
Proceedings of NAACL-HLT 2016 (Demonstrations), pages 11–16,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Farasa: A Fast and Furious Segmenter for Arabic

Ahmed Abdelali Kareem Darwish Nadir Durrani Hamdy Mubarak
Qatar Computing Research Institute

Hamad Bin Khalifa University
Doha, Qatar

{aabdelali,kdarwish,ndurrani,hmubarak}@qf.org.qa

Abstract

In this paper, we present Farasa, a fast and
accurate Arabic segmenter. Our approach
is based on SVM-rank using linear kernels.
We measure the performance of the seg-
menter in terms of accuracy and efficiency,
in two NLP tasks, namely Machine Trans-
lation (MT) and Information Retrieval (IR).
Farasa outperforms or is at par with the state-
of-the-art Arabic segmenters (Stanford and
MADAMIRA), while being more than one
order of magnitude faster.

1 Introduction

Word segmentation/tokenization is one of the most
important pre-processing steps for many NLP task,
particularly for a morphologically rich language
such as Arabic. Arabic word segmentation involves
breaking words into its constituent prefix(es), stem,
and suffix(es). For example, the word “wktAbnA”1

“ A 	JK. A�J»ð” (gloss: “and our book”) is composed of the

prefix “w” “ð” (and), stem “ktAb” “H. A�J»” (book),

and a possessive pronoun “nA” “ A 	K” (our). The task
of the tokenizer is to segment the word into “w+
ktAb +nA” “ A 	K+ H. A�J» +ð”. Segmentation has been
shown to have significant impact on NLP applica-
tions such as MT and IR.

Many Arabic segmenters have been proposed in
the past 20 years. These include rule based analyz-
ers (Beesley et al., 1989; Beesley, 1996; Buckwal-
ter, 2002; Khoja, 2001), light stemmers (Aljlayl and

1Buckwalter encoding is used exclusively in this paper

Frieder, 2002; Darwish and Oard, 2007), and sta-
tistical word segmenters (Darwish, 2002; Habash et
al., 2009; Diab, 2009; Darwish et al., 2014). Statis-
tical word segmenters are considered state-of-the-art
with reported segmentation accuracy above 98%.

We introduce a new segmenter, Farasa (“insight”
in Arabic), an SVM-based segmenter that uses a va-
riety of features and lexicons to rank possible seg-
mentations of a word. The features include: like-
lihoods of stems, prefixes, suffixes, their combina-
tions; presence in lexicons containing valid stems or
named entities; and underlying stem templates.

We carried out extensive tests comparing Farasa
with two state-of-the-art segmenters: MADAMIRA
(Pasha et al., 2014), and the Stanford Arabic seg-
menter (Monroe et al., 2014), on two standard NLP
tasks namely MT and IR. The comparisons were
done in terms of accuracy and efficiency. We
trained Arabic↔English Statistical Machine Trans-
lation (SMT) systems using each of the three seg-
menters. Farasa performs clearly better than Stan-
ford’s segmenter and is at par with MADAMIRA,
in terms of BLEU (Papineni et al., 2002). On the
IR task, Farasa outperforms both with statistically
significant improvements. Moreover, we observed
Farasa to be at least an order of magnitude faster
than both. Farasa also performs slightly better than
the two in an intrinsic evaluation. Farasa has been
made freely available.2

2 Farasa

Features: In this section we introduce the
features and lexicons that we used for seg-

2Tool available at: http://alt.qcri.org/tools/farasa/

11



mentation. For any given word (out of con-
text), all possible character-level segmentations
are found and ones leading to a sequence of
prefix1+...+prefixn+stem+suffix1+...+suffixm,
where: prefix1..n are valid prefixes; suffix1..m
are valid suffixes; and prefix and suffix sequences
are legal, are retained. Our valid prefixes are: f, w,
l, b, k, Al, s. � , È@ , ¼ , H. , È ,ð , 	¬. Our valid
suffixes are: A, p, t, k, n, w, y, At, An, wn, wA,
yn, kmA, km, kn, h, hA, hmA, hm, hn, nA, tmA,
tm, and tn @ð , 	àð , 	à@ , �H@ , ø
 , ð , 	à , ¼ , �H , �è , @
	á�K , Õç�' , AÖ �ß , A 	K , 	áë , Ñë , AÒë , Aë , è , 	á» , Õ» , AÒ» , 	áK
.

Using these prefixes and suffixes, we generated a list
of valid prefix and suffix sequences. For example,
sequences where a coordinating conjunction (w or
f) precedes a preposition (b, l, k), which in turn
precedes a determiner (Al), is legal, for example
in the word fbAlktab H. A�JºËAJ. 	̄ (gloss: “and in
the book”) which is segmented to (f+b+Al+ktAb
H. A�J» + È@ + H. + 	¬). Conversely, a determiner is
not allowed to precede any other prefix. We used
the following features:
- Leading Prefixes: conditional probability that a
leading character sequence is a prefix.
- Trailing Suffixes: conditional probability that a
trailing character sequence is a suffix.
- LM Prob (Stem): unigram probability of stem
based on a language model that we trained from a
corpus containing over 12 years worth of articles of
Aljazeera.net (from 2000 to 2011). The corpus is
composed of 114,758 articles containing 94 million
words.
- LM Prob: unigram probability of stem with first
suffix.
- Prefix|Suffix: probability of prefix given suffix.
- Suffix|Prefix: probability of suffix given prefix.
- Stem Template: whether a valid stem template
can be obtained from the stem. Stem templates are
patterns that transform an Arabic root into a stem.
For example, apply the template CCAC on the root
“ktb” “I. �J»” produces the stem “ktAb” “H. A�J»”
(meaning: book). To find stem templates, we used
the module described in Darwish et al. (2014).
- Stem Lexicon: whether the stem appears in a
lexicon of automatically generated stems. This can
help identify valid stems. This list is generated by

placing roots into stem templates to generate a stem,
which is retained if it appears in the aforementioned
Aljazeera corpus.
- Gazetteer Lexicon: whether the stem that has
no trailing suffixes appears in a gazetteer of person
and location names. The gazetteer was extracted
from Arabic Wikipedia in the manner described by
(Darwish et al., 2012) and we retained just word
unigrams.
- Function Words: whether the stem is a function
word such as “ElY” “úÎ«” (on) and “mn” “ 	áÓ”
(from).
- AraComLex: whether the stem appears in the
AraComLex Arabic lexicon, which contains 31,753
stems of which 24,976 are nouns and 6,777 are
verbs (Attia et al., 2011).
- Buckwalter Lexicon: whether the stem appears
in the Buckwalter lexicon as extracted from the
AraMorph package (Buckwalter, 2002).
- Length Difference: difference in length from the
average stem length.

Learning: We constructed feature vectors for each
possible segmentation and marked correct seg-
mentation for each word. We then used SVM-
Rank (Joachims, 2006) to learn feature weights. We
used a linear kernel with a trade-off factor between
training errors and margin (C) equal to 100, which
is based on offline experiments done on a dev set.
During test, all possible segmentations with valid
prefix-suffix combinations are generated, and the
different segmentations are scored using the clas-
sifier. We had two varieties of Farasa. In the
first, FarasaBase, the classifier is used to segment all
words directly. It also uses a small lookup list of
concatenated stop-words where the letter “n” “ 	à” is

dropped such as “EmA” “ AÔ«” (“En+mA” “ AÓ+ 	á«”),

and “mmA” “ AÜØ” (“mn+mA” “ AÓ + 	áÓ”). In the sec-
ond, FarasaLookup, previously seen segmentations
during training are cached, and classification is ap-
plied on words that were unseen during training.
The cache includes words that have only one seg-
mentation during training, or words appearing 5 or
more times with one segmentation appearing more
than 70% of times.

Training and Testing: For training, we used parts
1 (version 4.1), 2 (version 3.1), and 3 (version 2) of

12



MADAMIRA Farasabase Farasalookup

Accuracy 98.76% 98.76% 98.94%

Table 1: Segmentation Accuracy

the the Penn Arabic Treebank (ATB). Many of the
current results reported in the literature are done on
subsets of the Penn Arabic Treebank (ATB). Testing
done on a subset of the ATB is problematic due to its
limited lexical diversity, leading to artificially high
results. We created a new test set composed of 70
WikiNews articles (from 2013 and 2014) that cover
a variety of themes, namely: politics, economics,
health, science and technology, sports, arts, and cul-
ture. The articles are evenly distributed among the
different themes (10 per theme). The articles contain
18,271 words. Table 1 compares segmentation accu-
racy for both versions of Farasa with MADAMIRA,
where both were configured to segment all possible
affixes. We did not compare to Stanford, because
it only segments based on the ATB segmentation
scheme. Farasalookup performs slightly better than
MADAMIRA. From analyzing the errors in Farasa,
we found that most of the errors were due to either:
foreign named entities such as “lynks” “�º	JJ
Ë”
(meaning: Linux) and “bAlysky” “ú
¾��
ËAK.” (mean-

ing: Palisky); or to long words with more than four
segmentations such as ”wlmfAj}thmA” “ AÒî �D
Jk. A 	®ÖÏð”

(“w+l+mfAj}+t+hmA” “ AÒë + �H + 
úk. A 	®Ó + È + ð”)
(meaning “and to surprise both of them”). Perhaps,
adding larger gazetteers of foreign names would
help reduce the first kind of errors. For the sec-
ond type of errors, the classifier generates the cor-
rect segmentation, but it receives often a slightly
lower score than the incorrect segmentation. Per-
haps adding more features can help correct such er-
rors.

3 Machine Translation

Setup: We trained Statistical Machine Translation
(SMT) systems for Arabic↔English, to compare
Farasa with Stanford and MADAMIRA3. The com-
parison was done in terms of BLEU (Papineni et al.,
2002) and processing times. We used concatenation
of IWSLT TED talks (Cettolo et al., 2014) (contain-
ing 183K Sentences) and NEWS corpus (containing

3Release-01292014-1.0 was used in the experiments

Seg iwslt12 iwslt13 Avg Time

MADAMIRA 30.4 30.8 30.6 4074
Stanford 30.0 30.5 30.3 395
Farasa 30.2 30.8 30.5 80

Table 2: Arabic-to-English Machine Translation,
BLEU scores and Time (in seconds)

202K Sentences) to train phrase-based systems.

Systems: We used Moses (Koehn et al., 2007),
a state-of-the-art toolkit with the the settings de-
scribed in (Durrani et al., 2014a): these include a
maximum sentence length of 80, Fast-Aligner for
word-alignments (Dyer et al., 2013), an interpolated
Kneser-Ney smoothed 5-gram language model with
KenLM (Heafield, 2011), used at runtime, MBR
decoding (Kumar and Byrne, 2004), Cube Pruning
(Huang and Chiang, 2007) using a stack size of
1,000 during tuning and 5,000 during testing. We
tuned with the k-best batch MIRA (Cherry and Fos-
ter, 2012). Among other features, we used lexical-
ized reordering model (Galley and Manning, 2008),
a 5-gram Operation Sequence Model (Durrani et al.,
2011), Class-based Models (Durrani et al., 2014b)4

and other default parameters. We used an unsuper-
vised transliteration model (Durrani et al., 2014c) to
transliterate the OOV words. We used the standard
tune and test set provided by the IWSLT shared task
to evaluate the systems.

In each experiment, we simply changed the seg-
mentation pipeline to try different segmentation.
We used ATB scheme for MADAMIRA which has
shown to outperform its alternatives (S2 and D3)
previously (Sajjad et al., 2013).

Results: Table 2 compares the Arabic-to-English
SMT systems using the three segmentation tools.
Farasa performs better than Stanford’s Arabic seg-
menter giving an improvement of +0.25, but slightly
worse than MADAMIRA (-0.10). The differences
are not statistically significant. For efficiency, Farasa
is faster than Stanford and MADAMIRA by a fac-
tor of 5 and 50 respectively.5 The run-time of
MADAMIRA makes it cumbersome to run on big-
ger corpora like the multiUN (UN) (Eisele and

4We used mkcls to cluster the data into 50 clusters.
5Time is the average of 10 runs on a machine with 8 Intel

i7-3770 cores, 16 GB RAM, and 7 Seagate disks in software
RAID 5 running Linux 3.13.0-48

13



Seg iwslt12 iwslt13 Avg Time

MADAMIRA 19.6 19.1 19.4 1781
Stanford 17.4 17.2 17.3 692
Farasa 19.2 19.3 19.3 66

Table 3: English-to-Arabic Machine Translation,
BLEU scores and Time (in seconds)

Chen, 2010) which contains roughly 4M sentences.
This factor becomes even daunting when training a
segmented target-side language model for English-
to-Arabic system. Table 3 shows results from
English-to-Arabic system. In this case, Stanford per-
forms significantly worse than others. MADAMIRA
performs slightly better than Farasa. However, as
before, Farasa is more than multiple orders of mag-
nitude faster.

4 Information Retrieval

Setup: We also used extrinsic IR evaluation to
determine the quality of stemming compared to
MADAMIRA and the Stanford segmenter. We per-
formed experiments on the TREC 2001/2002 cross
language track collection, which contains 383,872
Arabic newswire articles, containing 59.6 million
words), and 75 topics with their relevance judgments
(Oard and Gey, 2002). This is presently the best
available large Arabic information retrieval test col-
lection. We used Mean Average Precision (MAP)
and precision at 10 (P@10) as the measures of good-
ness for this retrieval task. Going down from the top
a retrieved ranked list, Average Precision (AP) is the
average of precision values computed at every rel-
evant document found. P@10 is the same as MAP,
but the ranked list is restricted to 10 results. We used
SOLR (ver. 5.6)6 to perform all experimentation.
SOLR uses a tf-idf ranking model. We used a paired
2-tailed t-test with p-value less than 0.05 to ascer-
tain statistical significance. For experimental setups,
we performed letter normalization, where we con-
flated: variants of “alef”, “ta marbouta” and “ha”,
“alef maqsoura” and “ya”, and the different forms
of “hamza”. Unlike MT, Arabic IR performs better
with more elaborate segmentation which improves
matching of core units of meaning, namely stems.
For MADAMIRA, we used the D34MT scheme,
where all affixes are segmented. Stanford tokenizer
only provides the ATB tokenization scheme. Farasa

6http://lucene.apache.org/solr/

Stemming MAP P@10 Time

Words 0.20 0.34 -
MADAMIRA 0.26 w,s 0.39 w 21:27:21
Stanford 0.22 w 0.37 03:43:25
Farasa 0.28 w,s,m 0.43 w,s,m 00:15:26

Table 4: Retrieval Results in MAP and P@10 and
Processing Time (in hh:mm:ss). For statistical sig-
nificance, w = better than words, s = better than
Stanford, and m = better than MADAMIRA

was used with the default scheme, where all affixes
are segmented.

Results: Table 4 summarizes the retrieval re-
sults for using words without stemming and using
MADAMIRA, Stanford, and Farasa for stemming.
The table also indicates statistical significance and
reports on the processing time that each of the seg-
menters took to process the entire document collec-
tion. As can be seen from the results, Farasa out-
performed using words, MADAMIRA, and Stan-
ford significantly. Farasa was an order of magni-
tude faster than Stanford and two orders of magni-
tude faster than MADAMIRA.

5 Analysis

The major advantage of using Farasa is speed, with-
out loss in accuracy. This mainly results from op-
timization described earlier in the Section 2 which
includes caching and limiting the context used for
building the features vector. Stanford segmenter
uses a third-order (i.e., 4-gram) Markov CRF model
(Green and DeNero, 2012) to predict the correct seg-
mentation. On the other hand, MADAMIRA bases
its segmentation on the output of a morphological
analyzer which provides a list of possible analyses
(independent of context) for each word. Both text
and analyses are passed to a feature modeling com-
ponent, which applies SVM and language models to
derive predictions for the word segmentation (Pasha
et al., 2014). This hierarchy could explain the slow-
ness of MADAMIRA versus other tokenizers.

6 Conclusion

In this paper we introduced Farasa, a new Ara-
bic segmenter, which uses SVM for ranking. We
compared our segmenter with state-of-the-art seg-
menters MADAMIRA and Stanford, on standard

14



MT and IR tasks and demonstrated Farasa to be sig-
nificantly better (in terms of accuracy) than both on
the IR tasks and at par with MADAMIRA on the
MT tasks. We found Farasa by orders of magnitude
faster than both. Farasa has been made available for
use7 and will be added to Moses for Arabic tokeniza-
tion.

References

Mohammed Aljlayl and Ophir Frieder. 2002. On arabic
search: improving the retrieval effectiveness via a light
stemming approach. In CIKM-2002, pages 340–347.

Mohammed Attia, Pavel Pecina, Antonio Toral, Lamia
Tounsi, and Josef van Genabith. 2011. An open-
source finite state morphological transducer for mod-
ern standard arabic. In Workshop on Finite State Meth-
ods and Natural Language Processing, pages 125–
133.

Kenneth Beesley, Tim Buckwalter, and Stuart Newton.
1989. Two-level finite-state analysis of arabic mor-
phology. In Proceedings of the Seminar on Bilingual
Computing in Arabic and English, pages 6–7.

Kenneth R Beesley. 1996. Arabic finite-state morpho-
logical analysis and generation. In ACL, pages 89–94.

Tim Buckwalter. 2002. Buckwalter {Arabic} morpho-
logical analyzer version 1.0.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th IWSLT Evaluation Campaign. IWSLT-14.

Colin Cherry and George Foster. 2012. Batch Tuning
Strategies for Statistical Machine Translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, HLT-
NAACL’12, pages 427–436, Montréal, Canada.

Kareem Darwish and Douglas W Oard. 2007. Adapt-
ing morphology for arabic information retrieval*. In
Arabic Computational Morphology, pages 245–262.

Kareem Darwish, Walid Magdy, and Ahmed Mourad.
2012. Language processing for arabic microblog re-
trieval. In ACM CIKM-2012, pages 2427–2430.

Kareem Darwish, Ahmed Abdelali, and Hamdy
Mubarak. 2014. Using stem-templates to im-
prove arabic pos and gender/number tagging. In
LREC-2014.

Kareem Darwish. 2002. Building a shallow arabic mor-
phological analyzer in one day. In Computational Ap-
proaches to Semitic Languages, ACL-2002, pages 1–8.

7http://alt.qcri.org/tools/farasa/

Mona Diab. 2009. Second generation amira tools for
arabic processing: Fast and robust tokenization, pos
tagging, and base phrase chunking. In Intl. Conference
on Arabic Language Resources and Tools.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A Joint Sequence Translation Model with In-
tegrated Reordering. In ACL’11, pages 1045–1054,
Portland, Oregon, USA, June.

Nadir Durrani, Barry Haddow, Philipp Koehn, and Ken-
neth Heafield. 2014a. Edinburgh’s Phrase-based Ma-
chine Translation Systems for WMT-14. In WMT’14,
pages 97–104, Baltimore, Maryland, USA.

Nadir Durrani, Philipp Koehn, Helmut Schmid, and
Alexander Fraser. 2014b. Investigating the Useful-
ness of Generalized Word Representations in SMT. In
COLING’14, pages 421–432, Dublin, Ireland.

Nadir Durrani, Hassan Sajjad, Hieu Hoang, and Philipp
Koehn. 2014c. Integrating an Unsupervised Translit-
eration Model into Statistical Machine Translation. In
EACL’14, pages 148–153, Gothenburg, Sweden.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A Simple, Fast, and Effective Reparameteriza-
tion of IBM Model 2. In Proceedings of NAACL’13.

Andreas Eisele and Yu Chen. 2010. MultiUN: A Mul-
tilingual Corpus from United Nation Documents. In
LREC-2010, Valleta, Malta, May.

Michel Galley and Christopher D. Manning. 2008. A
Simple and Effective Hierarchical Phrase Reordering
Model. In EMNLP-2008, pages 848–856, Honolulu,
Hawaii, October.

Spence Green and John DeNero. 2012. A class-based
agreement model for generating accurately inflected
translations. In ACL-2012.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
Mada+ tokan: A toolkit for arabic tokenization, di-
acritization, morphological disambiguation, pos tag-
ging, stemming and lemmatization. In MEDAR, pages
102–109.

Kenneth Heafield. 2011. KenLM: faster and smaller lan-
guage model queries. In Sixth Workshop on Statistical
Machine Translation, EMNLP-2011, pages 187–197,
Edinburgh, Scotland, United Kingdom, July.

Liang Huang and David Chiang. 2007. Forest Rescoring:
Faster Decoding with Integrated Language Models. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, ACL’07, pages
144–151, Prague, Czech Republic.

Thorsten Joachims. 2006. Training linear svms in linear
time. In ACM SIGKDD-2006, pages 217–226. ACM.

Shereen Khoja. 2001. Apt: Arabic part-of-speech tagger.
In NAACL, pages 20–25.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,

15



Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL-
2007, Prague, Czech Republic.

Shankar Kumar and William J. Byrne. 2004. Minimum
Bayes-Risk Decoding for Statistical Machine Transla-
tion. In Proceedings of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, HLT-NAACL’04, pages
169–176, Boston, Massachusetts, USA.

Will Monroe, Spence Green, and Christopher D Man-
ning. 2014. Word segmentation of informal arabic
with domain adaptation. ACL, Short Papers.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL-2002, Philadel-
phia, PA, USA.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. Madamira: A fast, comprehensive tool for mor-
phological analysis and disambiguation of arabic. In
LREC-2014, Reykjavik, Iceland.

Hassan Sajjad, Francisco GuzmÃąn, Preslav Nakov,
Ahmed Abdelali, Kenton Murray, Fahad Al Obaidli,
and Stephan Vogel. 2013. QCRI at IWSLT 2013: Ex-
periments in Arabic-English and English-Arabic spo-
ken language translation. In IWSLT-13, December.

16


