
Proceedings of NAACL-HLT 2016 (Demonstrations), pages 47–51,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Task Completion Platform: A self-serve multi-domain goal oriented dialogue
platform

P. A. Crook, A. Marin, V. Agarwal, K. Aggarwal, T. Anastasakos, R. Bikkula, D. Boies,
A. Celikyilmaz, S. Chandramohan, Z. Feizollahi, R. Holenstein, M. Jeong, O. Z. Khan,

Y.-B. Kim, E. Krawczyk, X. Liu, D. Panic, V. Radostev, N. Ramesh, J.-P. Robichaud,
A. Rochette, L. Stromberg and R. Sarikaya

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

Abstract
We demonstrate the Task Completion Plat-
form (TCP); a multi-domain dialogue plat-
form that can host and execute large num-
bers of goal-orientated dialogue tasks. The
platform features a task configuration lan-
guage, TaskForm, that allows the definition
of each individual task to be decoupled from
the overarching dialogue policy used by the
platform to complete those tasks. This sep-
aration allows for simple and rapid author-
ing of new tasks, while dialogue policy and
platform functionality evolve independent of
the tasks. The current platform includes ma-
chine learnt models that provide contextual
slot carry-over, flexible item selection, and
task selection/switching. Any new task im-
mediately gains the benefit of these pieces of
built-in platform functionality. The platform
is used to power many of the multi-turn dia-
logues supported by the Cortana personal as-
sistant.

1 Introduction
The aim of the Task Completion Platform (TCP) is
to support the rapid development of large numbers
of goal-orientated, multi-turn dialogues by simplify-
ing the process of specifying a new task. To achieve
this, the definition of individual tasks is separated
from the mechanics and policy required to conduct
a natural language, goal-orientated dialogue. TCP
provides the functionality required to manage dia-
logues with users, leaving a task author to specify
only the information to collect from the user and the
interfaces to resources such as data hosted in exter-
nal services and applications that will execute ac-
tions on behalf of the user. The platform is used to

power many multi-turn dialogue interactions as part
of the Cortana personal assistant.

2 Background
VoiceXML (VoiceXML, 2000) is a industry stan-
dard tool used to build dialogue systems. It is
typically used to design system-directed dialogues,
where the understanding of user input is constrained
at each turn, and there is no opportunity for user ini-
tiative. Such dialogues are common in call centre
interactive voice response systems, but are of lim-
ited utility when more natural interactions are de-
sired, such as personal assistant dialogues supported
by TCP.

A more flexible dialogue management platform is
RavenClaw (Bohus and Rudnicky, 2009). Raven-
Claw systems are composed of a tree structure of
agents, with the system at each turn deciding on
an execution plan that allows a maximum number
of agents to finish their processing. However, most
systems built using RavenClaw require custom-built
agents; it is difficult to integrate additional tasks into
an existing system without having to rebuild the en-
tire tree of agents. In contrast, TCP allows the ad-
dition of new experiences with only a configuration
file change (as discussed in section 4).

Most similar is ClippyScript (Seide and
McDirmid, 2012) which like TCP uses a hier-
archical data flow to drive processing (akin to
a functional language) as opposed to directed
dialogue flow. A key difference is that, in defining
tasks in ClippyScript, a dialog act is explicitly tied
to a task condition by a rule. Thus, ClippyScript
developers directly specify a rule based dialogue
policy on a per task basis. In a TaskForm (TCP task

47



definition) dialog acts are declared in association
with parameters but when to execute them is not
explicitly encoded. This allows for separation of
tasks and dialogue policies in TCP.

Work also exists on dialogue policy transfer (e.g.
Wang et al. (2015)) but such work has typically not
focused on easy and rapid definition of a diverse set
of tasks, as we did in developing TCP.

The main contributions of our work on TCP in-
clude: strong separation between task definition and
the shared dialogue policy; rapid new task author-
ing, with the platform providing key machine learn-
ing (ML) driven dialogue capabilities such as state
tracking, dialogue policy learning, flexible selection,
and LU model reuse, which significantly reduces the
burden on individual task developers; and benefits to
users by offering many multi-turn, mix-initiative di-
alogue tasks simultaneously.

3 Architectural Overview
The TCP platform supports execution of a variable
number of goal-orientated tasks, which can be mod-
ified and improved without changing the core plat-
form. The platform has a modular architecture, with
the dialogue management process separated into dis-
crete units which can also be independently updated
and improved. Figure 1 presents the core plat-
form modules, loosely grouped as: initial process-
ing of input, dialogue state updates, and policy exe-
cution. Alternative interpretations of input and dia-
logue state are preserved in parallel for each step of
the pipeline, with a final ranking step to select the
optimal hypothesis and associated dialogue act.

The input to the system is either typed text or
transcripts from an Automatic Speech Recognition
(ASR) system, in the form of N -best hypotheses
or confusion networks. The input is processed by
a Natural Language Understanding (NLU) module.
Several alternate NLU modules can be used in the
platform, e.g. Deoras and Sarikaya (2013). A typical
arrangement is described in Robichaud et al. (2014).
To support multiple tasks across multiple domains,
a collection of NLU models are executed in parallel,
each determining the most likely intent and set of
slots within their domain. An NLU slot is defined
as a container that can hold a sequence of words
from the user input, with the label indicating the role
played by that text in a task or set of tasks. Together,

the detected intent and slots form the semantic frame
for that domain. NLU models are contextual (Bhar-
gava et al., 2013; Liu et al., 2015), taking into ac-
count the state of any task currently in progress.

On each turn, the dialogue state is updated tak-
ing into consideration the multiple NLU results. Slot
Carry Over (SCO) (Boies et al., 2016) does contex-
tual carry-over of slots from previous turns, using
a combination of rules and ML models with lexical
and structural features from the current and previous
turn utterances. Flexible Item Selection uses task-
independent ML models (Celikyilmaz et al., 2014;
Celikyilmaz et al., 2015) to handle disambiguation
turns where the user is asked to select between a
number of possible items. The Task Updates module
is responsible for applying both task-independent
and task-specific dialogue state updates. The task-
specific processing is driven by a set of configu-
ration files in a new configuration language, Task-
Form, with each form encapsulating the definition of
one task. Using the TaskForm files, this module ini-
tiates new tasks, retrieves information from knowl-
edge sources and applies data transformations (e.g.
canonicalization). Data transformations and knowl-
edge source look ups are performed using Resolvers,
as discussed in section 4.

Dialogue policy execution is split into task-
depenent and global policy. The Per Task Policy
consists of analysing the state of each task currently
in progress, and suggesting a dialog act to execute.
The output of the module is a set of dialogue hy-
potheses representing alternative states or dialog ac-
tions for each task in progress. The number of hy-
potheses does not grow uncontrollably; depending
on the state of the dialogue during the previous turn
and the current input, only a small proportion of all
the defined tasks will be active in any one turn.

The output dialog hypotheses are ranked using
Hypothesis Ranking (HR) (Robichaud et al., 2014;
Khan et al., 2015; Crook et al., 2015), which gen-
erates a ranked order and score for each hypothe-
sis. This acts as a pseudo-belief distribution over the
possible dialogue/task states. Hypothesis Selection
(HS) policy selects a hypothesis based on contex-
tual signals, such as the previous turn task, as well
as the rank order and scores. The HS policy may se-
lect a meta-task dialog act, such as asking the user to
specifically select a task when two or more tasks are

48



Slot Carry 
Over

Flexible 
Item 

Selection

Task Updates
• common, task agnostic
• task specific

HR + 
HS

Per Task
Policy

Natural 
Language 

Understanding

Ta
sk

 
d

ef
in

it
io

n
s { JSON: Task 

Form }
{ JSON: Task 

Form }
{ JSON: Task 

Form }

First Turn:

Second (and subsequent) turns:

A
SR

 /
 t

yp
ed

in
p

u
t

Slot Carry 
Over

Flexible 
Item 

Selection

HR + 
HS

Natural 
Language 

UnderstandingA
SR

 /
 t

yp
ed

in
p

u
t

P
revio

u
s tu

rn
 co

n
text

R
eso

lver

R
eso

lver

Ranking & 
cross task 

policy

Task Updates
• common, task agnostic
• task specific

Per Task 
Policy

Input Update state Policy

Figure 1: Functional modules of the TCP architecture

Figure 2: An example definition of a task trigger.

highly ranked, or adding an implicit confirmation
when the top hypothesis has low confidence. The
selected dialog act is rendered to the user and the
associated dialog hypothesis informs the next turn.

4 TaskForm Language Definition
The TaskForm language allows for defining tasks in-
dependently of the dialogue policy executed by the
platform. Each task is represented as a set of inde-
pendent triggers defining under what conditions task
execution should begin, a set of parameters defining
what information should be collected during the di-
alogue, and a set of dialog acts defining what is pre-
sented to the user. Additional structural information
about a task can be captured through the use of vali-
dation conditions (not shown here).

A task trigger defines under what conditions a
task may begin executing. These conditions are rep-
resented in terms of NLU results: combinations of
domains, intents, and slots (presence or absence).
Each trigger may also specify a list of must-trigger
utterances, as shown in figure 2. At least one trigger
must be satisfied for the task to begin execution.

We define a task parameter as a container that
holds knowledge items required to complete a task.
Each parameter definition specifies how the knowl-

edge items (i.e. its value) should be produced and
what dialog acts are used to solicit relevant informa-
tion. An example of a task parameter is shown in
figure 3.

The knowledge items that are stored in a parame-
ter can be: concrete entities e.g. a particular restau-
rant in a city; canonicalized attributes of an item,
e.g. ‘small’, ‘middle’ or ‘large’; concepts, ‘delivery’
or ‘take-out’; or labels that index another knowl-
edge source. Knowledge items can be retrieved from
some knowledge source, e.g. a database or knowl-
edge graph, or captured directly in code.

The value of a parameter is provided by an associ-
ated piece of code, a resolver implemented outside
the TaskForm. In the TaskForm, a resolver defini-
tion (optional for platform-provided resolvers) con-
tains only a reference to the code assembly, class
name, and a list of NLU slot tags and input param-
eters which it can process. The parameter defini-
tion contains a resolver invocation block which lists
a subset of slot tags and input parameters that should
actually be used as input to the resolver during the
task execution; this allows resolvers to be generic
and reusable across multiple parameters and tasks.
A platform-provided HTTP resolver allows for easy
integration with third party APIs; each HTTP re-
solver definition need specify only a mapping be-
tween task parameters and API parameters, and a
JPATH expression for interpreting the results.

There is a many-to-many relationship between
NLU slots and the knowledge items (values) that fill
a parameter. Dependent on the run-time results of
resolution, additional dialog acts may be required
to obtain further user input and refine the resolu-
tion. E.g. if the NLU slots [place name:Marriott]

49



Figure 3: An example definition of a parameter.

and [absolute location:Bellevue] are used to index
a knowledge source and extract values to fill the task
parameter DeliveryAddress, the result may be a list
of Marriott hotel locations in Bellevue. If the param-
eter specifies that it must hold a single value, further
dialog acts will be used to narrow the results. These
dialogue policy decisions could not be made by ex-
amining the slots in isolation of the resolved values.

As part of the execution of a task, the system may
take one or more dialog acts before the value of a pa-
rameter is considered “filled”. Allowed acts include:

• MissingValue - ask the user for input required to pop-
ulate the parameter (plus a variation that presents sug-
gested values to the user);

• NoResultsFollowup - prompt to change information
as no results were found (plus a variation that presents
suggestions);

• Disambiguation - ask the user to select the parameter
value from a list;

• ImplicitConfirmation - implicitly confirm the newly
filled parameter as part of the next turn;

• Confirmation - ask the user to confirm the parameter
value the system computed;

• ConfirmationFailure - ask the user to provide new in-
put if they rejected a confirmation act.

A dialog act definition captures the information
that should be presented to the user when that di-
alog act is taken by the system. This information
includes: a prompt to be read out, a list of strings to
be shown on the screen, as well as hints to prime the
NLU during the next turn of the conversation. De-
fault definitions are used for any missing sections in
each dialog act definition. Figure 4 shows an exam-
ple of a dialog act definition, encoding how the user
should be prompted to provide the missing value of
the DeliveryAddress parameter.

5 Demo Outline
We plan to showcase the capabilities of TCP, high-
lighting in particular the breadth of the platform and

Figure 4: An example definition of a dialog act.

the agility of task development.
The platform is capable of executing multiple

tasks using the same underlying policy modules,
thus allowing for tasks to be developed separately
from the policy definition. To this end we will show
the platform supporting a conversational agent capa-
ble of setting reminders, ordering pizzas, and reserv-
ing movie tickets, restaurant tables and taxis (where
these scenarios are hooked up to real third party ser-
vices like Domino’s, OpenTable, Uber, etc.). Each
task is defined by a TaskForm. Users can interact
with the system through natural conversation and
take initiative at any point, e.g. to cancel a task in
progress, provide information out of turn, or change
previously-provided information.

Many changes to a task can be done simply by
manipulating its TaskForm definition. To illustrate
this, we will demonstrate some simple modifica-
tions to an existing task, such as changing the task
triggers, adding a new parameter, modifying some
of the conditions set on parameters, and redefining
some of the dialog acts used during task execution.

6 Conclusion

We demonstrated the Task Completion Platform, an
extensible, mixed-initiative dialogue management
platform targeting goal-directed conversations. The
platform supports executing multiple tasks. Each
task is defined primarily in terms of extensible NLU
models and a single configuration file, thus separat-
ing task definition from the system-wide dialogue
policy. Tasks can be added or modified without re-
quiring a system rebuild. Future work includes ex-
tending the platform by allowing multiple tasks to
be concurrently in progress, either through nesting
or interleaving of tasks, and evaluation of task suc-
cess and related metrics.

50



References
A. Bhargava, A. Celikyilmaz, D. Hakkani-Tur,

R. Sarikaya, and Z. Feizollahi. 2013. Easy con-
textual intent prediction and slot detection. In Proc.
ICASSP, May.

D. Bohus and A. Rudnicky. 2009. The RavenClaw di-
alog management framework: Architecture and sys-
tems. Computer Speech and Language.

D. Boies, R. Sarikaya, A. Rochette, Z. Feizollahi, and
N. Ramesh. 2016. Using sequence classification to
update a partial dialog state (United States patent ap-
plication 20150095033, filed 2013).

A. Celikyilmaz, Z. Feizollahi, D. Hakkani-Tur, and
R. Sarikaya. 2014. Resolving referring expressions in
conversational dialogs for natural user interfaces. In
Proc. EMNLP, October.

A. Celikyilmaz, Z. Feizollahi, D. Hakkani-Tur, and
R. Sarikaya. 2015. A universal model for flexible item
selection in conversational dialogs. In Proc. ASRU
2015, December.

P. A. Crook, J.-P. Robichaud, and R. Sarikaya. 2015.
Multi-language hypotheses ranking and domain track-
ing for open domain dialogue systems. In Proc. Inter-
speech, September.

A. Deoras and R. Sarikaya. 2013. Deep belief net-
work Markov model sequence classification spoken
language understanding. In Proc. Interspeech, Au-
gust.

O. Z. Khan, J.-P. Robichaud, P. A. Crook, and
R. Sarikaya. 2015. Hypotheses ranking and state
tracking for a multi-domain dialog system using ASR
results. In Proc. Interspeech, September.

C. Liu, P. Xu, and R. Sarikaya. 2015. Deep contextual
language understanding in spoken dialogue systems.
In Proc. ASRU, December.

J.-P. Robichaud, P. A. Crook, P. Xu, O. Z. Khan, and
R. Sarikaya. 2014. Hypotheses ranking for robust do-
main classification and tracking in dialogue systems.
In Proc. Interspeech, September.

F. Seide and S. McDirmid. 2012. ClippyScript: A pro-
gramming language for multi-domain dialogue sys-
tems. In Proc. Interspeech.

VoiceXML. 2000. VoiceXML version 1.0.
https://www.w3.org/TR/voicexml/.

Z. Wang, Y. Stylianou, T.-H. Wen, P.-H. Su, and
S. Young. 2015. Learning domain-independent dia-
logue policies via ontology parameterisation. In Pro-
ceedings of SIGdial.

51


