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Abstract

Lexical simplification involves identifying
complex words or phrases that need to be sim-
plified, and recommending simpler meaning-
preserving substitutes that can be more eas-
ily understood. We propose a complex word
identification (CWI) model that exploits both
lexical and contextual features, and a simpli-
fication mechanism which relies on a word-
embedding lexical substitution model to re-
place the detected complex words with sim-
pler paraphrases. We compare our CWI and
lexical simplification models to several base-
lines, and evaluate the performance of our sim-
plification system against human judgments.
The results show that our models are able to
detect complex words with higher accuracy
than other commonly used methods, and pro-
pose good simplification substitutes in context.
They also highlight the limited contribution of
context features for CWI, which nonetheless
improve simplification compared to context-
unaware models.

1 Introduction

Automated text simplification is the process that
involves transforming a complex text into one with
the same meaning, but can be more easily read
and understood by a broader audience (Saggion,
2017). This process includes several subtasks such
as complex word and sentence identification, lex-
ical simplification, syntactic simplification, and
sentence splitting. In this paper, we focus on lex-
ical simplification, the task of replacing difficult
words in a text with words that are easier to under-
stand.

Lexical simplification involves two main pro-
cesses: identifying complex words within a text,
and suggesting simpler paraphrases for these
words that preserve their meaning in this context.
To identify complex words, we train a model on
data manually annotated for complexity. Unlike
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The museum's director said there has never been
such an exhibition of Dutch portraits.

gallery pictures
show sketches
images

Figure 1: An example sentence with complex words
identified by our classifier, and their substitutes pro-
posed by the embedding-based substitution model.

previous work, our classifier takes into account
both lexical and context features. We extract can-
didate substitutes for the identified complex words
from SimplePPDB (Pavlick and Callison-Burch,
2016), a database of 4.5 million English simpli-
fication rules linking English complex words to
simpler paraphrases. We select the substitutes that
best fit each context using a word embedding-
based lexical substitution model (Melamud et al.,
2015). An example sentence, along with the com-
plex words identified by our model and the pro-
posed replacements, is shown in Figure 1. We
show that our complex word identification classi-
fier and substitution model improve over several
baselines which exploit other types of information
and do not account for context. Our approach pro-
poses highly accurate substitutes that are simpler
than the target words and preserve the meaning of
the corresponding sentences.

2 Related Work

Prior approaches to text simplification have ad-
dressed the task as a monolingual translation prob-
lem (Zhu et al., 2010; Coster and Kauchak, 2011;
Wubben et al., 2012). The proposed models
are trained on aligned sentences extracted from
Wikipedia and Simple Wikipedia, a corpus that
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contains instances of transformation operations
needed for simplification such as rewording, re-
ordering, insertion and deletion. Zhu et al. (2010)
propose to use a tree-based translation model
which covers splitting, dropping, reordering and
substitution. Coster and Kauchak (2011) employ
a phrase-based Machine Translation system ex-
tended to support phrase deletion, and Wubben
et al. (2012) augment a phrase-based system with
a re-ranking heuristic.

Woodsend and Lapata (2011) view simplifica-
tion as a monolingual text generation task. They
propose a model based on a quasi-synchronous
grammar, a formalism able to capture structural
mismatches and complex rewrite operations. The
grammar is also induced from a parallel Wikipedia
corpus, and an integer linear programming model
selects the most appropriate simplification from
the space of possible rewrites generated by the
grammar. The hybrid model of Angrosh et al.
(2014) combines a synchronous grammar ex-
tracted from the same parallel corpus with a set
of hand crafted syntactic simplification rules. In
recent work, Zhang and Lapata (2017) propose
a reinforcement learning-based text simplification
model which jointly models simplicity, grammat-
icality, and semantic fidelity to the input. In
contrast to these methods, Narayan and Gardent
(2016)’s sentence simplification approach does not
need a parallel corpus for training, but rather uses
a deep semantic representation as input for simpli-
fication.

The above-mentioned systems support the full
range of transformations involved in text simpli-
fication. Other works address specific subtasks,
such as syntactic or lexical simplification, which
involve identifying grammatical or lexical com-
plexities in a text and rewriting these using sim-
pler words and structures. Syntactic simplifica-
tion might involve operations such as sentence
splitting, rewriting of sentences including passive
voice and anaphora resolution (Chandrasekar and
Srinivas, 1997; Klerke and Sggaard, 2()13).1 Lex-
ical simplification involves complex word identi-
fication, substitute generation, context-based sub-
stitute selection and simplicity ranking. To iden-
tify the words to be simplified, Shardlow (2013a)
proposes to use a Support Vector Machine (SVM)
that exploits several lexical features, such as fre-

"For a detailed overview of syntactic simplification
works, see (Shardlow, 2014).
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quency, character and syllable length. Our ap-
proach also uses a SVM classifier for identifying
complex words, but complements this set of fea-
tures with context-related features that have not
been exploited in previous work.”

In the lexical simplification subtask, existing
methods differ in their decision to include a word
sense disambiguation (WSD) step for substitute
selection and in the ranking method used. Rank-
ing is often addressed in terms of word frequency
in a large corpus since it has been shown that fre-
quent words increase a text’s readability (Devlin
and Tait, 1998; Kauchak, 2013). Models that in-
clude a semantic processing step for substitute se-
lection aim to ensure that the selected substitutes
express the correct meaning of words in specific
contexts. WSD is often carried out by selecting the
correct synset (i.e. set of synonyms describing a
sense) for a target word in WordNet (Miller, 1995)
and retrieving the synonyms describing that sense.
Thomas and Anderson (2012) use WordNet’s tree
structure (hypernymy relations) to reduce the size
of the vocabulary in a document. Biran et al.
(2011) perform disambiguation in an unsupervised
manner. They learn simplification rules from com-
parable corpora and apply them to new sentences
using vector-based context similarity measures to
select words that are the most likely candidates for
substitution in a given context. This process does
not involve an explicit WSD step, and simplifica-
tion is addressed as a context-aware lexical sub-
stitution task. The SemEval 2012 English Lexical
Simplification task (Specia et al., 2012) also ad-
dresses simplification as lexical substitution (Mc-
Carthy and Navigli, 2007), allowing systems to
use external sense inventories or to directly per-
form in-context substitution.

In our work, we opt for an approach which
addresses lexical substitution in a direct way
and does not include an explicit disambiguation
step. Lexical substitution systems perform substi-
tute ranking in context using vector-space models
(Thater et al., 2011; Kremer et al., 2014; Mela-
mud et al., 2015). Recently, Apidianaki (2016)
showed that a syntax-based substitution model can
successfully filter the paraphrases available in the

Datasets for system training and evaluation have been
made available in the SemEval 2016 Complex Word Identi-
fication task (Paetzold and Specia, 2016) but present several
issues that make system comparison problematic. We explain
the drawbacks of the proposed datasets that led to their exclu-
sion from this work in Section 5.



Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013) to select the ones that are adequate in spe-
cific contexts. In the same line, Cocos et al. (2017)
used a word embedding-based substitution model
(Melamud et al., 2015) for ranking PPDB para-
phrases in context. We extend this work and adapt
the Melamud et al. (2015) model to the simplifi-
cation setting by using candidate paraphrases ex-
tracted from the Simple PPDB resource (Pavlick
and Callison-Burch, 2016), a subset of the PPDB
that contains complex words and phrases, and
their simpler counterparts that can be used for in-
context simplification.

3 Identifying Complex Words
3.1 Data

The first step for lexical simplification is to iden-
tify the complex words that should be simplified.
The bulk of prior work on text simplification has
addressed the complex word identification prob-
lem by training machine learning algorithms on
the parallel Wikipedia Simplification (PWKP) cor-
pus (Zhu et al., 2010). The PWKP corpus, how-
ever, has several shortcomings, as described in
Xu et al. (2015). Namely, it was determined that
50% of the parallel sentences in PWKP were ei-
ther not aligned correctly, or the simple sentence
was not in fact simpler than the complex sentence.
Xu et al. (2015) created a more reliably anno-
tated dataset, which uses a corpus consisting of
1,130 articles, manually rewritten by experts at
Newsela® at four different reading levels. Xu et al.
(2015) also aligned sentences from these texts, ex-
tracting 141,582 complex/simple sentence pairs.
We use the Newsela corpus to create a gold-
standard dataset of complex and simple words
for training and testing our models. We do this
by hiring crowdsourced annotators through Ama-
zon Mechanical Turk, and asking them to iden-
tify complex words in the context of given texts.
We randomly select 200 texts from the Newsela
corpus, and take the first 200 tokens from each
to be labeled by nine annotators. We preprocess
the texts using the Stanford CoreNLP suite (Man-
ning et al., 2014) for tokenization, lemmatization,
part-of-speech (POS) tagging, and named entity
recognition. The annotators are instructed to label
at least 10 complex words they deem worth sim-

3Newsela is a company that provides reading materials
for students in elementary through high school. The Newsela
corpus can be requested at https://newsela.com/data/
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Annotators| Prevalence| Example Words
0 0.617 heard, sat, feet, shops, town
1 0.118 protests, pump, trial
2 0.062 sentenced, fraction, primary
3 0.047 measures, involved, elite
4 0.035 fore, pact, collapsed
5 0.031 slew, enrolled, widespread
6 0.029 edible, seize, dwindled
7 0.023 perilous, activist, remorse
8 0.023 vintners, adherents, amassed
9 0.015 abdicate, detained, liaison

Table 1: Examples of words identified as difficult to
understand within a text by n annotators, where 0 <
n < 9. Column 2 (Prevalence) shows the proportion of
the total number of words identified as complex by n
annotators.

plifying for young children, people with disabil-
ities, and second language learners. After filter-
ing out stop words (articles, conjunctions, prepo-
sitions, pronouns) and named entities, we are left
with 17,318 labeled tokens. Tokens identified by
at least three annotators are considered as com-
plex, and tokens labeled by less than three or no
annotators as simple. This increases the likelihood
of complex segments being actually complex; as
we can see from Table 1, words identified by only
one or two annotators tend to be somewhat noisy.

3.2 Methods

Following Shardlow (2013a), we use a Support
Vector Machine classifier. We also conduct exper-
iments with a Random Forest Classifier. Shard-
low (2013a) identified several features that help to
determine whether or not a word is complex, in-
cluding word length, number of syllables, word
frequency, number of unique WordNet synsets,
and number of WordNet synonyms. Shardlow
used word frequencies extracted from SUBTLEX,
a corpus of 51 million words extracted from En-
glish subtitles.* We instead use n-gram frequen-
cies from the Google WeblT corpus Brants and
Franz (2006) (henceforth Google n-gram).

Our motivation for using Google n-gram fre-
quencies is based on the hypothesis that word fre-
quency is a strong indicator of word difficulty.
More frequent words are more likely to be easy,
and less frequent words are more likely to be un-
known and therefore hard to understand. The size
of the Google n-gram corpus, consisting of a vari-
ety of texts across many genres and years, makes

*SUBTLEX can be found at:
https://www.ugent.be/pp/experimentele-

psychologie/en/research/documents/subtlexus



it a good candidate for computing more accurate
word frequencies.

In addition to word frequencies and word spe-
cific features, we include several context-specific
features: average length of words in the sentence,
average number of syllables, average word fre-
quency, average number of WordNet synsets, aver-
age number of WordNet synonyms, and sentence
length. The intuition for including context-specific
features is that if a target word is surrounded by
simple words, a reader is likely better able to un-
derstand the meaning of the target word, which
would thus not need it simplified.

4 Lexical Simplification

4.1 Data

For our model and baselines, we consider candi-
date substitutions from three datasets. The first
is WordNet (Miller, 1995), a lexical network en-
coding manually identified semantic relationships
between words, such as synonymy, hypernymy
and hyponymy. This resource has been widely
used in substitution tasks (McCarthy and Navigli,
2007). We also use paraphrases extracted from the
Paraphrase Database (PPDB) and the Simple Para-
phrase Database (SimplePPDB). PPDB is a collec-
tion of more than 100 million English paraphrase
pairs (Ganitkevitch et al., 2013). These pairs
were extracted using a bilingual pivoting tech-
nique (Bannard and Callison-Burch, 2005), which
assumes that two English phrases that translate
to the same foreign phrase have the same mean-
ing. PPDB was updated by Pavlick et al. (2015)
to assign labels stating the precise entailment re-
lationship between paraphrase pairs (e.g. for-
ward/backward entailment), and new confidence
scores (PPDB 2.0 scores) reflecting the strength
of paraphrase relations.

SimplePPDB is a subset of PPDB which con-
tains 4.5 million simplification rules, linking a
complex word or phrase with a simpler para-
phrase with the same meaning. Simplification
rules come with both a PPDB 2.0 score and a sim-
plification confidence score (Pavlick and Callison-
Burch, 2016), which represent both the strength of
the paraphrase relation and how well the replace-
ment word simplifies the target word. These rules
were created by sampling 1,000 PPDB phrases,
using crowdsourcing to find correct simplifica-
tions for each phrase, and building a model to
identify rules that simplify the input phrase.
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To evaluate the performance of our lexical sim-
plification model, we create a test set from the
Newsela corpus. We extract lexical simplifica-
tion rules from these parallel sentences using two
methods. First, we find sentence pairs with only
one lexical replacement and use these word pairs
as simplification instances. Next, we use a mono-
lingual word alignment software (Sultan et al.,
2014) to extract all non-identical aligned word
pairs. We only consider word pairs correspond-
ing to different lemmas (i.e. words with different
base forms). From this process, we collect a test
set of 14,436 word pairs.

4.2 In-context Ranking and Substitution

To accurately replace words in texts with simpler
paraphrases and ensure the generated sentences
preserve the meaning of the original, we need to
take into account the surrounding context. To do
this, we adapt the word embedding-based lexical
substitution model of Melamud et al. (2015) to
the simplification task. Vector-space models have
been shown to effectively filter PPDB paraphrases
in context while preserving the meaning of the
original sentences (Apidianaki, 2016; Cocos et al.,
2017).

The Melamud et al. (2015) model (hereafter
AddCos) quantifies the fit of substitute word s for
target word ¢ in context C' by measuring the se-
mantic similarity of the substitute to the target, and
the similarity of the substitute to the context:

AddCOS(S,L C) _ COS(S’t)+|zc:fo10 cos(s,w) 1

The vectors s and ¢ are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b,a). The context C is the set of context em-
beddings generated by skip-gram for words ap-
pearing within a fixed-width window of the tar-
get t in a sentence. We use a context window of
1; while this seems counter-intuitive, this is the
best-performing window found by (Cocos et al.,
2017), and we also confirm this result remains true
in Section 5.2. We use the AddCos implementa-
tion of Cocos et al. (2017)°, and 300-dimensional
word and context embeddings trained over the
4 billion words in the AGiga corpus (Napoles

SAvailable  at
lexsub_addcos

https://github.com/acocos/



et al., 2012) using the gensim word2vec pack-
age (Mikolov et al., 2013b,a; Rehdfek and Sojka,
2010). ©

In our experiments, candidate substitutes for a
target word are its paraphrases in the PPDB and
SimplePPDB resources. The model needs to select
among these candidates the ones that best carry the
meaning of target words in specific contexts. We
only consider content words (nouns, verbs, adjec-
tives and adverbs) as simplification targets.

For a “target word-substitute” pair, we include
in the model the following features which encode
the strength of the semantic relationship between
them:

e PPDB 1.0 and 2.0 scores, which represent the
overall quality of paraphrases.

e Distributional similarity scores calculated by
Ganitkevitch et al. (2013) on the Google n-
grams and the AGiga corpus.

e Independence probability, that is the prob-
ability that there is no semantic entailment
relationship between the paraphrase pair, as
calculated by Pavlick et al. (2015).

e SimplePPDB score (Pavlick and Callison-
Burch, 2016) — when considering SimpleP-
PDB paraphrases — which reflects the confi-
dence in the simplification rule.

5 Evaluation

5.1 Complex Word Identification

Datasets for training and evaluating Complex
Word Identification (CWI) systems were created
and released in the SemEval 2016 competition
(Paetzold and Specia, 2016) but we decided not
to use them for several reasons. Although this was
a CWI task, surprisingly only 4.7% of the words
in the test data were identified as complex, and
all the other words were viewed as simple. As
a consequence, none of the systems that partici-
pated in the SemEval task managed to beat the ac-
curacy of the “All Simple” baseline which labeled
all words in the test set as simple (0.953). As noted
by Paetzold and Specia (2016), the inverse prob-
lem is present in the corpus developed by Shard-
low (2013b), where the “All Complex” baseline

The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter 1le~*, 10 neg-
ative samples per target word, and 5 training epochs.

Model Precision | Recall | F-Score
All-Complex 0.500 1.000 0.667
Token Length 0.757 0.900 0.822

n-gram Frequency 0.632 0.862 0.729
SVM-word 0.880 0.834 0.857
SVM-Context 0.871 0.831 0.850
RF-word 0.805 0.840 0.822
REF-Context 0.824 0.851 0.837

Table 2: Cross-validation performance for four differ-
ent complex words identification classifiers. Compar-
ison to three baselines. Scores are calculated using
unique words in our training data.

achieved higher accuracy, recall and F-scores than
all other tested systems, suggesting that marking
all words in a sentence as complex is the most ef-
fective approach for CWI.

Another problem in the SemEval-2016 dataset
is that although the number of complex words is
much higher in the training data (32%), 18% of
all words were annotated as complex by only one
out of 20 annotators and considered as complex.
In addition to the highly different number of com-
plex words in the training and test data, the two
datasets are also imbalanced in terms of size, with
only 2,237 training instances and 88,211 testing
instances. These factors make this dataset a du-
bious choice for system evaluation. Comparison
to the participating systems is also extremely dif-
ficult, since the best systems are ones that label
most of the data as simple. For these reasons, we
decided to create and use our crowdsourced data
for training and evaluation.’

We compare the performance of an SVM clas-
sifier with only word features (SVM-word) to
one that exploits both word and context features
(SVM-context). We use 5-fold cross validation
on unique words from the training data collected
through Mechanical Turk (see Section 4.1). We
also compare a Random Forest classifier with only
word features (RF-word) to one with word and
context features (RF-context). We consider three
baselines:

e labeling all words as
Complex).

complex (All-

o thresholding for word length (Token Length),
considering longer words as complex; the
length threshold with the best performance
was 7.

"We have released the new datasets at

https://rekriz11.github.io



Words with >1 paraphrase All words
Model Coverage | Top1 | Top 5 | Oracle Top1 | Top5 | Oracle
WordNet frequency 0.911 0.141 | 0.267 0.291 0.129 | 0.244 | 0.265
SimplePPDB Score 0.935 0.180 | 0.403 0.669 0.168 | 0.377 | 0.626
AddCos-PPDB 0.975 0.196 | 0.444 0.962 0.191 | 0.433 | 0.938
AddCos-SimplePPDB 0.819 0.353 | 0.601 0.643 0.289 | 0.492 | 0.527

Table 3: Performance of the lexical simplification models on the Newsela aligned test set.

Columns 3-5 show

the performance of each model on only words with at least one paraphrase in the dataset. Columns 6-8 show the
performance of each model on all words; this penalizes for the coverage of the databases.

e thresholding for word frequency using
Google n-gram counts (n-gram Frequency),
considering more frequent words as sim-
ple; the frequency threshold with the best
performance was 19,950,000.

The results of this experiment are shown in Ta-
ble 2. While the Token Length and n-gram Fre-
quency baselines have higher recall, both of our
models show substantial improvements in terms
of precision and increases overall accuracy and
F-score, with SVM outperforming Random For-
est. The context-based features seem to have an
ambiguous impact, in that they do not improve
the performance of the SVM classifier, but they
do improve that of the Random Forest classifier.
While there are indeed some cases where a rela-
tively simple word is more difficult to understand,
due to the size of our corpus, these cases are not
found that often in our dataset.

5.2 Lexical Simplification Evaluation

We evaluate the performance of the lexical substi-
tution model using Simple PPDB paraphrases on
a test set created from the Newsela corpus, de-
scribed in Section 4.1. Using the complex word
and the corresponding sentence, we find the top
suggestions made by our word-embedding based
substitution model using SimplePPDB. We com-
pare to three baselines:

e WordNet Frequency: We extract all Word-
Net synonyms for a complex word, and col-
lect the Google n-gram frequencies for each
synonym. We then rank the synonyms in de-
creasing order of frequency (i.e. the most fre-
quent synonym will be ranked first, and the
least frequent one will be ranked last.

e SimplePPDB Score: We extract all SimpleP-
PDB synonyms for a complex word. We
then rank the synonyms in decreasing order
of their SimplePPDB score.

Context Window || Top1 | Top S
0 0.180 | 0.403
1 0.353 | 0.601
2 0.352 | 0.596
3 0.334 | 0.590
4 0.312 | 0.585
5 0.291 | 0.581
6 0.269 | 0.578
7 0.264 | 0.577
8 0.252 | 0.576
9 0.247 | 0.574
10 0.242 | 0.572

Table 4: Quality of substitutions proposed by AddCos-
SimplePPDB with different context window size as
measured by Top 1 and Top 5 accuracy on the Newsela
aligned test set.

e AddCos-PPDB: We extract all PPDB syn-
onyms for a complex word and rank them us-
ing the AddCos model described above.

The performance of AddCos with SimplePPDB
paraphrases (AddCos-SimplePPDB) in the lexical
simplification task is compared to performance of
the baselines in Table 3. For each model, we calcu-
late Top 1 and Top 5 accuracy scores, which show
how often the gold-standard simple word was pro-
posed as the best fitting or among the 5 highest-
ranked paraphrases. In addition, we calculate the
upper bound performance for each dataset (PPDB,
SimplePPDB and WordNet), i.e. how often the
gold-standard simple word was found as a para-
phrase of the target word in the dataset. This is
useful in telling us how well we could potentially
do, if we could perfectly rank the paraphrases.

When performing this experiment, we also eval-
uated the impact of the context window size on
the quality of the proposed substitutions. We
varied the context window used by the AddCos-
SimplePPDB model from 0 to 10. The results of
this comparison are found in Table 4. As we can
see, the largest effect, as expected, is when the
model changes from using no context to choosing
a window size of 1 word on either side of the word
that is being replaced. As the context window in-
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Synonym Substitution | Simplification | Both Baseline Simple Complex
Rank n-gram dug, sled, chart, estimates, frequent,
1 0.396 0.280 0.227 Frequency | lakes, push, tight, attributed, isolated,
2 0.311 0.214 0.153 harm preferred, liability
3 0.278 0.184 0.127 Token nursing, unknown, adorns, asylum,
4 0.228 0.142 0.093 Length squares, feeling, myriad, rigors,
5 0.193 0.123 0.075 teaching, strength nutria, edible
[ All [ 0622 | 0.553 [ 0435 ] RF- malls, hungry, engaging, secular,
Context therefore, hears, gridlock, torrent,
Table 5: Performance of our overall lexical simplifica- heavily, rainy sanctions, lobbying
tion system. We give the proportion of substitutes the SVM- peacefully, favorite, [ swelled, entice,
system ranked at positions 1 to 5 (i.e. from the top Context amazing, websites, | tether, chaofic,
harmful, somewhat | vessel, midst

ranked to the fifth-ranked paraphrase in context) which
was identified by a majority of workers as (a) a good
substitute in context (Substitution); (b) simpler than the
target word (Simplification); (c) both a good and sim-
pler substitute (Both). We also show the proportion of
complex words where at least one of the top 5 para-
phrases satisfies these criteria in the last row.

creases above 2, however, we see a significant de-
crease in Top 1 accuracy, and a slower decrease in
Top 5 accuracy. Thus, in our model, we chose to
use a context window of 1.

We experimented with filtering the substitution
candidates using SimplePPDB confidence scores,
PPDB paraphrase quality scores, and AddCos
context similarity scores, but these all resulted
in a slight, non-significant increase in perfor-
mance, and a significant decrease in coverage. We
will also explore other ways for promoting high-
quality substitutions without hurting the overall
coverage of the system in the future.

One thing to note is that just because a model
does not find the gold-standard simple word, does
not necessarily mean that it does not find any good
substitutes in context. Concrete examples of this
are shown in Section 6.

5.3 Overall Simplification System

We integrate the best complex word identifica-
tion classifier (SVM-context) and the substitu-
tion model that provided the best ranking in con-
text (AddCos-SimplePPDB), into a simplification
pipeline. The input text is a complex text that
needs to be simplified and the output consists of
simplification suggestions for experts to choose
from in order to create simpler versions of texts.
The input text is pre-processed using the Stanford
CoreNLP suite (Manning et al., 2014) which per-
forms tokenization, sentence splitting, lemmati-
zation, part-of-speech and named entity tagging.
The SVM-Context classifier is used to classify
each content word that is not part of a named entity
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Table 6: Examples of words that were incorrectly clas-
sified by the two best performing baselines and the
RF-Context model, but were correctly classified by the
SVM-Context model. The last row shows examples
of words that were incorrectly classified by the SVM-
Context model.

as either simple or complex.

The lexical substitution model then gathers the
SimplePPDB substitutes available for the complex
target word and ranks them according to how well
they fit the corresponding context. We only keep
the top five suggestions made by the model as final
output.

To evaluate the performance of the overall sim-
plification system, we used the 930 texts from the
Newsela corpus that were not used in the training
of the CWI classifier. Our model identified over
170,000 complex words that also had paraphrases
in SimplePPDB. We again asked crowdsourced
annotators to evaluate the suggestions made for a
random sample of 2,500 complex words on Ama-
zon Mechanical Turk, in order to determine the
number of good substitutions in context, the num-
ber of suggested paraphrases that are simpler than
the target words, and the suggestions that are both
simpler paraphrases and good in-context substi-
tutes.

Table 5 shows the quality of the paraphrases
ranked by our system in positions from one to five.
We can see that the paraphrases our system selects
as the best have a higher likelihood of being both
good substitutes in context and simpler than the
target word. We also show the proportion of tar-
get words that had at least one good substitute in
context, one simple substitute, and one good and
simple substitute.

6 Error Analysis

In this section, we give examples of words for
which our models give the correct output and the



Sentence Gold- WordNet SimplePPDB AddCos-PPDB AddCos-
Standard | Frequency Score SimplePPDB
(7.1) Advocates argue that say reason, fence, say, think, contend, assert, say, claim,
including women will help end debate, contend, | tell, talk, acknowledge, believe,
harassment of female troops. indicate mean insist, complain suggest, debate
(7.2) But in April , detainees watch supervise, find, meet, track, manipulate, track, control,
covered cameras used to proctor, give, try, control, analyze, check, watch,
monitor them. admonisher allow supervise follow
(7.3) Similarly , police can power agency, potency, | force, control, | jurisdiction, power,
investigate cases and have the bureau, permission, discretion, right, responsibility,
authority to seize animals. assurance office, limit prerogative, ability | body, agency

Table 7: Examples of the top-5 substitutes for our three baselines and our best model (AddCos-SimplePPDB). We
also provide the gold-standard simplification (Gold-Standard).

Bad Substitutions
basic

prospect, benefits,
revenue, merit,
feature

life, right, return,
shelter, million

Sentence

8.1)b

(8.2) Russian poultry is more
expensive, and U.S. producers
enjoy numerous cost advantages.
(8.3) Although the calculus may be
different with Syrian refugees, the
parallel for me is politics.

(8.4) He saw them bring in animals | acceptance,
to a university, where they’ll be passage, approval,
cared for and put up for adoption. endorsement

Table 8: Examples of words and their context where
our model fails to provide any good replacements.

baselines fail to do so. In addition, we give ex-
amples of words on which our models perform
poorly.

First, we consider examples of words that were
incorrectly classified by each of the four best per-
forming CWI models: the RF-Context and SVM-
Context models, and the n-gram Frequency and
Token Length baselines. (Table 6). In the first
three rows, we give words that were correctly
identified by SVM-Context, but incorrectly cate-
gorized by the two baselines and RF-Context; in
the last row, we give examples of words incor-
rectly classified by SVM-Context. We observe
that the n-gram Frequency model tends to incor-
rectly classify relatively short words that are rare
in the Google n-gram corpus as complex. On the
other end, the Token Length model shows that us-
ing this feature alone leads to incorrectly identify-
ing shorter words such as “adorn” and “myriad” as
simple, when these words are relatively complex.

Table 7 presents examples of substitution where
the baseline systems did not find the correct para-
phrase, but AddCos-SimplePPDB did. As we have
mentioned, even when a model did not find the
gold-standard paraphrase, they sometimes did find
a different paraphrase that works well in the con-

text. In Example 7.2, the top paraphrase identi-
fied by both AddCos-PPDB and AddCos-Simple
PPDB for the word “monitor” is “track”, which is
a reasonable substitute. On the other hand, in Ex-
ample 7.3, AddCos-Simple PPDB model was able
to identify a good simple substitute, when none of
the other models were able to identify a suitable
word with comparable complexity.

Finally, Table 8 shows examples of output of the
overall simplification system. Here, the blue word
is a word that our CWI classifier identified as com-
plex (for simplicity, we only look at one complex
word per sentence). From there, we consider the
five top-ranked substitutes proposed by AddCos-
Simple PPDB, and show which were identified by
the majority of annotators as good substitutes for
the target word, simpler than the target, good sim-
pler substitutes, and bad substitutes. In row 5 of
Table 8, we can see that for the word “adop-
tion”, all five words identified by our model are
considered to be bad substitutes, since they are
all synonyms describing a different sense of adop-
tion. Even though SimplePPDB is quite large, it
does not cover all senses of the words represented.
Another issue is that SimplePPDB contains some
noisy paraphrases, as is the case with all auto-
matically collected synonym banks. We see this
with “recognize” being a synonym of “recogni-
tion”, even though we specified that “recognition”
is a noun. Our model does filter out the worst para-
phrases (with PPDB2.0 score < 2), but there are
still some words that are simply poor substitutes.

We reviewed the examples where our system
failed to generate acceptable substitutions for the
identified complex words. Below we present the
major categories of errors.

e The identified complex term is part of a
phrase and no substitution is acceptable. For
example, in Example 8.1, Elementary, Mid-
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dle or High School is a description of the type
of school. Elementary School has an alter-
native name in some cases but High School
should never become Tall School.

e The complex word has no simpler synonym
that would be a good substitute. The diffi-
culty of the word might reside in its meaning
which can be unknown to the reader. In Ex-
ample 8.3, it would be more useful to point to
the definition of refugees.

e The complex word is part of a predicate
with arguments that are not accessible to our
model. In Example 8.4, the intended mean-
ing of adoption, human adoption, is hard to
capture in the vicinity of the complex word.

e Finally, in some cases, our annotators were
quite strict in admitting a substitute. In Ex-
ample 8.2, for example, cost merit would not
be syntactically correct but cost merits would
be acceptable.

7 Conclusions and Future Work

We present a novel model for simplification that
first identifies complex words in text, and then
ranks lexical simplification candidates accord-
ing to their adequacy in these specific contexts.
We perform experiments showing that our model
makes correct simplification suggestions 35% of
the time as measured by top-1 accuracy (versus
20% of the time for the best baseline), and pro-
duces a good substitution in its top-5 predictions
60% of the time (versus 44% for the best base-
line). We perform a detailed error analysis that
suggests future improvements, e.g. not replacing
words within collocations like elementary school,
and extending the context model to include the ar-
guments of words that are going to be simplified.

Achieving high performance on single words is
crucial for any system that hopes to adequately
holistically simplify a text. Our methods can also
be extended to the phrase level. SimplePPDB con-
tains phrasal simplification rules, as well as lexical
simplification rules. We can assign a vector rep-
resentation to phrases to be used by the AddCos
model, by applying a vector composition method
to the vectors of individual words in the phrase.
We plan to extend our method in this direction in
future work.

Although our system outperforms simpler base-
lines on both tasks, the performance of the overall
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system is relatively low. The filtering mechanisms
we have experimented with up to now in order to
make high-confidence predictions, increased the
quality of the proposed substitutions but signifi-
cantly decreased the coverage. We will explore
other ways for promoting high-quality substitu-
tions without hurting the overall coverage of the
system in the future.

The AddCos implementation we used in this
work does not rely on syntactic annotations and
can be easily applied to new languages. In future
work, we plan to experiment with syntactic sub-
stitution models and with syntax-based word em-
beddings like the ones used in the initial AddCos
implementation (Melamud et al., 2015). We ex-
pect syntactic information to further enhance the
quality of the proposed substitutions, ensuring the
functional similarity of the lexical substitutions to
the target word. Furthermore, we intend to inte-
grate lexical and syntactic simplification, both cru-
cial steps towards text simplification.

8 Data and Software

We release the data that we collected, which is
of higher quality than the data used in previous
shared tasks on Complex Word Identification. We
also release our software for performing context-
aware paraphrase substitutions. The dataset and
the code can be found at https://rekriz11.github.io
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