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Abstract

Unsupervised methods for learning distributed
representations of words are ubiquitous in to-
day’s NLP research, but far less is known
about the best ways to learn distributed phrase
or sentence representations from unlabelled
data. This paper is a systematic comparison
of models that learn such representations. We
find that the optimal approach depends crit-
ically on the intended application. Deeper,
more complex models are preferable for rep-
resentations to be used in supervised systems,
but shallow log-bilinear models work best
for building representation spaces that can
be decoded with simple spatial distance met-
rics. We also propose two new unsupervised
representation-learning objectives designed to
optimise the trade-off between training time,
domain portability and performance.

1 Introduction

Distributed representations - dense real-valued vec-
tors that encode the semantics of linguistic units -
are ubiquitous in today’s NLP research. For single-
words or word-like entities, there are established
ways to acquire such representations from naturally
occurring (unlabelled) training data based on com-
paratively task-agnostic objectives (such as predict-
ing adjacent words). These methods are well under-
stood empirically (Baroni et al., 2014b) and theoret-
ically (Levy and Goldberg, 2014). The best word
representation spaces reflect consistently-observed
aspects of human conceptual organisation (Hill et
al., 2015b), and can be added as features to improve

the performance of numerous language processing
systems (Collobert et al., 2011).

By contrast, there is comparatively little consen-
sus on the best ways to learn distributed represen-
tations of phrases or sentences.1 With the advent
of deeper language processing techniques, it is rel-
atively common for models to represent phrases or
sentences as continuous-valued vectors. Examples
include machine translation (Sutskever et al., 2014),
image captioning (Mao et al., 2015) and dialogue
systems (Serban et al., 2015). While it has been
observed informally that the internal sentence rep-
resentations of such models can reflect semantic in-
tuitions (Cho et al., 2014), it is not known which ar-
chitectures or objectives yield the ‘best’ or most use-
ful representations. Resolving this question could
ultimately have a significant impact on language
processing systems. Indeed, it is phrases and sen-
tences, rather than individual words, that encode the
human-like general world knowledge (or ‘common
sense’) (Norman, 1972) that is a critical missing part
of most current language understanding systems.

We address this issue with a systematic compari-
son of cutting-edge methods for learning distributed
representations of sentences. We focus on meth-
ods that do not require labelled data gathered for
the purpose of training models, since such meth-
ods are more cost-effective and applicable across
languages and domains. We also propose two new
phrase or sentence representation learning objec-
tives - Sequential Denoising Autoencoders (SDAEs)

1See the contrasting conclusions in (Mitchell and Lapata,
2008; Clark and Pulman, 2007; Baroni et al., 2014a; Milajevs
et al., 2014) among others.
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and FastSent, a sentence-level log-bilinear bag-of-
words model. We compare all methods on two types
of task - supervised and unsupervised evaluations
- reflecting different ways in which representations
are ultimately to be used. In the former setting, a
classifier or regression model is applied to represen-
tations and trained with task-specific labelled data,
while in the latter, representation spaces are directly
queried using cosine distance.

We observe notable differences in approaches de-
pending on the nature of the evaluation metric. In
particular, deeper or more complex models (which
require greater time and resources to train) gener-
ally perform best in the supervised setting, whereas
shallow log-bilinear models work best on unsuper-
vised benchmarks. Specifically, SkipThought Vec-
tors (Kiros et al., 2015) perform best on the ma-
jority of supervised evaluations, but SDAEs are the
top performer on paraphrase identification. In con-
trast, on the (unsupervised) SICK sentence relat-
edness benchmark, FastSent, a simple, log-bilinear
variant of the SkipThought objective, performs bet-
ter than all other models. Interestingly, the method
that exhibits strongest performance across both su-
pervised and unsupervised benchmarks is a bag-of-
words model trained to compose word embeddings
using dictionary definitions (Hill et al., 2015a).
Taken together, these findings constitute valuable
guidelines for the application of phrasal or senten-
tial representation-learning to language understand-
ing systems.

2 Distributed Sentence Representations

To constrain the analysis, we compare neural lan-
guage models that compute sentence representations
from unlabelled, naturally-ocurring data, as with
the predominant methods for word representations.2

Likewise, we do not focus on ‘bottom up’ models
where phrase or sentence representations are built
from fixed mathe proposed bymatical operations on
word vectors (although we do consider a canoni-
cal case - see CBOW below); these were already
compared by Milajevs et al. (2014). Most space is
devoted to our novel approaches, and we refer the

2This excludes innovative supervised sentence-level archi-
tectures including (Socher et al., 2011; Kalchbrenner et al.,
2014) and many others.

reader to the original papers for more details of ex-
isting models.

2.1 Existing Models Trained on Text

SkipThought Vectors For consecutive sentences
Si−1, Si, Si+1 in some document, the SkipThought
model (Kiros et al., 2015) is trained to predict target
sentences Si−1 and Si+1 given source sentence Si.
As with all sequence-to-sequence models, in train-
ing the source sentence is ‘encoded’ by a Recurrent
Neural Network (RNN) (with Gated Recurrent uU-
nits (Cho et al., 2014)) and then ‘decoded’ into the
two target sentences in turn. Importantly, because
RNNs employ a single set of update weights at each
time-step, both the encoder and decoder are sensitive
to the order of words in the source sentence.

For each position in a target sentence St, the
decoder computes a softmax distribution over the
model’s vocabulary. The cost of a training exam-
ple is the sum of the negative log-likelihood of each
correct word in the target sentences Si−1 and Si+1.
This cost is backpropagated to train the encoder (and
decoder), which, when trained, can map sequences
of words to a single vector.

ParagraphVector Le and Mikolov (2014) proposed
two log-bilinear models of sentence representation.
The DBOW model learns a vector s for every sen-
tence S in the training corpus which, together with
word embeddings vw, define a softmax distribution
optimised to predict words w ∈ S given S. The
vw are shared across all sentences in the corpus.
In the DM model, k-grams of consecutive words
{wi . . . wi+k ∈ S} are selected and s is combined
with {vwi . . . vwi+k

} to make a softmax prediction
(parameterised by additional weights) of wi+k+1.

We used the Gensim implementation,3 treating
each sentence in the training data as a ‘paragraph’ as
suggested by the authors. During training, both DM
and DBOW models store representations for every
sentence (as well as word) in the training corpus.
Even on large servers it was therefore only possi-
ble to train models with representation size 200, and
DM models whose combination operation was av-
eraging (rather than concatenation). Unlike other
models considered in this section, for both Para-
graphVector architectures an inference step is re-

3https://radimrehurek.com/gensim/
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quired after training to estimate sentence representa-
tions s for arbitrary sentences based on the vw. This
additional computation is reflected in the higher en-
coding time in Table 1 (TE).

Bottom-Up Methods We train CBOW and Skip-
Gram word embeddings (Mikolov et al., 2013b) on
the same text corpus as the SkipThought and Para-
graphVector models, and compose by elementwise
addition as per Mitchell and Lapata (2010).4

We also compare to C-PHRASE (Pham et al.,
2015), an approach that exploits a (supervised)
parser to infer distributed semantic representations
based on a syntactic parse of sentences. C-PHRASE
achieves state-of-the-art results for distributed repre-
sentations on several evaluations used in this study.5

Non-Distributed Baseline We implement a TFIDF
BOW model in which the representation of sentence
S encodes the count in S of a set of feature-words
weighted by their tfidf inC, the corpus. The feature-
words are the 200,000 most common words in C.

2.2 Models Trained on Structured Resources

The following models rely on (freely-available) data
that has more structure than raw text.

DictRep Hill et al. (2015a) trained neural language
models to map dictionary definitions to pre-trained
word embeddings of the words defined by those def-
initions. They experimented with BOW and RNN
(with LSTM) encoding architectures and variants
in which the input word embeddings were either
learned or pre-trained (+embs.) to match the tar-
get word embeddings. We implement their models
using the available code and training data.6

CaptionRep Using the same overall architecture,
we trained (BOW and RNN) models to map cap-
tions in the COCO dataset (Chen et al., 2015) to pre-
trained vector representations of images. The image
representations were encoded by a deep convolu-
tional network (Szegedy et al., 2014) trained on the

4We also tried multiplication but this gave very poor results.
5Since code for C-PHRASE is not publicly-available we

use the available pre-trained model (http://clic.cimec.
unitn.it/composes/cphrase-vectors.html). Note this
model is trained on 3× more text than others in this study.

6https://www.cl.cam.ac.uk/˜fh295/. Definitions
from the training data matching those in the WordNet STS 2014
evaluation (used in this study) were excluded.

ILSVRC 2014 object recognition task (Russakovsky
et al., 2014). Multi-modal distributed representa-
tions can be encoded by feeding test sentences for-
ward through the trained model.

NMT We consider the sentence representations
learned by neural MT models. These models
have identical architecture to SkipThought, but are
trained on sentence-aligned translated texts. We
used a standard architecture (Cho et al., 2014) on
all available En-Fr and En-De data from the 2015
Workshop on Statistical MT (WMT).7

2.3 Novel Text-Based Models

We introduce two new approaches designed to ad-
dress certain limitations with the existing models.

Sequential (Denoising) Autoencoders The
SkipThought objective requires training text with
a coherent inter-sentence narrative, making it
problematic to port to domains such as social media
or artificial language generated from symbolic
knowledge. To avoid this restriction, we experiment
with a representation-learning objective based
on denoising autoencoders (DAEs). In a DAE,
high-dimensional input data is corrupted according
to some noise function, and the model is trained
to recover the original data from the corrupted
version. As a result of this process, DAEs learn to
represent the data in terms of features that explain
its important factors of variation (Vincent et al.,
2008). Transforming data into DAE representations
(as a ‘pre-training’ or initialisation step) gives more
robust (supervised) classification performance in
deep feedforward networks (Vincent et al., 2010).

The original DAEs were feedforward nets applied
to (image) data of fixed size. Here, we adapt the ap-
proach to variable-length sentences by means of a
noise function N(S|po, px), determined by free pa-
rameters po, px ∈ [0, 1]. First, for each word w in
S, N deletes w with (independent) probability po.
Then, for each non-overlapping bigram wiwi+1 in
S, N swaps wi and wi+1 with probability px. We
then train the same LSTM-based encoder-decoder
architecture as NMT, but with the denoising objec-
tive to predict (as target) the original source sentence
S given a corrupted versionN(S|po, px) (as source).

7www.statmt.org/wmt15/translation-task.html
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The trained model can then encode novel word se-
quences into distributed representations. We call
this model the Sequential Denoising Autoencoder
(SDAE). Note that, unlike SkipThought, SDAEs can
be trained on sets of sentences in arbitrary order.

We label the case with no noise (i.e. po = px = 0
and N ≡ id) SAE. This setting matches the method
applied to text classification tasks by Dai and Le
(2015). The ‘word dropout’ effect when po ≥ 0 has
also been used as a regulariser for deep nets in su-
pervised language tasks (Iyyer et al., 2015), and for
large px the objective is similar to word-level ‘de-
bagging’ (Sutskever et al., 2011). For the SDAE, we
tuned po, px on the validation set (see Section 3.2).8

We also tried a variant (+embs) in which words are
represented by (fixed) pre-trained embeddings.

FastSent The performance of SkipThought vectors
shows that rich sentence semantics can be inferred
from the content of adjacent sentences. The model
could be said to exploit a type of sentence-level
Distributional Hypothesis (Harris, 1954; Polajnar
et al., 2015). Nevertheless, like many deep neu-
ral language models, SkipThought is very slow to
train (see Table 1). FastSent is a simple additive
(log-bilinear) sentence model designed to exploit the
same signal, but at much lower computational ex-
pense. Given a BOW representation of some sen-
tence in context, the model simply predicts adjacent
sentences (also represented as BOW) .

More formally, FastSent learns a source uw and
target vw embedding for each word in the model vo-
cabulary. For a training example Si−1, Si, Si+1 of
consecutive sentences, Si is represented as the sum
of its source embeddings si =

∑
w∈Si

uw. The cost
of the example is then simply:∑

w∈Si−1∪Si+1

φ(si, vw) (1)

where φ(v1, v2) is the softmax function.
We also experiment with a variant (+AE) in which

the encoded (source) representation must predict its
own words as target in addition to those of adjacent
sentences. Thus in FastSent+AE, (1) becomes∑

w∈Si−1∪Si∪Si+1

φ(si, vw). (2)

8We searched po, px ∈ {0.1, 0.2, 0.3} and observed best
results with po = px = 0.1.

O
S

R W
O

SD W
D

T
R

T
E

S(D)AE 3 2400 100 72* 640
ParagraphVec 100 100 4 1130
CBOW 500 500 2 145
SkipThought 3 3 4800 620 336* 890
FastSent 3 100 100 2 140
DictRep 3 3 500 256 24* 470
CaptionRep 3 3 500 256 24* 470
NMT 3 3 2400 512 72* 720

Table 1: Properties of models compared in this study
OS: requires training corpus of sentences in order. R: requires
structured resource for training. WO: encoder sensitive to word
order. SD: dimension of sentence representation. WD: dimen-
sion of word representation. TR: approximate training time
(hours) on the dataset in this paper. * indicates trained on GPU.
TE: approximate time (s) taken to encode 0.5m sentences.

At test time the trained model (very quickly) en-
codes unseen word sequences into distributed rep-
resentations with s =

∑
w∈S uw.

2.4 Training and Model Selection

Unless stated above, all models were trained on
the Toronto Books Corpus,9 which has the inter-
sentential coherence required for SkipThought and
FastSent. The corpus consists of 70m ordered sen-
tences from over 7,000 books.

Specifications of the models are shown in Ta-
ble 1. The log-bilinear models (SkipGram, CBOW,
ParagraphVec and FastSent) were trained for one
epoch on one CPU core. The representation di-
mension d for these models was found after tun-
ing d ∈ {100, 200, 300, 400, 500} on the validation
set.10 All other models were trained on one GPU.
The S(D)AE models were trained for one epoch
(≈ 8 days). The SkipThought model was trained
for two weeks, covering just under one epoch.11 For
CaptionRep and DictRep, performance was mon-
itored on held-out training data and training was
stopped after 24 hours after a plateau in cost. The
NMT models were trained for 72 hours.

9http://www.cs.toronto.edu/˜mbweb/
10For ParagraphVec only d ∈ {100, 200} was possible due

to the high memory footprint.
11Downloaded from https://github.com/ryankiros/

skip-thoughts
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Dataset Sentence 1 Sentence 2 /5
News Mexico wishes to guarantee citizens’ safety. Mexico wishes to avoid more violence. 4

Forum The problem is simpler than that. The problem is simple. 3.8
STS WordNet A social set or clique of friends. An unofficial association of people or groups. 3.6

2014 Twitter Taking Aim #Stopgunviolence #Congress #NRA Obama, Gun Policy and the N.R.A. 1.6
Images A woman riding a brown horse. A young girl riding a brown horse. 4.4

Headlines Iranians Vote in Presidential Election. Keita Wins Mali Presidential Election. 0.4
SICK (test+train) A lone biker is jumping in the air. A man is jumping into a full pool. 1.7

Table 2: Example sentence pairs and ‘similarity’ ratings from the unsupervised evaluations used in this study.

3 Evaluating Sentence Representations

In previous work, distributed representations of lan-
guage were evaluated either by measuring the effect
of adding representations as features in some clas-
sification task - supervised evaluation (Collobert et
al., 2011; Mikolov et al., 2013a; Kiros et al., 2015)
- or by comparing with human relatedness judge-
ments - unspervised evaluation (Hill et al., 2015a;
Baroni et al., 2014b; Levy et al., 2015). The for-
mer setting reflects a scenario in which representa-
tions are used to inject general knowledge (some-
times considered as pre-training) into a supervised
model. The latter pertains to applications in which
the sentence representation space is used for direct
comparisons, lookup or retrieval. Here, we apply
and compare both evaluation paradigms.

3.1 Supervised Evaluations
Representations are applied to 6 sentence classi-
fication tasks: paraphrase identification (MSRP)
(Dolan et al., 2004), movie review sentiment
(MR) (Pang and Lee, 2005), product reviews
(CR) (Hu and Liu, 2004), subjectivity classifica-
tion (SUBJ) (Pang and Lee, 2004), opinion polar-
ity (MPQA) (Wiebe et al., 2005) and question type
classification (TREC) (Voorhees, 2002). We follow
the procedure (and code) of Kiros et al. (2015): a
logistic regression classifier is trained on top of sen-
tence representations, with 10-fold cross-validation
used when a train-test split is not pre-defined.

3.2 Unsupervised Evaluations
We also measure how well representation spaces re-
flect human intuitions of the semantic sentence relat-
edness, by computing the cosine distance between
vectors for the two sentences in each test pair, and
correlating these distances with gold-standard hu-
man judgements. The SICK dataset (Marelli et al.,

2014) consists of 10,000 pairs of sentences and re-
latedness judgements. The STS 2014 dataset (Agirre
et al., 2014) consists of 3,750 pairs and ratings from
six linguistic domains. Example ratings are shown
in Table 2. All available pairs are used for test-
ing apart from the 500 SICK ‘trial’ pairs, which are
held-out for tuning hyperparameters (representation
size of log-bilinear models, and noise parameters in
SDAE). The optimal settings on this task are then
applied to both supervised and unsupervised evalua-
tions.

4 Results

Performance of the models on the supervised eval-
uations (grouped according to the data required
by their objective) is shown in Table 3. Overall,
SkipThought vectors perform best on three of the
six evaluations, the BOW DictRep model with pre-
trained word embeddings performs best on two, and
the SDAE on one. SDAEs perform notably well on
the paraphrasing task, going beyond SkipThought
by three percentage points and approaching state-
of-the-art performance of models designed specifi-
cally for the task (Ji and Eisenstein, 2013). SDAE
is also consistently better than SAE, which aligns
with other findings that adding noise to AEs pro-
duces richer representations (Vincent et al., 2008).

Results on the unsupervised evaluations are
shown in Table 4. The same DictRep model per-
forms best on four of the six STS categories (and
overall) and is joint-top performer on SICK. Of
the models trained on raw text, simply adding
CBOW word vectors works best on STS. The best
performing raw text model on SICK is FastSent,
which achieves almost identical performance to C-
PHRASE’s state-of-the-art performance for a dis-
tributed model (Pham et al., 2015). Further, it uses
less than a third of the training text and does not
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Data Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC
SAE 74.3 / 81.7 62.6 68.0 86.1 76.8 80.2
SAE+embs. 70.6 / 77.9 73.2 75.3 89.8 86.2 80.4

Unordered SDAE 76.4 / 83.4 67.6 74.0 89.3 81.3 77.6
Sentences SDAE+embs. 73.7 / 80.7 74.6 78.0 90.8 86.9 78.4

(Toronto Books: ParagraphVec DBOW 72.9 / 81.1 60.2 66.9 76.3 70.7 59.4
70m sents, ParagraphVec DM 73.6 / 81.9 61.5 68.6 76.4 78.1 55.8

0.9B words) Skipgram 69.3 / 77.2 73.6 77.3 89.2 85.0 82.2
CBOW 67.6 / 76.1 73.6 7730 89.1 85.0 82.2
Unigram TFIDF 73.6 / 81.7 73.7 79.2 90.3 82.4 85.0

Ordered SkipThought 73.0 / 82.0 76.5 80.1 93.6 87.1 92.2
Sentences FastSent 72.2 / 80.3 70.8 78.4 88.7 80.6 76.8

(Toronto Books) FastSent+AE 71.2 / 79.1 71.8 76.7 88.8 81.5 80.4
NMT En to Fr 69.1 / 77.1 64.7 70.1 84.9 81.5 82.8

Other NMT En to De 65.2 / 73.3 61.0 67.6 78.2 72.9 81.6
structured CaptionRep BOW 73.6 / 81.9 61.9 69.3 77.4 70.8 72.2

data CaptionRep RNN 72.6 / 81.1 55.0 64.9 64.9 71.0 62.4
resource DictRep BOW 73.7 / 81.6 71.3 75.6 86.6 82.5 73.8

DictRep BOW+embs. 68.4 / 76.8 76.7 78.7 90.7 87.2 81.0
DictRep RNN 73.2 / 81.6 67.8 72.7 81.4 82.5 75.8
DictRep RNN+embs. 66.8 / 76.0 72.5 73.5 85.6 85.7 72.0

2.8B words CPHRASE 72.2 / 79.6 75.7 78.8 91.1 86.2 78.8

Table 3: Performance of sentence representation models on supervised evaluations (Section 3.1). Bold numbers indicate best
performance in class. Underlined indicates best overall.

require access to (supervised) syntactic representa-
tions for training. Together, the results of FastSent
on the unsupervised evaluations and SkipThought
on the supervised benchmarks provide strong sup-
port for the sentence-level distributional hypothe-
sis: the context in which a sentence occurs provides
valuable information about its semantics.

Across both unsupervised and supervised evalua-
tions, the BOW DictRep with pre-trained word em-
beddings exhibits by some margin the most con-
sistent performance. Ths robust performance sug-
gests that DictRep representations may be particu-
larly valuable when the ultimate application is non-
specific or unknown, and confirms that dictionary
definitions (where available) can be a powerful re-
source for representation learning.

5 Discussion

Many additional conclusions can be drawn from the
results in Tables 3 and 4.

Different objectives yield different representa-
tions It may seem obvious, but the results confirm
that different learning methods are preferable for
different intended applications (and this variation

appears greater than for word representations). For
instance, it is perhaps unsurprising that SkipThought
performs best on TREC because the labels in this
dataset are determined by the language immediately
following the represented question (i.e. the an-
swer) (Voorhees, 2002). Paraphrase detection, on
the other hand, may be better served by a model
that focused entirely on the content within a sen-
tence, such as SDAEs. Similar variation can be
observed in the unsupervised evaluations. For in-
stance, the (multimodal) representations produced
by the CaptionRep model do not perform particu-
larly well apart from on the Image category of STS
where they beat all other models, demonstrating a
clear effect of the well-studied modality differences
in representation learning (Bruni et al., 2014).

The nearest neighbours in Table 5 give a more
concrete sense of the representation spaces. One
notable difference is between (AE-style) models
whose semantics come from within-sentence rela-
tionships (CBOW, SDAE, DictRep, ParagraphVec)
and SkipThought/FastSent, which exploit the con-
text around sentences. In the former case, nearby
sentences often have a high proportion of words in
common, whereas for the latter it is the general con-

1372



STS 2014 SICK
Model News Forum WordNet Twitter Images Headlines All Test + Train

SAE 17/.16 .12/.12 .30/.23 .28/.22 .49/.46 .13/.11 .12/.13 .32/.31
SAE+embs. .52/.54 .22/.23 .60/.55 .60/.60 . 64/.64 .41/.41 .42/.43 .47/.49
SDAE .07/.04 .11/.13 .33/.24 .44/.42 .44/.38 .36/.36 .17/.15 .46/.46
SDAE+embs. .51/.54 .29/.29 .56/.50 .57/.58 .59/.59 .43/.44 .37/.38 .46/.46
ParagraphVec DBOW .31/.34 .32/.32 .53/.5 .43/.46 .46/.44 .39/.41 .42/.43 .42/.46
ParagraphVec DM .42/.46 .33/.34 .51/.48 .54/.57 .32/.30 .46/.47 .44/.44 .44/.46
Skipgram .56/.59 .42/.42 .73/.70 .71/.74 .65/.67 .55/.58 .62/.63 .60/.69
CBOW .57/.61 .43/.44 .72/.69 .71/.75 .71/.73 .55/.59 .64/.65 .60/.69
Unigram TFIDF .48/.48 .40/.38 .60/.59 .63/.65 72/.74 .49/.49 .58/.57 .52/.58
SkipThought .44/.45 .14/.15 .39/.34 .42/.43 .55/.60 .43/.44 .27/.29 .57/.60
FastSent .58/.59 .41/.36 .74/.70 .63/.66 .74/.78 .57/.59 .63/.64 .61/.72
FastSent+AE .56/ .59 .41/.40 .69/.64 .70/.74 .63/.65 .58/.60 .62/.62 .60/.65
NMT En to Fr .35/.32 .18/.18 .47/.43 .55/.53 .44/.45 .43/.43 .43/.42 .47/.49
NMT En to De .47/.43 .26/.25 .34/.31 .49/.45 .44/.43 .38/.37 .40/.38 .46/46
CaptionRep BOW .26/.26 .29/.22 .50/.35 .37/.31 .78/.81 .39/.36 .46/.42 .56/.65
CaptionRep RNN .05/.05 .13/.09 .40/.33 .36/.30 .76/.82 .30/.28 .39/.36 .53/.62
DictRep BOW .62/.67 .42/.40 .81/.81 .62/.66 .66/.68 .53/.58 .62/.65 .57/.66
DictRep BOW+embs. .65/.72 .49/.47 .85/.86 .67/.72 .71/.74 .57/.61 .67/.70 .61/.70
DictRep RNN .40/.46 .26/.23 .78/.78 .42/.42 .56/.56 .38/.40 .49/.50 .49/.56
DictRep RNN+embs. .51/.60 .29/.27 .80/.81 .44/.47 .65/.70 .42/.46 .54/.57 .49/.59
CPHRASE .69/.71 .43/.41 .76/.73 .60/.65 .75/.79 .60/.65 .65/.67 .60/.72

Table 4: Performance of sentence representation models (Spearman/Pearson correlations) on unsupervised (relatedness) evalua-
tions (Section 3.2). Models are grouped according to training data as indicated in Table 3.

cepts and/or function of the sentence that is sim-
ilar, and word overlap is often minimal. Indeed,
this may be a more important trait of FastSent than
the marginal improvement on the SICK task. Read-
ers can compare the CBOW and FastSent spaces at
http://45.55.60.98/.

Differences between supervised and unsuper-
vised performance Many of the best performing
models on the supervised evaluations do not per-
form well in the unsupervised setting. In the
SkipThought, S(D)AE and NMT models, the cost is
computed based on a non-linear decoding of the in-
ternal sentence representations, so, as also observed
by (Almahairi et al., 2015), the informative geome-
try of the representation space may not be reflected
in a simple cosine distance. The log-bilinear models
generally perform better in this unsupervised setting.

Knowledge transfer shows some promise It is no-
table that, with a few exceptions, the models with

pre-trained word embeddings (+embs) outperform
those with learned embeddings on both supervised
and unsupervised evaluations. In the case of the Dic-
tRep models, whose training data is otherwise lim-
ited to dictionary definitions, this effect can be con-
sidered as a rudimentary form of knowledge trans-
fer. The DictRep+embs model benefits both from
the dictionary data and the enhanced lexical seman-
tics acquired from a massive text corpus to build
overall higher-quality sentence representations.

Differences in resource requirements As shown in
Table 1, different models require different resources
to train and use. This can limit their possible appli-
cations. For instance, while it was easy to make an
online demo for fast querying of near neighbours in
the CBOW and FastSent spaces, it was not practical
for other models owing to memory footprint, encod-
ing time and representation dimension.

The role of word order is unclear The aver-
age scores of models that are sensitive to word
order (76.3) and of those that are not (76.6) are
approximately the same across supervised evalua-
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Query If he had a weapon, he could maybe take out An annoying buzz started to ring in my ears, becoming
their last imp, and then beat up Errol and Vanessa. louder and louder as my vision began to swim.

CBOW
Then Rob and I would duke it out, and every Louder.
once in a while, he would actually beat me.

Skip If he could ram them from behind, send them saling over A weighty pressure landed on my lungs and my vision blurred
Thought the far side of the levee, he had a chance of stopping them. at the edges, threatening my consciousness altogether.

FastSent
Isak’s close enough to pick off any one of them, The noise grew louder, the quaking increased as the
maybe all of them, if he had his rifle and a mind to. sidewalk beneath my feet began to tremble even more.

SDAE
He’d even killed some of the most dangerous criminals I smile because I’m familiar with the knock,
in the galaxy, but none of those men had gotten to him like Vitktis. pausing to take a deep breath before dashing down the stairs.

DictRep Kevin put a gun to the man’s head, but even though Then gradually I began to hear a ringing in my ears.
(FF+embs.) he cried, he couldn’t tell Kevin anything more.
Paragraph I take a deep breath and open the doors. They listened as the motorcycle-like roar
Vector (DM) of an engine got louder and louder then stopped.

Table 5: Sample nearest neighbour queries selected from a randomly sampled 0.5m sentences of the Toronto Books Corpus.

Supervised (combined α = 0.90) Unsupervised (combined α = 0.93)
MSRP MR CR SUBJ MPAQ TREC News Forum WordNet Twitter Images Headlines All STS SICK
0.94 (6) 0.85 (1) 0.86 (4) 0.85 (1) 0.86 (3) 0.89 (5) 0.92 (4) 0.92 (3) 0.92 (4) 0.93 (6) 0.95 (8) 0.92 (2) 0.91 (1) 0.93 (7)

Table 6: Internal consistency (Chronbach’s α) among evaluations when individual benchmarks are left out of the (supervised or unsuper-
vised) cohorts. Consistency rank within cohort is in parentheses (1 = most consistent with other evaluations).

tions. Across the unsupervised evaluations, how-
ever, BOW models score 0.55 on average compared
with 0.42 for RNN-based (order sensitive) models.
This seems at odds with the widely held view that
word order plays an important role in determining
the meaning of English sentences. One possibility
is that order-critical sentences that cannot be dis-
ambiguated by a robust conceptual semantics (that
could be encoded in distributed lexical representa-
tions) are in fact relatively rare. However, it is also
plausible that current available evaluations do not
adequately reflect order-dependent aspects of mean-
ing (see below). This latter conjecture is supported
by the comparatively strong performance of TFIDF
BOW vectors, in which the effective lexical seman-
tics are limited to simple relative frequencies.

The evaluations have limitations The internal con-
sistency (Chronbach’s α) of all evaluations consid-
ered together is 0.81 (just above ‘acceptable’).12

Table 6 shows that consistency is far higher (‘ex-
cellent’) when considering the supervised or unsu-
pervised tasks as independent cohorts. This indi-
cates that, with respect to common characteristics of
sentence representations, the supervised and unsu-
pervised benchmarks do indeed prioritise different
properties. It is also interesting that, by this met-

12wikipedia.org/wiki/Cronbach’s_alpha

ric, the properties measured by MSRP and image-
caption relatedness are the furthest removed from
other evaluations in their respective cohorts.

While these consistency scores are a promising
sign, they could also be symptomatic of a set of eval-
uations that are all limited in the same way. The
inter-rater agreement is only reported for one of the
8 evaluations considered (MPQA, 0.72 (Wiebe et al.,
2005)), and for MR, SUBJ and TREC, each item is
only rated by one or two annotators to maximise
coverage. Table 2 illustrates why this may be an
issue for the unsupervised evaluations; the notion
of sentential ’relatedness’ seems very subjective. It
should be emphasised, however, that the tasks con-
sidered in this study are all frequently used for eval-
uation, and, to our knowledge, there are no existing
benchmarks that overcome these limitations.

6 Conclusion

Advances in deep learning algorithms, software and
hardware mean that many architectures and objec-
tives for learning distributed sentence representa-
tions from unlabelled data are now available to NLP
researchers. We have presented the first (to our
knowledge) systematic comparison of these meth-
ods. We showed notable variation in the perfor-
mance of approaches across a range of evaluations.
Among other conclusions, we found that the op-
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timal approach depends critically on whether rep-
resentations will be applied in supervised or unsu-
pervised settings - in the latter case, fast, shallow
BOW models can still achieve the best performance.
Further, we proposed two new objectives, FastSent
and Sequential Denoising Autoencoders, which per-
form particularly well on specific tasks (MSRP and
SICK sentence relatedness respectively).13 If the ap-
plication is unknown, however, the best all round
choice may be DictRep: learning a mapping of pre-
trained word embeddings from the word-phrase sig-
nal in dictionary definitions. While we have focused
on models using naturally-occurring training data,
in future work we will also consider supervised ar-
chitectures (including convolutional, recursive and
character-level models), potentially training them on
multiple supervised tasks as an alternative way to
induce the ’general knowledge’ needed to give lan-
guage technology the elusive human touch.

Acknowledgments

This work was supported by a Google Faculty
Award to AK and FH and a Google European Doc-
toral Fellowship to FH. Thanks also to Marek Rei,
Tamara Polajnar, Laural Rimell, Jamie Ryan Kiros
and Piotr Bojanowski for helpful comments.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. Semeval-2014 task 10: Multilingual seman-
tic textual similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014), pages 81–91.

Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and
Aaron Courville. 2015. Learning distributed repre-
sentations from reviews for collaborative filtering. In
Proceedings of the 9th ACM Conference on Recom-
mender Systems, pages 147–154. ACM.

Marco Baroni, Raffaela Bernardi, and Roberto Zampar-
elli. 2014a. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues in
Language Technology, 9.

13We make all code for training and evaluating these new
models publicly available, together with pre-trained models and
an online demo of the FastSent sentence space.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014b. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
volume 1, pages 238–247.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res. (JAIR), 49:1–47.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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