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Abstract

There has been much recent work on train-
ing neural attention models at the sequence-
level using either reinforcement learning-style
methods or by optimizing the beam. In this
paper, we survey a range of classical objec-
tive functions that have been widely used to
train linear models for structured prediction
and apply them to neural sequence to se-
quence models. Our experiments show that
these losses can perform surprisingly well by
slightly outperforming beam search optimiza-
tion in a like for like setup. We also report
new state of the art results on both IWSLT’14
German-English translation as well as Giga-
word abstractive summarization. On the large
WMT’14 English-French task, sequence-level
training achieves 41.5 BLEU which is on par
with the state of the art.1

1 Introduction

Sequence to sequence models are usually
trained with a simple token-level likelihood loss
(Sutskever et al., 2014; Bahdanau et al., 2014).
However, at test time, these models do not pro-
duce a single token but a whole sequence. In order
to resolve this inconsistency and to potentially
improve generation, recent work has focused
on training these models at the sequence-level,
for instance using REINFORCE (Ranzato et al.,
2015), actor-critic (Bahdanau et al., 2016), or with
beam search optimization (Wiseman and Rush,
2016).

Before the recent work on sequence level train-
ing for neural networks, there has been a large
body of research on training linear models at the

∗Equal contribution.
1An implementation of the losses is available

as part of fairseq at https://github.com/
facebookresearch/fairseq-py/tree/
classic_seqlevel

sequence level. For example, direct loss opti-
mization has been popularized in machine transla-
tion with the Minimum Error Rate Training algo-
rithm (MERT; Och 2003) and expected risk min-
imization has an extensive history in NLP (Smith
and Eisner, 2006; Rosti et al., 2010; Green et al.,
2014). This paper revisits several objective func-
tions that have been commonly used for structured
prediction tasks in NLP (Gimpel and Smith, 2010)
and apply them to a neural sequence to sequence
model (Gehring et al., 2017b) (§2). Specifically,
we consider likelihood training at the sequence-
level, a margin loss as well as expected risk train-
ing. We also investigate several combinations of
global losses with token-level likelihood. This is,
to our knowledge, the most comprehensive com-
parison of structured losses in the context of neural
sequence to sequence models (§3).

We experiment on the IWSLT’14 German-
English translation task (Cettolo et al., 2014) as
well as the Gigaword abstractive summarization
task (Rush et al., 2015). We achieve the best re-
ported accuracy to date on both tasks. We find
that the sequence level losses we survey perform
similarly to one another and outperform beam
search optimization (Wiseman and Rush, 2016) on
a comparable setup. On WMT’14 English-French,
we also illustrate the effectiveness of risk mini-
mization on a larger translation task. Classical
losses for structured prediction are still very com-
petitive and effective for neural models (§5, §6).

2 Sequence to Sequence Learning

The general architecture of our sequence to se-
quence models follows the encoder-decoder ap-
proach with soft attention first introduced in (Bah-
danau et al., 2014). As a main difference, in
most of our experiments we parameterize the en-
coder and the decoder as convolutional neural
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networks instead of recurrent networks (Gehring
et al., 2017a,b). Our use of convolution is mo-
tivated by computational and accuracy considera-
tions. However, the objective functions we present
are model agnostic and equally applicable to re-
current and convolutional models. We demon-
strate the applicability of our objective functions
to recurrent models (LSTM) in our comparison to
Wiseman and Rush (2016) in §6.6.

Notation. We denote the source sentence as x, an
output sentence of our model as u, and the refer-
ence or target sentence as t. For some objectives,
we choose a pseudo reference u∗ instead, such as
a model output with the highest BLEU or ROUGE
score among a set of candidate outputs, U , gener-
ated by our model.

Concretely, the encoder processes a source sen-
tence x = (x1, . . . , xm) containing m words and
outputs a sequence of states z = (z1. . . . , zm).
The decoder takes z and generates the output se-
quence u = (u1, . . . , un) left to right, one element
at a time. For each output ui, the decoder com-
putes hidden state hi based on the previous state
hi−1, an embedding gi−1 of the previous target
language word ui−1, as well as a conditional in-
put ci derived from the encoder output z. The at-
tention context ci is computed as a weighted sum
of (z1, . . . , zm) at each time step. The weights
of this sum are referred to as attention scores and
allow the network to focus on the most relevant
parts of the input at each generation step. Atten-
tion scores are computed by comparing each en-
coder state zj to a combination of the previous de-
coder state hi and the last prediction ui; the result
is normalized to be a distribution over input ele-
ments. At each generation step, the model scores
for the V possible next target words ui by trans-
forming the decoder output hi via a linear layer
with weights Wo and bias bo: si = Wohi + bo.
This is turned into a distribution via a softmax:
p(ui|u1, . . . , ui−1,x) = softmax(si).

Our encoder and decoder use gated convolu-
tional neural networks which enable fast and accu-
rate generation (Gehring et al., 2017b). Fast gener-
ation is essential to efficiently train on the model
output as is done in this work as sequence-level
losses require generating at training time. Both en-
coder and decoder networks share a simple block
structure that computes intermediate states based
on a fixed number of input tokens and we stack
several blocks on top of each other. Each block

contains a 1-D convolution that takes as input k
feature vectors and outputs another vector; sub-
sequent layers operate over the k output elements
of the previous layer. The output of the convolu-
tion is then fed into a gated linear unit (Dauphin
et al., 2017). In the decoder network, we rely
on causal convolution which rely only on states
from the previous time steps. The parameters θ of
our model are all the weight matrices in the en-
coder and decoder networks. Further details can
be found in Gehring et al. (2017b).

3 Objective Functions

We compare several objective functions for train-
ing the model architecture described in §2. The
corresponding loss functions are either computed
over individual tokens (§3.1), over entire se-
quences (§3.2) or over a combination of tokens
and sequences (§3.3). An overview of these loss
functions is given in Figure 1.

3.1 Token-Level Objectives
Most prior work on sequence to sequence learning
has focused on optimizing token-level loss func-
tions, i.e., functions for which the loss is computed
additively over individual tokens.

Token Negative Log Likelihood (TokNLL)
Token-level likelihood (TokNLL, Equation 1)
minimizes the negative log likelihood of individ-
ual reference tokens t = (t1, . . . , tn). It is the
most common loss function optimized in related
work and serves as a baseline for our comparison.

Token NLL with Label Smoothing (TokLS)
Likelihood training forces the model to make ex-
treme zero or one predictions to distinguish be-
tween the ground truth and alternatives. This may
result in a model that is too confident in its training
predictions, which may hurt its generalization per-
formance. Label smoothing addresses this by act-
ing as a regularizer that makes the model less con-
fident in its predictions. Specifically, we smooth
the target distribution with a prior distribution f
that is independent of the current input x (Szegedy
et al., 2015; Pereyra et al., 2017; Vaswani et al.,
2017). We use a uniform prior distribution over
all words in the vocabulary, f = 1

V . One may also
use a unigram distribution which has been shown
to work better on some tasks (Pereyra et al., 2017).
Label smoothing is equivalent to adding the KL
divergence between f and the model prediction
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LTokNLL =−
n∑

i=1

log p(ti|t1, . . . , ti−1,x) (1)

LTokLS =−
n∑

i=1

log p(ti|t1, . . . , ti−1,x)−DKL(f‖p(ti|t1, . . . , ti−1,x)) (2)

LSeqNLL =− log p(u∗|x) + log
∑

u∈U(x)
p(u|x) (3)

LRisk =
∑

u∈U(x)
cost(t,u)

p(u|x)∑
u′∈U(x) p(u

′|x)
(4)

LMaxMargin = max [0, cost(t, û)− cost(t,u∗)− s(u∗|x) + s(û|x)] (5)

LMultiMargin =
∑

u∈U(x)
max [0, cost(t,u)− cost(t,u∗)− s(u∗|x) + s(u|x)] (6)

LSoftmaxMargin =− log p(u∗|x) + log
∑

u∈U(x)
exp [s(u|x) + cost(t,u)] (7)

Figure 1: Token and sequence negative log-likelihood (Equations 1 and 3), token-level label smoothing (Equa-
tion 2), expected risk (Equation 4), max-margin (Equation 5), multi-margin (Equation 6), softmax-margin (Equa-
tion 7). We denote the source as x, the reference target as t, the set of candidate outputs as U and the best candidate
(pseudo reference) as u∗. For max-margin we denote the candidate with the highest model score as û.

p(u|x) to the negative log likelihood (TokLS,
Equation 2). In practice, we implement label
smoothing by modifying the ground truth distribu-
tion for word u to be q(u) = 1− ε and q(u′) = ε

V
for u′ 6= u instead of q(u) = 1 and q(u′) = 0
where ε is a smoothing parameter.

3.2 Sequence-Level Objectives

We also consider a class of objective functions
that are computed over entire sequences, i.e.,
sequence-level objectives. Training with these
objectives requires generating and scoring multi-
ple candidate output sequences for each input se-
quence during training, which is computationally
expensive but allows us to directly optimize task-
specific metrics such as BLEU or ROUGE.

Unfortunately, these objectives are also typi-
cally defined over the entire space of possible out-
put sequences, which is intractable to enumerate
or score with our models. Instead, we compute
our sequence losses over a subset of the output
space, U(x), generated by the model. We discuss
approaches for generating this subset in §4.

Sequence Negative Log Likelihood (SeqNLL)
Similar to TokNLL, we can minimize the negative
log likelihood of an entire sequence rather than in-
dividual tokens (SeqNLL, Equation 3). The log-

likelihood of sequence u is the sum of individual
token log probabilities, normalized by the number
of tokens to avoid bias towards shorter sequences:

p(u|x) = exp
1

n

n∑

i=1

log p(ui|u1, . . . , ui−1,x)

As target we choose a pseudo reference2 amongst
the candidates which maximizes either BLEU or
ROUGE with respect to t, the gold reference:

u∗(x) = arg max
u∈U(x)

BLEU(t,u)

As is common practice when computing BLEU at
the sentence-level, we smooth all initial counts to
one (except for unigram counts) so that the geo-
metric mean is not dominated by zero-valued n-
gram match counts (Lin and Och, 2004).

Expected Risk Minimization (Risk)
This objective minimizes the expected value of a
given cost function over the space of candidate se-
quences (Risk, Equation 4). In this work we use
task-specific cost functions designed to maximize
BLEU or ROUGE (Lin, 2004), e.g., cost(t,u) =

2Another option is to use the gold reference target, t, but
in practice this can lead to degenerate solutions in which the
model assigns low probabilities to nearly all outputs. This is
discussed further in §4.
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1−BLEU(t,u), for a given a candidate sequence
u and target t. Different to SeqNLL (§3.2), this
loss may increase the score of several candidates
that have low cost, instead of focusing on a sin-
gle sequence which may only be marginally bet-
ter than any alternatives. Optimizing this loss is
a particularly good strategy if the reference is not
always reachable, although compared to classical
phrase-based models, this is less of an issue with
neural sequence to sequence models that predict
individual words or even sub-word units.

The Risk objective is similar to the REIN-
FORCE objective used in Ranzato et al. (2015),
since both objectives optimize an expected cost or
reward (Williams, 1992). However, there are a few
important differences: (1) whereas REINFORCE
typically approximates the expectation with a sin-
gle sampled sequence, the Risk objective consid-
ers multiple sequences; (2) whereas REINFORCE
relies on a baseline reward3 to determine the sign
of the gradients for the current sequence, for the
Risk objective we instead estimate the expected
cost over a set of candidate output sequences (see
§4); and (3) while the baseline reward is different
for every word in REINFORCE, the expected cost
is the same for every word in risk minimization
since it is computed on the sequence level based
on the actual cost.

Max-Margin
MaxMargin (Equation 5) is a classical margin
loss for structured prediction (Taskar et al., 2003;
Tsochantaridis et al., 2005) which enforces a mar-
gin between the model scores of the highest scor-
ing candidate sequence û and a reference se-
quence. We replace the human reference t with a
pseudo-reference u∗ since this setting performed
slightly better in early experiments; u∗ is the can-
didate sequence with the highest BLEU score. The
size of the margin varies between samples and is
given by the difference between the cost of u∗ and
the cost of û. In practice, we scale the margin
by a hyper-parameter β determined on the valida-
tion set: β(cost(t, û)− cost(t,u∗)). For this loss
we use the unnormalized scores computed by the
model before the final softmax:

s(u|x) =
1

n

n∑

i=1

s(ui|u1, . . . , ui−1,x)

3Ranzato et al. (2015) estimate the baseline reward
for REINFORCE with a separate linear regressor over the
model’s current hidden state.

Multi-Margin
MaxMargin only updates two elements in
the candidate set. We therefore consider
MultiMargin (Equation 6) which enforces a
margin between every candidate sequence u and a
reference sequence (Herbrich et al., 1999), hence
the name Multi-Margin. Similar to MaxMargin,
we replace the reference t with the pseudo-
reference u∗.

Softmax-Margin
Finally, SoftmaxMargin (Equation 7) is an-
other classic loss that has been proposed by Gim-
pel and Smith (2010) as another way to optimize
task-specific costs. The loss augments the scores
inside the exp of SeqNLL (Equation 3) by a cost.
The intuition is that we want to penalize high cost
outputs proportional to their cost.

3.3 Combined Objectives
We also experiment with two variants of combin-
ing sequence-level objectives (§3.2) with token-
level objectives (§3.1). First, we consider a
weighted combination (Weighted) of both a
sequence-level and token-level objective (Wu
et al., 2016), e.g., for TokLS and Risk we have:

LWeighted = αLTokLS + (1− α)LRisk (8)

where α is a scaling constant that is tuned on a
held-out validation set.

Second, we consider a constrained combina-
tion (Constrained), where for any given in-
put we use either the token-level or sequence-level
loss, but not both. The motivation is to main-
tain good token-level accuracy while optimizing
on the sequence-level. In particular, a sample is
processed with the sequence loss if the token loss
under the current model is at least as good as the
token loss of a baseline model LbTokLS. Otherwise,
we update according to the token loss:

LConstrained =

{
LRisk LTokLS ≤ LbTokLS
LTokLS otherwise

(9)
In this work we use a fixed baseline model that was
trained with a token-level loss to convergence.

4 Candidate Generation Strategies

The sequence-level objectives we consider (§3.2)
are defined over the entire space of possible output
sequences, which is intractable to enumerate or
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score with our models. We therefore use a subset
of K candidate sequences U(x) = {u1, . . . , uK},
which we generate with our models.

We consider two search strategies for generat-
ing the set of candidate sequences. The first is
beam search, a greedy breadth-first search that
maintains a “beam” of the top-K scoring candi-
dates at each generation step. Beam search is the
de facto decoding strategy for achieving state-of-
the-art results in machine translation. The second
strategy is sampling (Chatterjee and Cancedda,
2010), which produces K independent output se-
quences by sampling from the model’s conditional
distribution. Whereas beam search focuses on
high probability candidates, sampling introduces
more diverse candidates (see comparison in §6.5).

We also consider both online and offline candi-
date generation settings in §6.4. In the online set-
ting, we regenerate the candidate set every time we
encounter an input sentence x during training. In
the offline setting, candidates are generated before
training and are never regenerated. Offline gen-
eration is also embarrassingly parallel because all
samples use the same model. The disadvantage is
that the candidates become stale. Our model may
perfectly be able to discriminate between them af-
ter only a single update, hindering the ability of
the loss to correct eventual search errors.4

Finally, while some past work has added the ref-
erence target to the candidate set, i.e., U ′(x) =
U(x) ∪ {t}, we find this can destabilize train-
ing since the model learns to assign low proba-
bilities nearly everywhere, ruining the candidates
generated by the model, while still assigning a
slightly higher score to the reference (cf. Shen
et al. (2016)). Accordingly we do not add the ref-
erence translation to our candidate sets.

5 Experimental Setup

5.1 Translation

We experiment on the IWSLT’14 German to En-
glish (Cettolo et al., 2014) task using a similar
setup as Ranzato et al. (2015), which allows us to
compare to other recent studies that also adopted
this setup, e.g., Wiseman and Rush (2016).5 The
training data consists of 160K sentence pairs and
the validation set comprises 7K sentences ran-

4We can mitigate this issue by regenerating infrequently,
i.e., once every b batches but we leave this to future work.

5Different to Ranzato et al. (2015) we train on sentences
of up to 175 rather than 50 tokens.

domly sampled and held-out from the train data.
We test on the concatenation of tst2010, tst2011,
tst2012, tst2013 and dev2010 which is of similar
size to the validation set. All data is lowercased
and tokenized with a byte-pair encoding (BPE) of
14,000 types (Sennrich et al., 2016) and we evalu-
ate with case-insensitive BLEU.

We also experiment on the much larger
WMT’14 English-French task. We remove sen-
tences longer than 175 words as well as pairs with
a source/target length ratio exceeding 1.5 resulting
in 35.5M sentence-pairs for training. The source
and target vocabulary is based on 40K BPE types.
Results are reported on both newstest2014 and a
validation set held-out from the training data com-
prising 26,658 sentence pairs.

We modify the fairseq-py toolkit to implement
the objectives described in §3.6 Our translation
models have four convolutional encoder layers and
three convolutional decoder layers with a kernel
width of 3 and 256 dimensional hidden states
and word embeddings. We optimize these mod-
els using Nesterov’s accelerated gradient method
(Sutskever et al., 2013) with a learning rate of
0.25 and momentum of 0.99. Gradient vectors are
renormalized to norm 0.1 (Pascanu et al., 2013).

We train our baseline token-level models for
200 epochs and then anneal the learning by shrink-
ing it by a factor of 10 after each subsequent
epoch until the learning rate falls below 10−4.
All sequence-level models are initialized with pa-
rameters of a token-level model before anneal-
ing. We then train sequence-level models for an-
other 10 to 20 epochs depending on the objective.
Our batches contain 8K tokens and we normal-
ize gradients by the number of non-padding to-
kens per mini-batch. We use weight normalization
for all layers except for lookup tables (Salimans
and Kingma, 2016). Besides dropout on the em-
beddings and the decoder output, we also apply
dropout to the input of the convolutional blocks at
a rate of 0.3 (Srivastava et al., 2014). We tuned
the various parameters above and report accuracy
on the test set by choosing the best configuration
based on the validation set.

We length normalize all scores and probabili-
ties in the sequence-level losses by dividing by the
number of tokens in the sequence so that scores
are comparable between different lengths. Ad-

6https://github.com/facebookresearch/
fairseq-py.
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ditionally, when generating candidate output se-
quences during training we limit the output se-
quence length to be less than 200 tokens for ef-
ficiency. We generally use 16 candidate sequences
per training example, except for the ablations
where we use 5 for faster experimental turnaround.

5.2 Abstractive Summarization

For summarization we use the Gigaword corpus as
training data (Graff et al., 2003) and pre-process it
identically to Rush et al. (2015) resulting in 3.8M
training and 190K validation examples. We evalu-
ate on a Gigaword test set of 2,000 pairs identical
to the one used by Rush et al. (2015) and report
F1 ROUGE similar to prior work. Our results are
in terms of three variants of ROUGE (Lin, 2004),
namely, ROUGE-1 (RG-1, unigrams), ROUGE-2
(RG-2, bigrams), and ROUGE-L (RG-L, longest-
common substring). Similar to Ayana et al. (2016)
we use a source and target vocabulary of 30k
words. Our models for this task have 12 layers
in the encoder and decoder each with 256 hidden
units and kernel width 3. We train on batches of
8,000 tokens with a learning rate of 0.25 for 20
epochs and then anneal as in §5.1.

6 Results

6.1 Comparison of Sequence Level Losses

First, we compare all objectives based on a
weighted combination with token-level label
smoothing (Equation 8). We also show the like-
lihood baseline (MLE) of Wiseman and Rush
(2016), their beam search optimization method
(BSO), the actor critic result of Bahdanau et al.
(2016) as well as the best reported result on this
dataset to date by Huang et al. (2017). We show
a like-for-like comparison to Wiseman and Rush
(2016) with a similar baseline model below (§6.6).

Table 1 shows that all sequence-level losses out-
perform token-level losses. Our baseline token-
level results are several points above other figures
in the literature and we further improve these re-
sults by up to 0.61 BLEU with Risk training.

6.2 Combination with Token-Level Loss

Next, we compare various strategies to com-
bine sequence-level and token-level objectives (cf.
§3.3). For these experiments we use 5 candi-
date sequences per training example for faster ex-
perimental turnaround. We consider Risk as

test std

MLE (W & R, 2016) [T] 24.03
BSO (W & R, 2016) [S] 26.36
Actor-critic (B, 2016) [S] 28.53
Huang et al. (2017) [T] 28.96
Huang et al. (2017) (+LM) [T] 29.16

TokNLL [T] 31.78 0.07
TokLS [T] 32.23 0.10

SeqNLL [S] 32.68 0.09
Risk [S] 32.84 0.08
MaxMargin [S] 32.55 0.09
MultiMargin [S] 32.59 0.07
SoftmaxMargin [S] 32.71 0.07

Table 1: Test accuracy in terms of BLEU on IWSLT’14
German-English translation with various loss functions
cf. Figure 1. W & R (2016) refers to Wiseman and
Rush (2016), B (2016) to Bahdanau et al. (2016), [S]
indicates sequence level-training and [T] token-level
training. We report averages and standard deviations
over five runs with different random initialization.

valid test

TokLS 33.11 32.21
Risk only 33.55 32.45

Weighted 33.91 32.85
Constrained 33.77 32.79
Random 33.70 32.61

Table 2: Validation and test BLEU for loss combina-
tion strategies. We either use token-level TokLS and
sequence-level Riskindividually or combine them as
a weighted combination, a constrained combination, a
random choice for each sample, cf. §3.3.

sequence-level loss and label smoothing as token-
level loss. Table 2 shows that combined objectives
perform better than pure Risk. The weighted
combination (Equation 8) with α = 0.3 per-
forms best, outperforming constrained combina-
tion (Equation 9). We also compare to randomly
choosing between token-level and sequence-level
updates and find it underperforms the more princi-
pled constrained strategy. In the remaining exper-
iments we use the weighted strategy.

6.3 Effect of initialization
So far we initialized sequence-level models with
parameters from a token-level model trained with
label smoothing. Table 3 shows that initializing
weighted Risk with token-level label smoothing
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valid test

TokNLL 32.96 31.74
Risk init with TokNLL 33.27 32.07
∆ +0.31 +0.33

TokLS 33.11 32.21
Risk init with TokLS 33.91 32.85
∆ +0.8 +0.64

Table 3: Effect of initializing sequence-level training
(Risk) with parameters from token-level likelihood
(TokNLL) or label smoothing (TokLS).

valid test

Online generation 33.91 32.85
Offline generation 33.52 32.44

Table 4: Generating candidates online or offline.

achieves 0.7-0.8 better BLEU compared to initial-
izing with parameters from token-level likelihood.
The improvement of initializing with TokNLL is
only 0.3 BLEU with respect to the TokNLL base-
line, whereas, the improvement from initializing
with TokLS is 0.6-0.8 BLEU. We believe that the
regularization provided by label smoothing leads
to models with less sharp distributions that are a
better starting point for sequence-level training.

6.4 Online vs. Offline Candidate Generation

Next, we consider the question if refreshing the
candidate subset at every training step (online)
results in better accuracy compared to generat-
ing candidates before training and keeping the set
static throughout training (offline). Table 4 shows
that offline generation gives lower accuracy. How-
ever the online setting is much slower, since re-
generating the candidate set requires incremental
(left to right) inference with our model which is
very slow compared to efficient forward/backward
over large batches of pre-generated hypothesis. In
our setting, offline generation has 26 times higher
throughput than the online generation setting, de-
spite the high inference speed of fairseq (Gehring
et al., 2017b).

6.5 Beam Search vs. Sampling and
Candidate Set Size

So far we generated candidates with beam search,
however, we may also sample to obtain a more di-
verse set of candidates (Shen et al., 2016). Fig-

 33.1

 33.2

 33.3

 33.4

 33.5

 33.6

 33.7

 33.8

 33.9

 34

2 4 8 16 32 64 100

BL
EU

Candidate set size

beam
sample
TokLS

Figure 2: Candidate set generation with beam search
and sampling for various candidate set sizes during
sequence-level training in terms of validation accuracy.
Token-level label smoothing (TokLS) is the baseline.

BLEU ∆

MLE 24.03
+ BSO 26.36 +2.33

MLE Reimplementation 23.93
+ Risk 26.68 +2.75

Table 5: Comparison to Beam Search Optimization.
We report the best likelihood (MLE) and BSO results
from Wiseman and Rush (2016), as well as results from
our MLE reimplementation and training with Risk.
Results based on unnormalized beam search (k = 5).

ure 2 compares beam search and sampling for vari-
ous candidate set sizes on the validation set. Beam
search performs better for all candidate set sizes
considered. In other experiments, we rely on a
candidate set size of 16 which strikes a good bal-
ance between efficiency and accuracy.

6.6 Comparison to Beam-Search
Optimization

Next, we compare classical sequence-level train-
ing to the recently proposed Beam Search Opti-
mization (Wiseman and Rush, 2016). To enable a
fair comparison, we re-implement their baseline,
a single layer LSTM encoder/decoder model with
256-dimensional hidden layers and word embed-
dings as well as attention and input feeding (Lu-
ong et al., 2015). This baseline is trained with
Adagrad (Duchi et al., 2011) using a learning rate
of 0.05 for five epochs, with batches of 64 se-
quences. For sequence-level training we initial-
ize weights with the baseline parameters and train
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RG-1 RG-2 RG-L

ABS+ [T] 29.78 11.89 26.97
RNN MLE [T] 32.67 15.23 30.56
RNN MRT [S] 36.54 16.59 33.44
WFE [T] 36.30 17.31 33.88
SEASS [T] 36.15 17.54 33.63
DRGD [T] 36.27 17.57 33.62

TokLS 36.53 18.10 33.93
+ Risk RG-1 36.96 17.61 34.18
+ Risk RG-2 36.65 18.32 34.07
+ Risk RG-L 36.70 17.88 34.29

Table 6: Accuracy on Gigaword abstractive sum-
marization in terms of F-measure Rouge-1 (RG-1),
Rouge-2 (RG-2), and Rouge-L (RG-L) for token-level
label smoothing, and Risk optimization of all three
ROUGE F1 metrics. [T] indicates a token-level ob-
jective and [S] indicates a sequence level objectives.
ABS+ refers to Rush et al. (2015), RNN MLE/MRT
(Ayana et al., 2016), WFE (Suzuki and Nagata, 2017),
SEASS (Zhou et al., 2017), DRGD (Li et al., 2017).

with Adam (Kingma and Ba, 2014) for another 10
epochs with learning rate 0.00003 and 16 candi-
date sequences per training example. We conduct
experiments with Risk since it performed best in
trial experiments.

Different from other sequence-level experi-
ments (§5), we rescale the BLEU scores in each
candidate set by the difference between the maxi-
mum and minimum scores of each sentence. This
avoids short sentences dominating the sequence
updates, since candidate sets for short sentences
have a wider range of BLEU scores compared to
longer sentences; a similar rescaling was used by
Bahdanau et al. (2016).

Table 5 shows the results from Wiseman and
Rush (2016) for their token-level likelihood base-
line (MLE), best beam search optimization results
(BSO), as well as our reimplemented baseline.
Risk significantly improves BLEU compared to
our baseline at +2.75 BLEU, which is slightly bet-
ter than the +2.33 BLEU improvement reported
for Beam Search Optimization (cf. Wiseman and
Rush (2016)). This shows that classical objectives
for structured prediction are still very competitive.

6.7 WMT’14 English-French results

Next, we experiment on the much larger WMT’14
English-French task using the same model setup as
Gehring et al. (2017b). We TokLSfor 15 epochs

valid test

TokLS 34.06 40.58
+ Risk 34.20 40.95

TokLS + selfatt 34.24 41.02
+ in domain 34.51 41.26
+ Risk 34.30 41.22
+ Risk in domain 34.50 41.47

Table 7: Test and valid BLEU on WMT’14 English-
French with and without decoder self-attention.

and then switch to sequence-level training for an-
other epoch. Table 7 shows that sequence-level
training can improve an already very strong model
by another +0.37 BLEU. Next, we improve the
baseline by adding self-attention (Paulus et al.,
2017; Vaswani et al., 2017) to the decoder network
(TokLS + selfatt) which results in a smaller gain
of +0.2 BLEU by Risk. If we train Risk only on
the news-commentary portion of the training data,
then we achieve state of the art accuracy on this
dataset of 41.5 BLEU (Xia et al., 2017).

6.8 Abstractive Summarization
Our final experiment evaluates sequence-level
training on Gigaword headline summarization.
There has been much prior art on this dataset orig-
inally introduced by Rush et al. (2015) who ex-
periment with a feed-forward network (ABS+).
Ayana et al. (2016) report a likelihood baseline
(RNN MLE) and also experiment with risk train-
ing (RNN MRT). Different to their setup we did
not find a softmax temperature to be beneficial,
and we use beam search instead of sampling to
obtain the candidate set (cf. §6.5). Suzuki and Na-
gata (2017) improve over an MLE RNN baseline
by limiting generation of repeated phrases. Zhou
et al. (2017) also consider an MLE RNN baseline
and add an additional gating mechanism for the
encoder. Li et al. (2017) equip the decoder of a
similar network with additional latent variables to
accommodate the uncertainty of this task.

Table 6 shows that our baseline (TokLS) out-
performs all prior approaches in terms of ROUGE-
2 and ROUGE-L and it is on par to the best
previous result for ROUGE-1. We optimize
all three ROUGE metrics separately and find
that Risk can further improve our strong base-
line. We also compared Risk only training to
Weighted on this dataset (cf. §6.2) but accuracy
was generally lower on the validation set: RG-1
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(36.59 Risk only vs. 36.67 Weighted), RG-2
(17.34 vs. 18.05), and RG-L (33.66 vs. 33.98).

7 Conclusion

We present a comprehensive comparison of classi-
cal losses for structured prediction and apply them
to a strong neural sequence to sequence model. We
found that combining sequence-level and token-
level losses is necessary to perform best, and so
is training on candidates decoded with the current
model.

We show that sequence-level training improves
state-of-the-art baselines both for IWSLT’14
German-English translation and Gigaword ab-
stractive sentence summarization. Structured pre-
diction losses are very competitive to recent work
on reinforcement or beam optimization. Classical
expected risk can slightly outperform beam search
optimization (Wiseman and Rush, 2016) in a like-
for-like setup. Future work may investigate better
use of already generated candidates since invok-
ing generation for each batch slows down training
by a large factor, e.g., mixing with fresh and older
candidates inspired by MERT (Och, 2003).
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