x,.h/,c] | ©)
h? | = LSTM(x7—,h?,¢? | @)

+

Here, the two LSTMs process x in a forward and a
backward order, respectively. We subsequently use
max : RY x R — R to combine them into their
element-wise maximum, yielding the representa-
tion of a caption after it has been processed with
the BILSTM:

hy = max(h'{, hf’)

We use GloVe vectors (Pennington et al., 2014)
for our word embeddings. The embeddings are
kept fixed during training, which allows a trained
sentence encoder to transfer to tasks (and a vo-
cabulary) that it has not yet seen, provided GloVe
embeddings are available. Since GloVe represen-
tations are not tuned to represent grounded infor-
mation, we learn a global transformation of GloVe
space to grounded word space. Specifically, let
X € R" be the original GloVe embeddings. We
then learn a linear map U € R such that x = UX
and use x as input to the BILSTM. The linear map
U and the BiLSTM are trained jointly.

3.2 Cap2Ilmg

Let v € R/ be the latent representation of an image
(e.g.the final layer of a ResNet). To ground cap-
tions in the images that they describe, we map hy
into the latent space of image representations such
that their similarity is maximized. In other words,
we aim to predict the latent features of an image
from its caption. The mapping of caption to image
space is performed via a series of projections

po =hr
Pe+1 = Y(Pepe)
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Figure 1: Model architecture: predicting either an image (Cap2Img), an alternative caption (Cap2Cap), or both at

the same time (Cap2Both).

where i denotes a non-linearity such as ReL.Us or
tanh.

By jointly training the BiLSTM with these la-
tent projections, we can then ground the language
model in its visual counterpart. In particular, let
® = OpjLstm Y {P[}é‘: , be the parameters of the
BiLSTM as well as the projection layers. We then
minimize the following ranking loss:

La1(©) = ) frankL,O) + frak(C 1) (1)

(I,C)eD

where

Fank(@,b) = > [y = sim(a, b) + sim(a, b")],
b'eN,

where [x], = max(0, x) denotes the threshold
function at zero and y defines the margin. Further-
more, N, denotes the set of negative samples for
an image or caption and sim(-, -) denotes a similar-
ity measure between vectors. In the following, we
employ the cosine similarity, i.e.,

(a,b)
lalllib]l”

sim(a, b) =

Although this loss is not smooth at zero, it can
be trained end-to-end using subgradient methods.
Compared to e.g. an /> regression loss, Equa-
tion (1) is less susceptible to error incurred by
subspaces of the visual representation that are ir-
relevant to the high level visual semantics. Empir-
ically, we found it to be more robust to overfitting.

3.3 Cap2Cap

Let x = (x1,...,x7), y = (y1,...,¥s) be a cap-
tion pair that describes the same image. To learn

weakly grounded representations, we employ a
standard sequence-to-sequence model (Sutskever
et al., 2014), whose task is to predict y from x.
As in the Cap2Cap model, let hy be the represen-
tation of the input sentence after it has been pro-
cessed with a BILSTM. We then model the joint
probability of y given x as

S
pGIx)=[pOsIhryn. . y01,0).

s=1

To model the conditional probability of y, we use
the usual multiclass classification approach over
the vocabulary of the corpus “V such that

e<Vk,Ys>

pys =k |hr,yi,...,9-1,0) =

TV etvye)”
j=1

Here, ys = ¥(Wygs + b) and g, is hidden state of
the decoder LSTM at time s.

To learn the model parameters, we minimize the
negative log-likelihood over all caption pairs, i.e.,

[yl

Lcoc(0) = - Z Z log p(ys|hr, y1,. .., ys-1, ©).

x,yeD s=1

3.4 Cap2Both

Finally, we also integrate both concepts of ground-
ing into a joint model, where we optimize the fol-
lowing loss function:

Lcop(0) = L21(0O) + Leac(O).
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3.5 Grounded universal representations

On their own, features from this system are likely
to suffer from the fact that training on COCO intro-
duces biases: aside from the inherent dataset bias
in COCO itself, the system will only have cover-
age for concrete concepts. COCO is also a much
smaller dataset than e.g. the Toronto Books Cor-
pus often used in purely text-based methods (Kiros
et al., 2015). As such, grounded representations
are potentially less “universal” than text-based al-
ternatives, which also cover abstract concepts.

There is evidence that meaning is dually coded
in the human brain: while abstract concepts are
processed in linguistic areas, concrete concepts
are processed in both linguistic and visual areas
(Paivio, 1990). Anderson et al. (2017) recently
corroborated this hypothesis using semantic rep-
resentations and fMRI studies. In our case, we
want to be able to accommodate concrete sentence
meanings, for which our vision-centric system is
likely to help; as well as abstract sentence mean-
ings, where trying to “imagine” what “democracy
is a political system” might look like will probably
only introduce noise.

Hence, we optionally complement our systems’
representations with more abstract universal sen-
tence representations trained on language-only
data (specifically, the Toronto Books Corpus). Al-
though it would be interesting to examine multitask
scenarios where these representations are jointly
learned, we leave this for future work. Here, in-
stead, we combine grounded and language-only
representations using simple concatenation, i.e.,
Tgs = Tgrounded || Tling—onty- Concatenation has
been proven to be a strong and straightforward
mid-level multi-modal fusion method, previously
explored in multi-modal semantics for word rep-
resentations (Bruni et al., 2014; Kiela and Bot-
tou, 2014). We call the combined system Ground-
Sent (GS), and distinguish between sentences per-
ceptually grounded in images (GroundSent-Img),
weakly grounded in captions (GroundSent-Cap) or
grounded in both (GroundSent-Both).

3.6 Implementation details

We use 300-dimensional GloVe (Pennington et al.,
2014) embeddings, trained on WebCrawl, for the
initial word representations and optimize using
Adam (Kingma and Ba, 2015). We use ELU (Clev-
ert et al., 2016) for the non-linearity in projection
layers, set dropout to 0.5 and use a dimensionality

of 1024 for the LSTM. The network was initialized
with orthogonal matrices for the recurrent layers
(Saxe et al., 2014) and He initialization (He et al.,
2015) for all other layers. The learning rate and
margin were tuned on the validation set using grid
search.

4 Data, evaluation and comparison

We use the same COCO splits as Karpathy and
Fei-Fei (2015) for training (113,287 images), val-
idation (5000 images) and testing (5000 images).
Image features for COCO were obtained by trans-
ferring the final layer from a ResNet-101 (He et al.,
2016) trained on ImageNet (ILSVRC 2015).

4.1 Transfer tasks

We are specifically interested in how well
(grounded) universal sentence representations
transfer to different tasks. To evaluate this, we
perform experiments for a variety of tasks. In all
cases, we compare against layer-normalized Skip-
Thought vectors, a well-known high-performing
sentence encoding method (Ba et al., 2016). To
ensure that we use the exact same evaluations, with
identical hyperparameters and settings, we evalu-
ate all systems with the same evaluation pipeline,
namely SentEval (Conneau and Kiela, 2018)2. Fol-
lowing previous work in the field, the idea is to take
universal sentence representations and to learn a
simple classifier on top for each of the transfer
tasks—the higher the quality of the sentence rep-
resentation, the better the performance on these
transfer tasks should be.

4.1.1 Semantic classification

We evaluate on the following well-known and
widely used evaluations: movie review sentiment
(MR) (Pang and Lee, 2005), product reviews (CR)
(Hu and Liu, 2004), subjectivity classification
(SUBJ) (Pang and Lee, 2004), opinion polarity
(MPQA) (Wiebe et al., 2005), paraphrase identifi-
cation (MSRP) (Dolan et al., 2004) and sentiment
classification (SST, binary version) (Socher et al.,
2013). Accuracy is measured in all cases, except
for MRPC, which measures accuracy and the F1-
score.

2See https://github.com/facebookresearch/SentEval. The
aim of SentEval is to encompass a comprehensive set of
benchmarks that has been loosely established in the research
community as the standard for evaluating sentence represen-
tations.
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COCOSK
Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 MEDR MR | R@l R@S5 R@10 MEDR MR
DVSA 11.8 325 454 12.2 NA | 8.9 249 363 19.5 NA
FV 173 390 50.2 10.0 46.4 | 10.8 283 40.1 17.0 49.3
OE 233 NA 65.0 5.0 244 1180 NA 57.6 7.0 35.9
Cap2Both | 194 45.0 594 7.0 265 | 11.7 326 464 12.0 41.7
Cap2Img | 27.1 55.6 700 4.0 19.2 | 17.1 43.0 573 8.0 36.6

Table 1: Retrieval (higher is better) results on COCO, plus median rank (MEDR) and mean rank (MR) (lower is
better). Note that while this work underwent review, better methods have been published, most notably VSE++

(Faghri et al., 2017).

Model MR CR SUBJ MPQA MRPC SST | SNLI SICK
ST-LN | 781 80.1 927 880  69.6/81.2 829|738 785
GroundSent-Cap | 79.9 814 931 889  729/822 850|755 79.7
GroundSent-Img | 79.1 808 93.1  89.0  71.9/81.4 861|761 822
GroundSent-Both | 79.6 81.7 934 894  727/825 848|761 816

Table 2: Accuracy results on sentence classification and entailment tasks.

4.1.2 Entailment

Recent years have seen an increased interest in
entailment classification as an appropriate evalu-
ation of sentence representation quality. We evalu-
ate representations on two well-known entailment,
or natural language inference, datasets: the large-
scale SNLI dataset (Bowman et al., 2015) and the
SICK dataset (Marelli et al., 2014).

4.2 Implementational details

We implement a simple logistic regression on
top of the sentence representation. In the cases
of SNLI and SICK, as is the standard for these
datasets, the representations for the individual sen-
tences u and v are combined by using (u,v,u =
v, |u — v|) as the input features. We tune the seed
and an /, penalty on the validation sets for each,
and train using Adam (Kingma and Ba, 2015), with
a learning rate of 0.001 and a batch size of 32.

5 Results

Although it is not the primary aim of this work
to learn a state-of-the-art image and caption re-
trieval system, it is important to first establish
the capability of our system to do what it is
trained to do. Table 1 shows the results on
the COCOSK caption and image retrieval tasks
for the two models that predict image features.

We compare our system against several well-
known approaches, namely Deep Visual-Semantic
Alignments (DVSA) (Karpathy and Fei-Fei, 2015),
Fisher Vectors (FV) (Klein et al., 2015) and Or-
der Embeddings (OE) (Vendrov et al., 2015). As
the results show, Cap2Img performs very well on
this task, outperforming the compared models on
caption retrieval and being very close to order em-
beddings on image retrieval®>. The fact that the
system outperforms Order Embeddings on caption
retrieval suggests that it has a better sentence en-
coder. Cap2Both does not work as well on this task
as the image-only case, probably because interfer-
ence from the language signal makes the problem
harder to optimize. The results indicate that the
system has learned to predict image features from
captions, and captions from images, at a level ex-
ceeding or close to the state-of-the-art on this task.

5.1 Transfer task performance

Having established that we can learn high-quality
grounded sentence encodings, the core question
we now wish to examine is how well grounded
sentence representations transfer. In this sec-
tion, we combine our grounded features with the

3In fact, we found that we can achieve better performance
on this task by reducing the dimensionality of the encoder. A
lower dimensionality in the encoder also reduces the trans-

ferability of the features, unfortunately, so we leave a more
thorough investigation of this phenomenon for future work.
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Model MR CR SUBJ MPQA MRPC  SST | SNLI SICK
STb-1024 | 703 680 875 855  69.7/80.6 783|673 766
STb-2048 731 757 883 865  71.6/8L7 79.0 |71.0 788
2xSTb-1024 714 747 882 866  71.3/80.7 758|694 783
Cap2Cap 714 747 867 867  703/79.8 76.1 | 685 782
Cap2Img 721 755 869 860 723811 777|714 812
Cap2Both 716 744 865 855  714/7195 785|713 817
GroundSent-Cap | 73.1 73.0 88.6 866  70.8/81.2 794|707 79.1
GroundSent-Img | 725 749 884 857  713/812 794|705 79.7
GroundSent-Both | 73.3 752 875  86.6 69.9/79.9 80.3 | 72.0  78.1

Table 3: Thorough investigation of the contribution of grounding, ensuring equal number of components and
identical architectures, on the variety of sentence-level semantic benchmark tasks. STb=SkipThought-like model
with bidirectional LSTM+max. 2xSTb-1024=ensemble of 2 different STb models with different initializations.
GroundSent is STb-1024+Cap2Cap/Img/Both. We find that performance improvements are sometimes due to
having more parameters, but in most cases due to grounding.

high-quality layer-normalized SkipThought repre-
sentations of Ba et al. (2016), leading to multi-
modal sentence representations as described in
Section 3.5. That is, we concatenate Cap2Cap,
Cap2lmg or Cap2Both and Skip-Thought with
Layer Normalization (ST-LN) representations,
yielding GroundSent-Cap, GroundSent-Img and
GroundSent-Both representations, respectively.
We report performance of ST-LN using SentEval,
which led to slightly different numbers than what
is reported in their paper4.

Table 2 shows the results for the semantic clas-
sification and entailment tasks. Note that all sys-
tems use the exact same evaluation pipeline, which
makes them directly comparable. We can see that
in all cases, grounding increases the performance.
The question of which type of grounding works
best is more difficult: generally, grounding with
Cap2Cap and Cap2Both appears to do slightly bet-
ter on most tasks, but on e.g. SST, Cap2Img works
better. The entailment task results (SNLI and SICK
in Table 2) show a similar picture: in all cases
grounding improves performance.

It is important to note that, in this work, we
are not necessarily concerned with replacing the
state-of-the-art on these tasks: there are systems
that perform better. We are primarily interested
in whether grounding helps relative to text-only
baselines. We find that it does.

4This is probably due to different seeds, optimization
methods and other minor implementational details that dif-
fer between the original work and SentEval.

5.2 The contribution of grounding

An important open question is whether the increase
in performance in multi-modal semantic models
is due to qualitatively different information from
grounding, or simply due to the fact that we have
more parameters or data from a different distri-
bution. In order to examine this, we implement
a SkipThought-like model that also uses a bidi-
rectional LSTM with element-wise max on the fi-
nal hidden layer (henceforth referred to as STb).
This model is architecturally identical to the sen-
tence encoder used before: it can be thought of as
Cap2Cap, but where the objective is not to predict
an alternative caption, but to predict the previous
and next sentence in the Toronto Books Corpus,
just like SkipThought (Kiros et al., 2015).

We train a 1024-dimensional and 2048-
dimensional STb model (for one full iteration, with
all other hyperparameters identical to Cap2Cap) to
compare against: if grounding improves results
because it introduces qualitatively different infor-
mation, rather than just from having more parame-
ters (i.e., a higher embedding dimensionality), we
should expect the multi-modal GroundSent mod-
els to perform better not only than STb-1024, but
also than STb-2048, which has the same num-
ber of parameters (recall that GroundSent models
are combinations of grounded and linguistic-only
representations). In addition, we compare against
an “ensemble” of two different STb-1024 models
(i.e., aconcatenation of two separately trained STb-
1024), to check that we are not (just) observing an
ensemble effect.
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Dataset | Concreteness

MR 2.3737 + 0.965
CR 24714 = 1.025
SUBJ 2.4510 = 1.007
MPQA | 2.3158 +0.834
MRPC 2.5086 = 0.987
SST 27471 + 1.142
SNLI 3.1867 + 1.309
SICK 3.1282 + 1.372

Table 4: Mean and variance of dataset concreteness,
over all words in the datasets.

As Table 3 shows, a more nuanced picture
emerges in this comparison: grounding helps more
for some datasets than for others. Grounded mod-
els outperform the STb-1024 model (which uses
much more data—the Toronto Books Corpus is
much larger than COCO) in all cases, often al-
ready without concatenating the textual modality.
The ensemble of two STb-1024 models performs
better than the individual one, and so does the
higher-dimensional one. In the cases of CR and
MRPC (F1), it appears that improved performance
is due to having more data or ensemble effects. For
the other datasets, grounding clearly yields better
results. These results indicate that grounding does
indeed capture qualitatively different information,
yielding better universal sentence representations.

6 Discussion

There are a few other important questions to in-
vestigate. The average abstractness or concrete-
ness of the evaluation datasets may have a large
impact on performance. In addition, word embed-
dings from the learned projection from GloVe input
embeddings, which now provides a generic word-
embedding grounding method even for words that
are not present in the image-caption training data,
can be examined.

6.1 Concreteness

As we have seen, performance across datasets and
models can vary substantially. A dataset’s con-
creteness plays an important role in the relative
merit of applying grounding: a dataset consisting
mostly of abstract words is less likely to benefit
from grounding than one that uses mostly con-
crete words. In order to examine this effect, we
calculate the average concreteness of the evalua-
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Model | MEN SimLex RW W353
GloVe | 0.805 ~ 0.408 0451 0.738
Cap2Both | 0.819 0467 0487 0.712
Cap2lmg | 0.845 0515 0.523 0.753

Table 5: Spearman pg correlation on four standard se-
mantic similarity evaluation benchmarks.

tion datasets used in this study. Table 4 shows the
average human-annotated concreteness ratings for
all words (where available) in each dataset. The
ratings were obtained by Brysbaert et al. (2014)
in a large-scale study, yielding scores for 40,000
English words.

We observe that the two entailment datasets
are more concrete, which is due to the fact that
the premises are derived from caption datasets
(Flickr30K in the case of SNLI; Flickr8K and video
captions in the case of SICK). This explains why
grounding can clearly be seen to help in these cases.
For the semantic classification tasks, the more con-
crete datasets are MRPC and SST. The picture is
less clear for the first, but in SST we see that the
grounded representations definitely do work bet-
ter. Concreteness values make it easier to analyze
performance, but are apparently not always direct
indicators of improvements with grounding.

6.2 Grounded word embeddings

Our models contain a projection layer that maps
the GloVe word embeddings that they receive as
inputs to a different embedding space. There has
been a lot of interest in grounded word represen-
tations in recent years, so it is interesting to exam-
ine what kind of word representations our models
learn. We omit Cap2Cap for reasons of space (it
performs similarly to Cap2Both). As shown in
Table 5, the grounded word projections that our
network learns yield higher-quality word embed-
dings on four standard lexical semantic similarity
benchmarks: MEN (Bruni et al., 2014), SimLex-
999 (Hill et al., 2016b), Rare Words (Luong et al.,
2013) and WordSim-353 (Finkelstein et al., 2001).

7 Conclusion

We have investigated grounding for universal sen-
tence representations. We achieved good perfor-
mance on caption and image retrieval tasks on
the large-scale COCO dataset. We subsequently
showed how the sentence encodings that the sys-



tem learns can be transferred to various NLP tasks,
and that grounded universal sentence representa-
tions lead to improved performance. We analyzed
the source of improvements from grounding, and
showed that the increased performance appears to
be due to the introduction of qualitatively differ-
ent information (i.e., grounding), rather than sim-
ply having more parameters or applying ensem-
ble methods. Lastly, we showed that our systems
learned high-quality grounded word embeddings
that outperform non-grounded ones on standard
semantic similarity benchmarks. It could well be
that our methods are even more suited for more
concrete tasks, such as visual question answering,
visual storytelling, or image-grounded dialogue—
an avenue worth exploring in future work. In addi-
tion, it would be interesting to explore multi-task
learning for sentence representations where one of
the tasks involves grounding.
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