
Proceedings of NAACL-HLT 2016, pages 1384–1394,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

End-to-End Argumentation Mining in Student Essays

Isaac Persing and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{persingq,vince}@hlt.utdallas.edu

Abstract

Understanding the argumentative structure of
a persuasive essay involves addressing two
challenging tasks: identifying the components
of the essay’s argument and identifying the
relations that occur between them. We ex-
amine the under-investigated task of end-to-
end argument mining in persuasive student es-
says, where we (1) present the first results
on end-to-end argument mining in student es-
says using a pipeline approach; (2) address
error propagation inherent in the pipeline ap-
proach by performing joint inference over the
outputs of the tasks in an Integer Linear Pro-
gramming (ILP) framework; and (3) propose a
novel objective function that enables F-score
to be maximized directly by an ILP solver.
We evaluate our joint-inference approach with
our novel objective function on a publicly-
available corpus of 90 essays, where it yields
an 18.5% relative error reduction in F-score
over the pipeline system.

1 Introduction

There has been a surge of interest in argumenta-
tion mining in recent years. Argumentation mining
typically involves addressing two subtasks: (1) ar-
gument component identification (ACI), which con-
sists of identifying the locations and types of the
components that make up the arguments (i.e., Ma-
jor Claims, Claims, and Premises), and (2) relation
identification (RI), which involves identifying the
type of relation that holds between two argument
components (i.e., Support, Attack, None). As a first
step towards mining arguments in persuasive essays,

Stab and Gurevych (S&G) annotated a corpus of 90
student essays with argument components and their
relations (Stab and Gurevych, 2014a). To illustrate,
consider the following excerpt from one essay:

From this point of view, I firmly believe that
(1) we should attach more importance to co-
operation during primary education. First of
all, (2) through cooperation, children can learn
about interpersonal skills which are significant
in the future life of all students. (3) What we
acquired from team work is not only how to
achieve the same goal with others but more
importantly, how to get along with others.

In this example, premise (3) supports claim (2),
which in turn supports major claim (1).

Using their annotated corpus, S&G presented ini-
tial results on simplified versions of the ACI and RI
tasks (Stab and Gurevych, 2014b). Specifically, they
applied their learned ACI classifier to classify only
gold argument components (i.e., text spans corre-
sponding to a Major Claim, Claim, or Premise in
the gold standard) or sentences that contain no gold
argument components (as non-argumentative). Sim-
ilarly, they applied their learned RI classifier to clas-
sify only the relation between two gold argument
components. In other words, they simplified both
tasks by avoiding the challenging task of identify-
ing the locations of argument components. Conse-
quently, their approach cannot be applied in a realis-
tic setting where the input is an unannotated essay.

Motivated by this weakness, we examine in this
paper argument mining in persuasive student essays
in a considerably more challenging setting than that
of S&G: the end-to-end setting. In other words, we

1384

perform argument mining on raw, unannotated es-
says. Our work makes three contributions. First,
we present the first results on end-to-end argument
mining in student essays using a pipeline approach,
where the ACI task is performed prior to the RI task.
Second, to avoid the error propagation problem in-
herent in the pipeline approach, we perform joint in-
ference over the outputs of the ACI and RI classi-
fiers in an Integer Linear Programming (ILP) frame-
work (Roth and Yih, 2004), where we design con-
straints to enforce global consistency. Finally, we
argue that the typical objective function used exten-
sively in ILP programs for NLP tasks is not ideal for
tasks whose primary evaluation metric is F-score,
and subsequently propose a novel objective function
that enables F-score to be maximized directly in an
ILP framework. We believe that the impact of our
work goes beyond argument mining, as our F-score
optimizing objective function is general enough to
be applied to any ILP-based joint inference tasks.

2 Related Work

Recall that identifying argumentative discourse
structures consists of (1) identifying the locations
and types of the argument components, and (2) iden-
tifying how they are related to each other. Below we
divide related works into five broad categories based
on which of these subtasks they addressed.

Argument location identification. Works in this
category aimed to classify whether a sentence con-
tains an argument or not (Florou et al., 2013; Moens
et al., 2007; Song et al., 2014; Swanson et al., 2015).
The usefulness of existing works is somewhat lim-
ited by the task’s coarseness: it won’t tell us which
portion of a potentially long sentence contains the
argument, for instance, but it can serve as a poten-
tially useful first step in argument mining.

Argument component typing. Works in this cat-
egory focused on determining the type of an argu-
ment. The vast majority of previous works per-
form argument component typing at the sentence
level. For instance, Rooney et al. (2012) classi-
fied sentences into premises, conclusions, premise-
conclusions, and non-argumentative components;
Teufel (1999) classified each sentence into one of
seven rhetorical classes (e.g., claim, result, pur-
pose); Burstein et al. (2003), Ong et al. (2014), and

Falakmasir et al. (2014) assigned argumentative la-
bels (e.g., claim, thesis, conclusion) to an essay’s
sentences; Levy et al. (2014) detected sentences
that support or attack an article’s topic; Lippi and
Torroni (2015; 2016) detected sentences containing
claims; and Rinott et al. (2015) detected sentences
containing evidence for a given claim. Sentence-
level argument component typing has limitations,
however. For example, it can identify sentences con-
taining claims, but it cannot tell how many claims a
sentence has or where in the sentence they are.
Argument location identification and typing.
Some works focused on the more difficult task of
clause-level argument component typing (Park and
Cardie, 2014; Goudas et al., 2015; Sardianos et
al., 2015), training a Conditional Random Field to
jointly identify and type argument components.
Argument component typing and relation identi-
fication. Given the difficulty of clause-level argu-
ment component location identification, recent argu-
ment mining works that attempted argument compo-
nent typing and relation identification are not end-to-
end. Specifically, they simplified the task by assum-
ing as input gold argument components (Stab and
Gurevych, 2014b; Peldszus and Stede, 2015).
End-to-end argument mining. To our knowl-
edge, only Palau and Moens (2009) addressed all
the argument mining subtasks. They employed a
hand-crafted context-free grammar (CFG) to gener-
ate (i.e., extract and type) argument components at
the clause level and identify the relations between
them. A CFG approach is less appealing in the
essay domain because (1) constructing a CFG is a
time- and labor-intensive task, (2) which would be
more difficult in the less-rigidly structured essay do-
main, which contains fewer rhetorical markers indi-
cating component types (e.g. words like “reject”, or
“dismiss” which indicate a legal document’s conclu-
sion); and (3) about 20% of essay arguments’ struc-
tures are non-projective (i.e., when mapped to the
ordered text, their argument trees have edges that
cross), and thus cannot be captured by CFGs.

3 Corpus

Our corpus consists of 90 persuasive essays col-
lected and annotated by S&G. Some relevant statis-
tics are shown in Table 1. Each essay is an average

1385

Essays: 90 Paragraphs: 417 Sentences: 1,673
Major Claims: 90 Claims: 429 Premises: 1,033
Support Relations: 1,312 Attack Relations: 161

Table 1: Corpus statistics.

of 4.6 paragraphs (18.6 sentences) in length and is
written in response to a topic such as “should high
school make music lessons compulsory?” or “com-
petition or co-operation-which is better?”.

The corpus annotations describe the essays’ argu-
ment structure, including the locations and types of
the components that make up the arguments, and the
types of relations that hold between them. The three
annotated argument component types include: Ma-
jor Claims, which express the author’s stance with
respect to the essay’s topic, Claims, which are con-
troversial statements that should not be accepted by
readers without additional support, and Premises,
which are reasons authors give to persuade read-
ers about the truth of another argument component
statement. The two relation types include: Support,
which indicates that one argument component sup-
ports another, and Attack, which indicates that one
argument component attacks another.

4 Pipeline-Based Argument Mining

Next, we describe our end-to-end pipeline argument
mining system, which will serve as our baseline. In
this system, ACI is performed prior to RI.

4.1 Argument Component Identification
We employ a two-step approach to the ACI task,
where we first heuristically extract argument com-
ponent candidates (ACCs) from an essay, and then
classify each ACC as either a premise, claim, major
claim, or non-argumentative, as described below.

4.1.1 Extracting ACCs
We extract ACCs by constructing a set of low pre-
cision, high recall heuristics for identifying the lo-
cations in each sentence where an argument com-
ponent’s boundaries might occur. The majority of
these rules depend primarily on a syntactic parse
tree we automatically generated for all sentences in
the corpus using the Stanford CoreNLP (Manning et
al., 2014) system. Since argument components are a
clause-level annotation and therefore a large major-
ity of annotated argument components are substrings

(a) Potential left boundary locations

Rule
1 Exactly where the S node begins.
2 After an initial explicit connective, or if the con-

nective is immediately followed by a comma, af-
ter the comma.

3 After nth comma that is an immediate child of
the S node.

4 After nth comma.

(b) Potential right boundary locations

Rule
5 Exactly where the S node ends, or if S ends in

a punctuation, immediately before the punctua-
tion.

6 If the S node ends in a (possibly nested) SBAR
node, immediately before the nth shallowest
SBAR.1

7 If the S node ends in a (possibly nested) PP node,
immediately before the nth shallowest PP.

Table 2: Rules for extracting ACC boundary locations.

of a simple declarative clause (an S node in the parse
tree), we begin by identifying each S node in a sen-
tence’s tree.

Given an S clause, we collect a list of left and right
boundaries where an argument component may be-
gin or end. The rules we used to find these bound-
aries are summarized in Table 2. We then construct
ACCs by combining each left boundary with each
right boundary that occurs after it. As a result, we
are able to find exact (boundaries exactly match) and
approximate (over half of tokens shared) matches for
92.1% and 98.4% respectively of all ACs.

4.1.2 Training the ACI Classifier
We train a classifier for ACI using MALLET’s (Mc-
Callum, 2002) implementation of maximum en-
tropy classification. We create a training instance
from each ACC extracted above. If the ACC’s
left and right endpoints exactly match an annotated
argument component’s, the corresponding training
instance’s class label is the same as that of the
component. Otherwise, its class label is “non-

1An additional point that requires explanation is that the last
two right boundary rules mention “possibly nested” nodes. In
boundary rule 7, for example, this means that the S node might
end in a PP node, which itself has a PP node as its last child,
and so on. We generate a separate right boundary immediately
before each of these PP nodes.

1386

argumentative”. Each training instance is repre-
sented using S&G’s structural, lexical, syntactic, in-
dicator, and contextual features for solving the same
problem. Briefly, the structural features describe an
ACC and its covering sentence’s length, punctua-
tions, and location in the essay. Lexical features de-
scribe the 1−3 grams of the ACC and its covering
sentence. Syntactic features are extracted from the
ACC’s covering sentence’s parse tree and include
things such as production rules. Indicator features
describe any explicit connectives that immediately
precede the ACC. Contextual features describe the
contents of the sentences preceding and following
the ACC primarily in ways similar to how the struc-
tural features describe the covering sentence.

4.2 Relation Identification

We consider RI between pairs of argument compo-
nents to be a five class classification problem. Given
a pair of ACCs A1 and A2 where A1 occurs before
A2 in the essay, either they are unrelated, A1 sup-
ports A2, A2 supports A1, A1 attacks A2, or A2 at-
tacksA1. Below we describe how we train and apply
our classifier for RI.

We learn our RI classifier using MALLET’s im-
plementation of maximum entropy classification.
Each training instance, which we call a training re-
lation candidate (RC), consists of a pair of ACCs
and one of the above five labels. By default, the in-
stance’s label is “no relation” unless each ACC has
the exact boundaries of a gold standard argument
component and one of the remaining four relations
holds between the two gold argument components.

We create training RCs as follows. We construct
RCs corresponding to true relations out of all pairs
of argument components in a training essay having
a gold relation. As the number of potential RCs far
exceeds the number of gold relations in an essay, we
undersample the “no relation” class in the following
way. Given a pair of argument components A and B
between which there is a gold relation, we defineAp

to be the closest previous ACC in the essay as gen-
erated in Section 4.1.1 such that Ap’s text doesn’t
overlap with A. We also define As as the closest
succeeding ACC after A such that As and A do not
overlap. We defineBp andBs similarly with respect
toB. From these ACCs, we generate the the four in-
stances (Ap, B), (As, B), (A,Bp), and (A,Bs), all

of which have the “no relation” label, as long as the
pairs’ text sequences do not overlap. We believe the
resulting “no relation” training instances are infor-
mative since each one is “close” to a gold relation.
We represent each instance using S&G’s structural,
lexical, syntactic, and indicator features for solving
the same problem. Briefly, RC structural features
describe many of the same things about each ACC
as did the ACC structural features, though they also
describe the difference between the ACCs (e.g. the
difference in punctuation counts). Lexical features
consist primarily of the unigrams appearing in each
ACC and word pairs, where each word from one
ACC is paired with each word from the other. Syn-
tactic and indicator features encode the same infor-
mation about each ACC as the ACC syntactic and
indicator features did.

We now apply the classifier to test essay RCs,
which are created as follows. Given that this is a
pipelined argument mining system, in order to en-
sure that the RI system’s output is consistent with
that of the ACI system, we generate test RCs from
all possible pairs of ACCs that the ACI system pre-
dicted are real components (i.e. it labeled them
something other than “non-argumentative”).

5 Joint Inference for Argument Mining

5.1 Motivation

There are two major problems with the pipeline ap-
proach described in the previous section. First, many
essay-level within-task constraints are not enforced.
For instance, the ACI task has the constraint that
each essay has exactly one major claim, and the RI
task has the constraint that each claim has no more
than one parent. This problem arises because our
ACI and RI classifiers, like those of S&G, classify
each ACI and RI test instance independently of other
test instances. We propose to enforce such essay-
level within-task constraints in an ILP framework,
employing ILP to perform joint inference over the
outputs of our ACI and RI classifiers so that the re-
sulting classifications satisfy these constraints.2

2Note that while we partition documents into folds in
our cross-validation experiments, S&G partition instances into
folds. Hence, S&G’s evaluation setting prevents them from en-
forcing essay-level constraints in addition to being unrealistic
in practice.

1387

The second problem with the pipeline approach
is that errors made early on in the pipeline propa-
gate. For instance, assume that a Support relation
exists between two argument components in a test
essay. If the pipeline system fails to (heuristically)
extract one or both of these argument components,
or if it successfully extracts them but misclassifies
one or both of them as non-argumentative, then the
pipeline system will not be able to identify the rela-
tionship between them because no test RCs will be
created from them. The above problem arises be-
cause the RI classifier assumes the most probable
output of the ACI classifier for each ACC as input.
Hence, one possible solution to this problem is to
make use of the n-best outputs of the ACI classifier
for each argument component type, as this increases
the robustness of the pipeline to errors made by the
ACI classifier.

We obtain the n-best ACI outputs and employ
them as follows. Recall that the ACI system uses
a maximum entropy classifier, and therefore its out-
put for each ACC is a list of probabilities indicat-
ing how likely it is that the ACC belongs to each
of the four classes (premise, claim, major claim, or
non-argumentative). This means that it is possible
to rank all the ACCs in a text by these probabilities.
We use this idea to identify (1) the 3 most likely
premise ACCs from each sentence, (2) the 5 most
likely claim ACCs from each paragraph, and (3) the
5 most likely major claim ACCs from each essay.3

Given these most likely ACC lists, we combine pairs
of ACCs into test RCs for the RI classifier in the
following way. As long as the ACCs do not over-
lap, we pair (1) each likely premise ACC with every
other likely ACC of any type occurring in the same
paragraph, and (2) each likely claim ACC with each
likely major claim ACC. We then present these test
RCs to the RI classifier normally, making no other
changes to how the pipeline system works.

Employing n-best ACI outputs, however, intro-
duces another problem: the output of the RI classi-
fier may no longer be consistent with that of the ACI
classifier because the RI classifier may posit a rela-

3We select more premise than claim ACCs (3 per sentence
vs 5 per paragraph) because the corpus contains over twice as
many premises as claims. We select major claim ACCs only
from the first and last paragraph because major claims never
occur in middle paragraphs.

tionship between two ACCs that the ACI classifier
labeled non-argumentative. To enforce this cross-
task consistency constraint, we also propose to em-
ploy ILP. The rest of this section details our ILP-
based joint inference approach for argument mining,
which addresses both of the aforementioned prob-
lems with the pipeline approach.

5.2 Basic ILP Approach
We perform joint inference over the outputs of the
ACI and RI classifiers by designing and enforc-
ing within-task and cross-task constraints in the ILP
framework. Specifically, we create one ILP program
for each test essay, as described below.

Let Xni, Xpi, Xci, and Xmi be binary indi-
cator variables representing whether the ILP solver
believes ACC i has type none, premise, claim, and
major claim, respectively. Let Cni, Cpi, Cci, and
Cmi be the probabilities that ACC i has type none,
premise, claim, and major claim, respectively, as
dictated by the ACI maximum entropy classifier’s
output.4 Let a be the count of ACCs.

Let Y ni,j , Y si,j , Y ai,j , Y rsi,j , and Y rai,j be
binary indicator variables representing whether the
ILP solver believes ACCs i and j have no relation, i
is supported by j, i is attacked by j, j is supported
by i, and j is attacked by i, respectively, where (i, j)
appears in the set of RCs B that we presented to the
RI system as modified in Section 5.1. We assume all
other ACC pairs have no relation. Let Dni,j , Dsi,j ,
Dai,j , Drsi,j , and Drai,j be the probabilities that
component candidates i and j have no relation, i is
supported by j, i is attacked by j, j is supported by
i, and j is attacked by i, respectively, as dictated by
the modified RI classifier described in Section 5.1.4

Given these definitions and probabilities, our ILP
program’s default goal is to find an assignment
of these variables X and Y in order to maximize
P (X) + P (Y), where:

P (X) =
1
a

a∑
i=1

log(CniXni + CpiXpi

+CciXci + CmiXmi)

(1)

4We additionally reserve .001 probability mass to distribute
evenly among Cni, Cpi, Cci, and Cmi (or Dni,j , Dsi,j ,
Dai,j , Drsi,j , and Drai,j) to prevent math errors involving
taking the log of 0 which might otherwise occur in the formulas
below.

1388

P (Y) =
1
|B|

∑
(i,j)∈B

log(Dni,jY ni,j +Dsi,jY si,j

+Dai,jY ai,j +Drsi,jY rsi,j +Drai,jY rai,j)

(2)

subject to the integrity constraints that: (3) an ACC
is either not an argument component or it has ex-
actly one of the real argument component types, (4)
a pair of component candidates (i, j) must have ex-
actly one of the five relation types, and (5) if there is
a relation between ACCs i and j, i and j must each
be real components.5

Xni +Xpi +Xci +Xmi = 1 (3)

Y ni,j + Y si,j + Y ai,j + Y rsi,j + Y rai,j = 1 (4)

(Xpi +Xci +Xmi) + (Xpj +Xcj +Xmj)
−2(Y si,j + Y ai,j + Y rsi,j + Y rai,j) ≥ 0

(5)

In the objective function, a and |B| serve to bal-
ance the contribution of the two tasks, preventing
one from dominating the other.

5.3 Enforcing Consistency Constraints
So far we have described integrity constraints, but
recall that our goal is to enforce consistency by im-
posing within-task and cross-task constraints, which
force the ILP solutions to more closely resemble
real essay argument structures. Our consistency con-
straints fall into four categories.

Our constraints on major claims are that: (6) there
is exactly one major claim in each essay, (7) major
claims always occur in the first or last paragraph,
and (8) major claims have no parents.

a∑
i=1

Xmi = 1 (6)

Xmi = 0 | i /∈ first or last paragraph (7)

Y si,j +Xmj ≤ 1 , Y ai,j +Xmj ≤ 1
Y rsi,j +Xmi ≤ 1 , Y rai,j +Xmi ≤ 1

(8)

Our constraints on premises are that: (9) a
premise has at least one parent, and (10) a premise is
related only to components in the same paragraph.

5Note that because of previous integrity constraints, the first
term in constraint 5 is 1 only if we predict that i is a real com-
ponent, the second term is 1 only if we predict that j is a real
component, and the third term is −2 only if we predict that
there is a relationship between them. Otherwise, each term is 0.
Thus term 3 prevents us from predicting a relationship between
i and j unless the first and second terms cancel it out through
predicting that i and j are real components.

∑
{i|(i,j)∈B}

(Y si,j + Y ai,j)

+
∑

{k|(j,k)∈B}
(Y rsj,k + Y raj,k)−Xpj ≥ 0

(9)

for i < j, i /∈ Par(j) : Xpj − Y ni,j ≤ 0
for k > j, k /∈ Par(j) : Xpj − Y nj,k ≤ 0

(10)

where i < j and j < k mean ACC i appears before
j, and j appears before k, and Par(j) is the set of
ACCs in j’s covering paragraph.

Our constraints on claims state that: (11) a claim
has no more than one parent6, and (12) if a claim has
a parent, that parent must be a major claim.(∣∣∣{i|(i, j) ∈ B}∣∣∣+ ∣∣∣{k|(j, k) ∈ B}∣∣∣)Xcj

+
∑

{i|(i,j)∈B}
(Y si,j + Y ai,j)

+
∑

{k|(j,k)∈B}
(Y rsj,k + Y raj,k)

≤
∣∣∣{i|(i, j) ∈ B}∣∣∣+ ∣∣∣{k|(j, k) ∈ B}∣∣∣+ 1

(11)

for j < k, Xmk −Xcj − Y rsj,k − Y raj,k ≥ −1
for j > i, Xmi −Xcj − Y si,j − Y ai,j ≥ −1

(12)

The last category, which comprises constraints
that do not fit well into any other category, are: (13)
the boundaries of actual components never overlap,
(14) each paragraph must have at least one claim or
major claim, and (15) each sentence may have at
most two argument components.7

for i overlaps j , Xni +Xnj ≥ 1 (13)

∀ paragraphs P :
∑
i∈P

Xci +Xmi ≥ 1 (14)

∀ sentences S :
∑
i∈S

Xpi +Xci +Xmi ≤ 2 (15)

We solve each ILP program using Gurobi.8

6The coefficient of Xcj is equal to the number of terms in
the two summations on the left hand side of the equation. The
intention is that component j’s claim status should have equal
weight with the relations it might potentially participate in, so
it is possible for j to participate as a child in a relation with all
other available components unless it is a claim, in which case it
can participate in at most one relation as a child.

7Unlike the other constraints, the last two constraints are
only mostly true: 5% of paragraphs have no claims or major
claims, and 1.2% of sentences have 3 or more components.

8http://www.gurobi.com

1389

5.4 F-score Maximizing Objective Function

The objective function we employ in the previous
subsection attempts to maximize the average prob-
ability of correct assignment of variables over the
ACI and RI problems. This kind of objective func-
tion, which aims to maximize classification accu-
racy, was originally introduced by Roth and Yih
(2004) in their seminal ILP paper, and has since then
been extensively applied to NLP tasks. However, it
is arguably not an ideal objective function for our
task, where F-score rather than classification accu-
racy is used as the evaluation metric.

In this section, we introduce a novel method for
constructing an ILP objective function that directly
maximizes the average F-score over the two prob-
lems. Recall that F-score can be simplified to:

F =
2TP

2TP + FP + FN
(16)

where TP, FP, and FN are the counts of true pos-
itives, false positives, and false negatives respec-
tively. Unfortunately, we cannot use this equation
for F-score in an ILP objective function for two rea-
sons. First, this equation involves division, which
cannot be handled using ILP since ILP can only han-
dle linear combinations of variables. Second, TP, FP,
and FN need to be computed using gold annotations,
which we don’t have in a test document. We propose
to instead maximize F by maximizing the following:

G = α2TPe − (1− α)(FPe + FNe) (17)

where TPe, FPe, and FNe, are estimated values for
TP , FP , and FN respectively, and α attempts to
balance the importance of maximizing the numera-
tor vs minimizing the denominator.9 We ignore the
2TP term in the denominator because minimizing it
would directly reduce the numerator.

To maximize average F-score, we can therefore
attempt to maximize the function Gc+Gr

2 , where Gc

and Gr are the values of G in equation 17 as calcu-
lated using the estimated values from the ACI and
RI problem respectively.

The question that still remains is, how can we es-
timate values for TP , FP , and FN mentioned in

9We tune α on the development set, allowing it to take any
value from 0.7, 0.8, or 0.9, as this range tended to perform well
in early experiments.

Equation 17? Our key idea is inspired by the E-step
of the Expectation-Maximization algorithm (Demp-
ster et al., 1977): while we cannot compute the ac-
tual TP , FP , and FN due to the lack of gold anno-
tations, we can compute their expected values using
the probabilities returned by the ACI and RI classi-
fiers. Using the notation introduced in Section 5.2,
the expected TP , FP , and FN values for the ACI
task can be computed as follows:

TPe =
∑
i,g

CgiXgi (18)

FPe =
∑
i,g

(1− Cgi)Xgi (19)

FNe =
∑
i,g

(
Xgi

∑
h6=g

Chi

)
+
∑

i

Xni(1−Cni) (20)

where g and h can be any argumentative class from
the ACI problem (i.e. premise (p), claim (c), or ma-
jor claim (m)). The formulas we use to calculate
TPe, FPe, and FNe for the RI problem are identi-
cal except C is replaced with D, X is replaced with
Y , and g and h can be any class from the RI problem
other than no-relation.

6 Evaluation

6.1 Experimental Setup
Corpus. As mentioned before, we use as our cor-
pus the 90 essays annotated with argumentative dis-
course structures by S&G. All of our experiments
are conducted via five-fold cross-validation on this
corpus. In each fold experiment, we reserve 60% of
the essays for training, 20% for development (select-
ing features and tuning α), and 20% for testing.
Evaluation metrics. To calculate F-score on each
task using Equation 16, we need to explain what
constitutes a true positive, false positive, or false
negative on each task. Given that j is a true argu-
ment component and i is an ACC, the formulas for
the ACI task are:

TP =
∣∣∣{j ∣∣ ∃i |gl(j) = pl(i) ∧ i .= j}

∣∣∣ (21)

FP =
∣∣∣{i∣∣ pl(i) 6= n∧@j | gl(j) = pl(i)∧i .= j}

∣∣∣ (22)

FN =
∣∣∣{j ∣∣ @i |gl(j) = pl(i) ∧ i .= j}

∣∣∣ (23)

where gl(j) is the gold standard label of j, pl(i) is
the predicted label of i, n is the non-argumentative
class, and i .= j means i is a match for j. i and j
are considered an exact match if they have exactly

1390

ACI RI Avg
System MC-F C-F P-F P R F S-F A-F P R F F

Approx BASE 11.1 26.9 51.9 64.0 33.6 44.0 6.1 0.8 5.7 6.2 5.8 24.9
OUR 22.2 42.6 66.0 56.6 57.9 57.2 21.3 1.1 16.8 28.0 20.4 38.8

Exact BASE 7.4 24.2 43.2 50.4 29.6 37.3 4.4 0.8 4.1 4.7 4.3 20.8
OUR 16.9 37.4 53.4 47.5 46.7 47.1 13.6 0.0 12.7 15.4 12.9 30.0

Table 3: Five-fold cross-validation average percentages for argument component identification (ACI) and relation identification

(RI) for OUR system and the pipeline-based BASEline system. Column abbreviations are Major Claim F-score (MC-F), Claim

F-score (C-F), Premise F-score (P-F), Precision (P), Recall (R), F-score (F), Support F-score (S-F), and Attack F-score (A-F).

the same boundaries, whereas they are considered
an approximate match if they share over half their
tokens.

We perform most of our analysis on approximate
match results rather than exact match results as it
can be difficult even for human annotators to iden-
tify exactly the same boundaries for an argument
component.10 We use the same formulas for calcu-
lating these numbers for the RI problem except that
j and i represent a true relation and an RC respec-
tively, two relations approximately (exactly) match
if both their source and target ACCs approximately
(exactly) match, and n is the no-relation class.

6.2 Results and Discussion

Approximate and exact match results of the pipeline
approach (BASE) and the joint approach (OUR) are
shown in Table 3. As we can see, using approximate
matching, OUR system achieves highly significant11

improvements over the pipelined baseline system by
a variety of measures.12 The most important of these
improvements is shown in the last column, where
our system outperforms the baseline by 13.9% ab-

10Approximate match has been used in evaluating opinion
mining systems (e.g., Choi et al. (2006), Yang and Cardie
(2013)), where researchers have also reported difficulties in
having human annotators identify exactly the same boundaries
for an opinion expression and its sources and targets. They have
adopted an even more relaxed notion of approximate match:
they consider two text spans an approximate match if they share
at least one overlapping token.

11Boldfaced results in Table 3 are highly significant (p <
0.002, paired t-test) compared to the baseline.

12All the results in Tables 3 and 4 are averaged across five
folds, so it is not true that Favg =

2PavgRavg

Pavg+Ravg
. Our F-score

averaging method is preferable to calculating F-scores using the
above formula because the formula can be exploited to give arti-
ficially inflated F-scores by alternating between high precision,
low recall, and low precision, high recall labelings on different
folds.

solute F-score (a relative error reduction of 18.5%).
This is the most important result because it most di-
rectly measures our performance in pursuit of our
ultimate goal, to maximize the average F-score over
both the ACI and RI problems. The highly signif-
icant improvements in other measures, particularly
the improvements of 13.2% and 14.6% in ACI and
RI F-score respectively, follow as a consequence of
this maximization. Using exact matching, the differ-
ences in scores between OUR system and BASE’s
are smaller and highly significant with respect to a
smaller number of measures. In particular, under
Exact matching OUR system’s performances on the
RI-P and RI-R metrics are significant (p < 0.02),
while under Approx matching, they are highly sig-
nificant (p < 0.002).

6.3 Ablation Results
To analyze the performance gains yielded by each
improvement to our system, we show ablation re-
sults in Table 4. Each row of the table shows the re-
sults of one ablation experiment on the test set. That
is, we obtain them by removing exactly one feature
set or improvement type from our system.

The Baseline feature sets we remove include
those for the ACI task (Cb) from Section 4.1.2 and
those for the RI task (Rb) from Section 4.2.13 The
ILP improvement sets we remove are the Default
ILP (Id) system14 from Section 5.2, the Major claim
(Im), Premise (Ip), Claim (Ic), and Other (Io) con-
straints from Section 5.3 Equations 6−8, 9−10,

13When we remove a baseline feature set, we represent each
instance to the corresponding classifier using no features. As
a result, the classifier’s predictions are based solely on the fre-
quency of the classes seen during training.

14Note that removing the default ILP system (Id) necessitates
simultaneously removing all other ILP-related improvements.
Thus, a system without it is equivalent to BASE, but with RCs
generated as described in Section 5.1.

1391

Mod ACI RI Avg
P R F P R F F

ALL 54.9 58.8 56.7 16.7 26.4 20.4 38.6
Cb 44.0 38.5 40.9 14.2 14.8 14.4 27.7
Rb 57.9 58.7 58.2 16.6 24.0 18.2 38.2
Id 64.0 33.6 44.0 6.6 21.8 10.1 27.0
Im 44.6 46.7 45.6 14.7 27.8 19.2 32.4
Ip 51.5 58.4 54.7 13.2 26.1 17.3 36.0
Ic 49.0 51.5 50.2 14.2 27.9 18.8 34.5
Io 40.5 65.9 50.1 7.0 29.2 11.2 30.7
If 61.1 40.4 48.5 22.3 15.7 18.2 33.4

Table 4: Ablation results. How OUR system performs on
one development set as measured by percent Precision,
Recall, and F-score if each improvement or feature set is
removed.

11−12, and 13−15 respectively, and the F-score
maximizing objective function from Section 5.4.

Broadly, we see from the last column that all of
our improvement sets are beneficial (usually signifi-
cantly15) to the system, as performance drops with
their removal. Notice also that whenever remov-
ing an ILP improvement set harms average F-score,
it also simultaneously harms ACI and RI F-scores,
usually significantly. This holds true even when the
improvement set deals primarily only with one task
(e.g. Io for the ACI task), suggesting that our system
is benefiting from joint inference over both tasks.

6.4 Error Analysis and Future Work

Table 3 shows that OUR system has more trouble
with the RI task than the ACI task. A closer inspec-
tion of OUR system’s RI predictions reveals that its
low precision is mostly due to predicted relation-
ships wherein one of the participating ACCs is not
a true argument component. Since false positives in
the ACI task have an outsized impact on RI preci-
sion, it may be worthwhile to investigate ILP objec-
tive functions that more harshly penalize false posi-
tive ACCs.

The RI task’s poor recall has two primary causes.
The first is false negatives in the ACI task. It is im-
possible for an RI system to correctly identify a re-
lationship between two ACs if the ACI system fails
to identify either one of them as an AC. We be-
lieve ACI recall, and by extension, RI recall, can be

15Boldfaced results are significantly lower than ALL, the
system with all improvements left intact, with p < 0.05.

improved by exploiting the following observations.
First, we noticed that many argument components
OUR system fails to identify, regardless of their
type, contain words that are semantically similar to
words in the essay’s topic (e.g., if the topic men-
tions “school”, argument components might men-
tion “students”). Hence, one way to improve ACI
recall, and by extension, RI recall, would be to cre-
ate ACI features using a semantic similarity mea-
sure such as the Wikipedia Link-based similarity
measure (Milne and Witten, 2008). Second, major
claims are involved in 32% of all relationships, but
OUR system did an especially poor job at identify-
ing them due to their scarcity. Since we noticed that
major claims tend to include strong stancetaking lan-
guage (e.g., words like “should”, “must”, and “be-
lieve”), it may be possible to improve major claim
identification by constructing an arguing language
lexicon as in Somasundaran and Wiebe (2010), then
encoding the presence of any of these arguing words
as ACC features.

The second major cause of OUR system’s poor
RI recall is its failure to identify relationships be-
tween two correctly extracted ACs. We noticed
many of the missed relationships involve ACs that
mention some of the same entities. Thus, a coref-
erence resolver could help us build features that de-
scribe whether two ACCs are talking about the same
entities.

7 Conclusion

We presented the first results on end-to-end argu-
ment mining in persuasive student essays using a
pipeline approach, improved this baseline approach
by designing and employing global consistency con-
straints to perform joint inference over the outputs of
the tasks in an ILP framework and proposed a novel
objective function that enables F-score to be max-
imized directly by an ILP solver. In an evaluation
on Stab and Gurevych’s corpus of 90 essays, our ap-
proach yields an 18.5% relative error reduction in
F-score over the pipeline system.

Acknowledgments

We thank the three anonymous reviewers for their
detailed comments. This work was supported in part
by NSF Grants IIS-1147644 and IIS-1219142.

1392

References

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the WRITE stuff: Automatic identification of
discourse structure in student essays. IEEE Intelligent
Systems, 18(1):32–39.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing,
pages 431–439.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39:1–38.

Mohammad Hassan Falakmasir, Kevin D. Ashley, Chris-
tian D. Schunn, and Diane J. Litman. 2014. Identify-
ing thesis and conclusion statements in student essays
to scaffold peer review. In Intelligent Tutoring Sys-
tems, pages 254–259. Springer International Publish-
ing.

Eirini Florou, Stasinos Konstantopoulos, Antonis Kouk-
ourikos, and Pythagoras Karampiperis. 2013. Argu-
ment extraction for supporting public policy formu-
lation. In Proceedings of the 7th Workshop on Lan-
guage Technology for Cultural Heritage, Social Sci-
ences, and Humanities, pages 49–54.

Theodosios Goudas, Christos Louizos, Georgios Petasis,
and Vangelis Karkaletsis. 2015. Argument extraction
from news, blogs, and the social web. International
Journal on Artificial Intelligence Tools, 24(5).

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aha-
roni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of the 25th In-
ternational Conference on Computational Linguistics,
pages 1489–1500.

Marco Lippi and Paolo Torroni. 2015. Context-
independent claim detection for argument mining. In
Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence, pages 185–191.

Marco Lippi and Paolo Torroni. 2016. Argument mining
from speech: Detecting claims in political debates. In
Proceedings of the 30th AAAI Conference on Artificial
Intelligence.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Andrew Kachites McCallum. 2002. MALLET: A Ma-
chine Learning for Language Toolkit. http://
mallet.cs.umass.edu.

David Milne and Ian Witten. 2008. An effective, low-
cost measure of semantic relatedness obtained from
Wikipedia links. In Proceedings of AAAI Workshop
on Wikipedia and Artificial Intelligence: an Evolving
Synergy, pages 25–30.

Marie-Francine Moens, Erik Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detection
of arguments in legal texts. In Proceedings of the 11th
International Conference on Artificial Intelligence and
Law, pages 225–230.

Nathan Ong, Diane Litman, and Alexandra Brusilovsky.
2014. Ontology-based argument mining and auto-
matic essay scoring. In Proceedings of the First Work-
shop on Argumentation Mining, pages 24–28.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: The detection, classifi-
cation and structure of arguments in text. In Proceed-
ings of the 12th International Conference on Artificial
Intelligence and Law, pages 98–107.

Joonsuk Park and Claire Cardie. 2014. Identifying ap-
propriate support for propositions in online user com-
ments. In Proceedings of the First Workshop on Argu-
mentation Mining, pages 29–38.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in mst-style discourse parsing for argumenta-
tion mining. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 938–948.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam Slonim.
2015. Show me your evidence - an automatic method
for context dependent evidence detection. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 440–450.

Niall Rooney, Hui Wang, and Fiona Browne. 2012. Ap-
plying kernel methods to argumentation mining. In
Proceedings of the 21st International Florida Artifi-
cial Intelligence Research Society Conference.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Conference
on Computational Natural Language Learning, pages
1–8.

Christos Sardianos, Ioannis Manousos Katakis, Georgios
Petasis, and Vangelis Karkaletsis. 2015. Argument
extraction from news. In Proceedings of the Second
Workshop on Argumentation Mining, pages 56–66.

Swapna Somasundaran and Janyce Wiebe. 2010. Recog-
nizing stances in ideological on-line debates. In Pro-
ceedings of the NAACL HLT 2010 Workshop on Com-
putational Approaches to Analysis and Generation of
Emotion in Text, pages 116–124.

Yi Song, Michael Heilman, Beata Beigman Klebanov,
and Paul Deane. 2014. Applying argumentation

1393

schemes for essay scoring. In Proceedings of the First
Workshop on Argumentation Mining, pages 69–78.

Christian Stab and Iryna Gurevych. 2014a. Annotating
argument components and relations in persuasive es-
says. In Proceedings of the 25th International Confer-
ence on Computational Linguistics, pages 1501–1510.

Christian Stab and Iryna Gurevych. 2014b. Identify-
ing argumentative discourse structures in persuasive
essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 46–56.

Reid Swanson, Brian Ecker, and Marilyn Walker. 2015.
Argument mining: Extracting arguments from online
dialogue. In Proceedings of the 16th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 217–226.

Simone Teufel. 1999. Argumentative Zoning: Informa-
tion Extraction from Scientific Text. Ph.D. thesis, Uni-
versity of Edinburgh.

Bishan Yang and Claire Cardie. 2013. Joint inference
for fine-grained opinion extraction. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1640–1649.

1394

