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Abstract

Jauhar et al. (2015) recently proposed to
learn sense-specific word representations by
“retrofitting” standard distributional word rep-
resentations to an existing ontology. We ob-
serve that this approach does not require an
ontology, and can be generalized to any graph
defining word senses and relations between
them. We create such a graph using transla-
tions learned from parallel corpora. On a set of
lexical semantic tasks, representations learned
using parallel text perform roughly as well as
those derived from WordNet, and combining
the two representation types significantly im-
proves performance.

1 Introduction

Vector space models (VSMs) provide a powerful
tool for representing word meanings and modeling
the relations between them. While these models
have demonstrated impressive success in capturing
some aspects of word meaning (Landauer and Du-
mais, 1997; Turney et al., 2010; Mikolov et al.,
2013; Baroni et al., 2014; Levy et al., 2014), they
generally fail to capture the fact that single word
forms often have multiple meanings. This can lead
to counterintuitive results—for example, it should be
possible for the nearest word to rock to be stone in
everyday usage, punk in discussions of music, and
crack (cocaine) in discussions about drugs.

In a recent paper, Jauhar et al. (2015) introduce
a method for “retrofitting” generic word vectors to
create sense-specific vectors using the WordNet se-
mantic lexicon (Miller, 1995). From WordNet, they

create a graph structure comprising two classes of
relations: form-based relations between each word
form and its respective senses, and meaning-based
relations between word senses with similar mean-
ings. This graph structure is then used to transform a
traditional VSM into an enriched VSM, where each
point in the space represents a word sense, rather
than a word form. This approach is appealing as, un-
like with prior sense-aware representations, senses
are defined categories in a semantic lexicon, rather
than clusters induced from raw text (Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan et
al., 2015; Tian et al., 2014), and the method does
not require performing word sense disambiguation
(Guo et al., 2014).

In this paper, we observe that the crucial mean-
ing relationships in the Jauhar et al. retrofitting
process—the word sense graph—can be inferred
based on another widely available resource: bilin-
gual parallel text. This observation is grounded in
a well-established tradition of using cross-language
correspondences as a form of sense annotation (Gale
et al., 1992; Diab and Resnik, 2002; Ng et al., 2003;
Carpuat and Wu, 2007; Lefever and Hoste, 2010,
and others). Using parallel text to define sense dis-
tinctions sidesteps the persistent difficulty of identi-
fying a single correct sense partitioning based on hu-
man intuition, and avoids large investments in man-
ual curation or annotation.

We use parallel text and word alignment to in-
fer both word sense identities and inter-sense rela-
tions required for the sense graph, and apply the
approach of Jauhar et al. to retrofit existing word
vector representations and create a sense-based vec-
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tor space, using bilingual correspondences to define
word senses. When evaluated on semantic judgment
tasks, the vector spaces derived from this graph per-
form comparably to and sometimes better than the
WordNet-based space of Jauhar et al., indicating that
parallel text is a viable alternative to WordNet for
defining graph structure. Combining the output of
parallel-data-based and WordNet-based retrofitted
VSMs consistently improves performance, suggest-
ing that the different sense graph methods make
complementary contributions to this sense-specific
retrofitting process.

2 Model

Retrofitting. The technique introduced by Jauhar
et al. (2015) is based on what we will call a sense
graph, which we formulate as follows. Nodes in
the sense graph comprise the words wi in a vocabu-
lary W together with the senses sij for those words.
Labeled, undirected edges include word-sense edges
〈wi, si,j〉, which connect each word to all of its pos-
sible senses, and sense-sense edges 〈sij , si′j′〉 la-
beled with a meaning relationship r that holds be-
tween the two senses.

Jauhar et al. use WordNet to define their sense
graph. Synsets in the WordNet ontology define the
sense nodes, a word-sense edge exists between any
word and every synset to which it belongs, and
WordNet’s synset-to-synset relations of synonymy,
hypernymy, and hyponymy define the sense-sense
edges. Figure 1 illustrates a fragment of a WordNet-
based sense graph, suppressing edge labels.

Adopting Jauhar et al.’s notation, the original vec-
tor space to be retrofitted is defined by the original
word-form vectors ûi for each wi ∈W , and the goal
is to infer a set V of sense-specific vectors vij cor-
responding to each sense sij . Jauhar et al. use the
sense graph to define a Markov network with vari-
ables for all word vectors and sense vectors, within
which each word’s vector ûi is connected to all of
its sense vectors vij , and the variables for sense vec-
tors vij and vi′j′ are connected iff the corresponding
senses are connected in the sense graph.

Retrofitting then consists in optimizing the fol-
lowing objective, where α is a sense-agnostic
weight, and βr are relation-specific weights for

types of relations between senses:

C(V ) = arg min
V

∑
i−ij

α‖ûi − vij‖2

+
∑

ij−i′j′
βr‖vij − vi′j′‖2 (1)

The objective encourages similarity between a
word’s vector and its senses’ vectors (first term), as
well as similarity between the vectors for senses that
are related in the sense graph (second term).

Defining a sense graph from parallel text. Our
key observation is that, although Jauhar et al. (2015)
assume their sense graph to be an ontology, this
graph can be based on any inventory of word-sense
and sense-sense relationships. In particular, given
a parallel corpus, we can follow the tradition of
translation-as-sense-annotation: the senses of an En-
glish word type can be defined by different possible
translations of that word in another language.

Operationalizing this observation is straightfor-
ward, given a word-aligned parallel corpus. If En-
glish word form ei is aligned with Chinese word
form cj , then ei(cj) is a sense of ei in the sense
graph, and there is a word-sense edge 〈ei, ei(cj)〉.
Edges signifying a meaning relation are drawn be-
tween sense nodes if those senses are defined by the
same translation word. For instance, English senses
swear(发誓) and vow(发誓) both arise via align-
ment to 发誓 (fashi), so a sense-sense edge will be
drawn between these two sense nodes. See Figure 2
for illustration.

3 Evaluation

Tasks. We evaluate on both the synonym selection
and word similarity rating tasks used by Jauhar et al.
Synonym selection nicely demonstrates the advan-
tages afforded by sense partitioning: if we believe
that spin means “make up a story”, then we are not
likely to perform well on a question in which the
correct synonym is twirl. Word similarity rating, on
the other hand, is a classic test of the extent to which
vector representations simulate human intuitions of
word relations in general.

For synonym selection, we follow Jauhar et al. in
testing with ESL-50 (Turney, 2001), RD-300 (Jar-
masz and Szpakowicz, 2004), and TOEFL-80 (Lan-
dauer and Dumais, 1997), using maxSim for multi-
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Figure 1: Illustration of WordNet-based sense graph. Figure 2: Illustration of parallel-text-based sense graph.

sense models (Jauhar et al., 2015, eq. 9) to select the
most similar word.1 For similarity rating, we again
mirror Jauhar et al., testing with WS-353 (Finkel-
stein et al., 2001), RG-65 (Rubenstein and Good-
enough, 1965), MC-30 (Miller and Charles, 1991),
and the designated test subset (1000 items) of MEN-
3k (Bruni et al., 2014), using avgSim (Jauhar et al.,
2015, eq. 8) as the similarity rating, and evaluating
model ratings against human similarity ratings via
Spearman’s rank correlation coefficient (ρ).2

Initial word representations. We use the
word2vec (Mikolov et al., 2013) skip-gram archi-
tecture to train 80-dimensional word vectors (in
keeping with Jauhar et al.), based on evidence that
this model shows consistently strong performance
on a wide array of tasks (Baroni et al., 2014; Levy
et al., 2015). Training is on ukWaC (Ferraresi et al.,
2008), a diverse 2B-word web corpus.3

Sense-graph construction from parallel text. To
construct the sense graph per Section 2, we use

1Because it is not clear how multi-word phrases should best
be treated (and this is not a question being investigated here),
we filter out any questions containing multi-word phrases for
any of the relevant items (probe or possible response), and any
questions for which any of the relevant items is completely out
of vocabulary (no vectors available) for any of the evaluated
models. This leaves 48 items in ESL, 87 items in RD, and 77
items in TOEFL.

2The designated development set of MEN-3k (2000 items)
was used for tuning.

3To alleviate sparsity we lemmatized the ukWaC corpus.
Runs without lemmatization produced weaker results.

∼5.8M lines of segmented Chinese-English paral-
lel text from the DARPA BOLT project and the
Broadcast Conversation subset of the segmented
Chinese-English parallel data in the OntoNotes cor-
pus (Weischedel et al., 2013).4 We perform word
alignment with the Berkeley aligner (Liang et al.,
2006). We filter out noisy alignments using the G-
test statistic (Dunning, 1993), with a threshold se-
lected during tuning on a development set.

We set α (see Equation 1) to 1.0. Each sense-
sense edge 〈ei(cj), ei′(cj)〉 has individual weight
0 < βr ≤ 1, computed by obtaining the G-test
statistic for the alignment of ei with cj and for
the alignment of ei′ with cj , running these values
through a logistic function, and averaging. Param-
eters for these computations, as well as the G-test
statistic threshold below which we filtered out noisy
alignments, were selected during tuning on the de-
velopment set.

Note that we have not currently incorporated spe-
cial treatment for alignments of a single word to a
multi-word phrase. This does create the possibil-
ity of noisy or uninformative sense annotations (e.g.,
sense annotations corresponding to parts of aligned
Chinese phrases) when such alignments are not fil-
tered out by the G-test thresholding.

Experimental conditions. We evaluate the fol-
lowing experimental conditions: Skip-gram (SG)
uses the un-retrofitted word2vec vectors, Word-

4English was lemmatized post-alignment via lookup in the
XTAG morphological database (XTAG Research Group, 2001).
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Net (WN) retrofits using the WordNet-based sense
graph, and Parallel Data (PD) retrofits using the
sense graph built from parallel text. We also com-
bine the two retrofitting approaches (PD-WN). For
synonym selection, we compute maxSim over all
sense pairs for WN and PD separately, and select
the sense pair with the overall maximum cosine sim-
ilarity across the two. For similarity rating, we
explore two PD-WN combination approaches: for
each word pair, we take the avgSim from each sep-
arate model, and then we (a) take the average of the
values given by the two models (avg), or (b) take the
maximum value between the two models (max).

4 Results

Table 1 shows that combining our new method
with Jauhar et al.’s WN retrofitting performs best
on synonym selection across all datasets, and both
retrofitted models consistently outperform the no-
retrofitting model (SG). Error analysis on RD-87,
the only set on which WN substantially outperforms
PD, suggests that PD’s errors are driven by the large
number of lower frequency items that characterize
this dataset. Given that WordNet is a hand-curated
lexicon while the parallel data mirrors actual us-
age, it is not surprising that the latter suffers when
it comes to low frequency items.

Error analysis also indicates that PD performs
particularly well on the synonym task precisely
when one would expect: when the probe and the
correct answer have an alignment to the same Chi-
nese word form, so that the corresponding sense vec-
tors are extremely close in vector space. Occasion-
ally, PD yields “the wrong answer for the right rea-
son”, choosing an option for which there is indeed a
correct alignment that matches an alignment of the
probe word. For instance, though the probe passage
is intended to have the answer hallway, PD chooses
ticket because both passage and ticket have a sense
defined by alignment to the Chinese word机票 (jip-
iao), meaning “air ticket”. Though this is a less fre-
quent sense of passage, it is a reasonable one.

Results on the similarity rating task (presented in
Table 2) are less clearly interpretable, top perfor-
mance being divided between the PD model and the
combined models—with the exception of WS-353.
We note that WS-353 is a test set for which human

Synonym Selection SYMM (%)
ESL-48 RD-87 TOEFL-77

SG 58.3 58.6 71.4
WN 66.7 74.7 81.8
PD 68.8 62.1 80.5

PD-WN 70.8 79.3 84.4
Table 1: Synonym selection task results: accuracy

Word similarity: avgSim SYMM (ρ)
WS-353 RG-65 MC-30 MEN-1k

SG .708 .729 .722 .763
WN .610 .725 .750 .739
PD .636 .777 .715 .769

PD-WN (avg) .666 .777 .742 .773
PD-WN (max) .630 .731 .758 .756

Table 2: Similarity rating task results

raters were explicitly told to rate relatedness, rather
than similarity, while the retrofitting process is in-
tended to encourage similarity per se. If we exclude
this set from consideration, we can observe that SG
is outperformed by at least one sense-specific model
in all cases.5

Note that as expected, the amount of training data
has an impact on the quality of the alignments and of
the sense graph. Retrofitting sense-specific embed-
dings using only 300k sentence pairs, which repre-
sent about 5% of the total training data, does not give
clear benefit over word-form embeddings.

5 Conclusions and future work

Building on Jauhar et al. (2015), we have presented
an alternative means of deriving information about
senses and sense relations to build sense-specific
vector space representations of words, making use
of parallel text rather than a manually constructed
ontology. We show that this is a viable alterna-
tive, producing representations that perform on par
with those retrofitted to sense graphs based on Word-
Net.6

5We also explored using maxSim for similarity ratings, on
the intuition that when human annotators give similarity judg-
ments, they are likely to judge based on senses of the given
words that are biased toward the words with which they are
paired. However, top performance is similarly scattered when
using maxSim for similarity scores and fails to improve over the
SG baseline for two of the datasets.

6Sample sense-specific vectors and code for generat-
ing a sense graph from parallel data can be accessed at
http://ling.umd.edu/~aetting/retropd.html.
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Based on these results, it would be interesting
to evaluate further refinements of the sense graph:
alignment-based senses could be clustered, or fur-
ther filtered to reduce the impact of alignment noise;
new edges could be added using other multilingual
resources. Finally, it will be important to evaluate
the effectiveness of the retrofitted word embeddings
on extrinsic tasks that require disambiguating word
meaning in context.
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