
Proceedings of NAACL-HLT 2016, pages 1217–1222,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies

Barret Zoph∗, Ashish Vaswani∗, Jonathan May, and Kevin Knight
Information Sciences Institute

Department of Computer Science
University of Southern California

{zoph, avaswani, jonmay, knight}@isi.edu

Abstract

We present a simple algorithm to efficiently
train language models with noise-contrastive
estimation (NCE) on graphics processing
units (GPUs). Our NCE-trained language
models achieve significantly lower perplexity
on the One Billion Word Benchmark language
modeling challenge, and contain one sixth of
the parameters in the best single model in
Chelba et al. (2013). When incorporated into
a strong Arabic-English machine translation
system they give a strong boost in translation
quality. We release a toolkit so that others
may also train large-scale, large vocabulary
LSTM language models with NCE, paralleliz-
ing computation across multiple GPUs.

1 Introduction

Language models are used to compute probabili-
ties of sequences of words. They are crucial for
good performance in tasks like machine translation,
speech recognition, and spelling correction. They
can be classified into two categories: count-based
and continuous-space language models. The lan-
guage modeling literature abounds with success-
ful approaches for learning-count based language
models: modified Kneser-Ney smoothing, Jelinek-
Mercer smoothing, etc. In recent years, continuous-
space language models such as feed-forward neu-
ral probabilistic language models (NPLMs) and re-
current neural network language models (RNNs)1

∗Equal contribution.
1Henceforth we will use terms like ”RNN” and ”LSTM”

with the understanding that we are referring to language models
that use these formalisms

have outperformed their count-based counterparts
(Chelba et al., 2013; Zaremba et al., 2014; Mikolov,
2012). RNNs are more powerful than n-gram lan-
guage models, as they can exploit longer word con-
texts to predict words. Long short-term memory lan-
guage models (LSTMs) are a class of RNNs that
have been designed to model long histories and are
easier to train than standard RNNs. LSTMs are cur-
rently the best performing language models on the
Penn Treebank (PTB) dataset (Zaremba et al., 2014).

The most common method for training LSTMs,
maximum likelihood estimation (MLE), is pro-
hibitively expensive for large vocabularies, as it in-
volves time-intensive matrix-matrix multiplications.
Noise-contrastive estimation (NCE) has been a suc-
cessful alternative to train continuous space lan-
guage models with large vocabularies (Mnih and
Teh, 2012; Vaswani et al., 2013). However, NCE
in its standard form is not suitable for GPUs, as
the computations are not amenable to dense ma-
trix operations. In this paper, we present a natu-
ral modification to the NCE objective function for
language modeling that allows a very efficient GPU
implementation. Using our new objective, we train
large multi-layer LSTMs on the One Billion Word
benchmark (Chelba et al., 2013), with its full 780k
word vocabulary. We achieve significantly lower
perplexities with a single model, while using only
a sixth of the parameters of a very strong base-
line model (Chelba et al., 2013). We release our
toolkit2 to allow researchers to train large-scale,
large-vocabulary LSTMs with NCE. The contribu-
tions in this paper are the following:

2www.github.com/isi-nlp/Zoph_RNN

1217

• A fast and simple approach for handling large
vocabularies effectively on the GPU.
• Significantly improved perplexities (43.2) on

the One Billion Word benchmark over Chelba
et al. (2013)
• Extrinsic machine translation improvement

over a strong baseline.
• Fast decoding times because in practice there is

no need to normalize.

2 Long Short Term Memory Language
Models

In recent years, LSTMs (Hochreiter and Schmid-
huber, 1997) have achieved state-of-the-art perfor-
mance in many natural language tasks such as lan-
guage modeling (Zaremba et al., 2014) and statis-
tical machine translation (Sutskever et al., 2014;
Luong et al., 2015). LSTMs were designed to
have longer memories than standard RNNs, allow-
ing them to exploit more context to make predic-
tions. To compute word probabilities, the LSTM
reads words left-to-right, updating its memory after
each word and producing a hidden state h, which
summarizes all of the history. For details on the
architecture and computations of the LSTM, the
reader can refer to (Zaremba et al., 2014). In this
model the probability of word w given history u is

P (w | u) =
p(w | u)
Z(u)

, (1)

where p(w | u) = expDwh
T + bw is an unnor-

malized probability. Dw and bw are the output
word embedding and biases respectively, which are
learned during training. The normalization constant
is Z(u) =

∑
w∈V

p(w | u), and V is the vocabulary.

3 Noise Contrastive Estimation For
Training Neural Language Models

The standard approach for estimating neural lan-
guage models is maximum liklelihood estimation
(MLE), where we learn the parameters θ∗ that max-
imize the likelihood of the training data,

θ∗ = arg maxθ
∑
w,u

logP (w | u; θ) (2)

However, for each training instance, gradient-based
approaches for MLE require a summation over all
units in the output layer, one for each word in V .
This makes MLE training infeasible for large vocab-
ularies.

Noise-contrastive estimation (NCE) (Gutmann
and Hyvärinen, 2010) has been successfully adopted
for training neural language models with large vo-
cabularies (Mnih and Teh, 2012; Vaswani et al.,
2013; Baltescu and Blunsom, 2014; Williams et al.,
2015). NCE avoids repeated summations by train-
ing the model to correctly classify between gener-
ated noise samples and words observed in the train-
ing data. For each training pair ui, wi, we generate
k noise samples, w̄i1 . . . , w̄ik from a noise distribu-
tion q(w), which is known. We label ui, wi as true
(C = 1), and all ui, w̄ik as false (C = 0). We then
train the parameters to maximize the binary classifi-
cation log likelihood,

L =
∑
i

(
logP (C = 1 | ui, wi)+∑

k

logP (C = 0 | u, w̄ik)
)
,

(3)

where

P (C = 1 | w,u) =
p(w|u)
Z(u)

p(w|u)
Z(u) + k · q(w)

, (4)

and P (C = 0 | w,u) = 1− P (C = 1 | w,u).
We learn parameters to maximize this objective

with gradient ascent. In NCE, we treat Z(u) as an-
other parameter and learn its estimate along with the
rest of the parameters. Following Mnih and Teh
(2012) and Vaswani et al. (2013), we freeze Z(u)
to 1 and the model learns to approximately satisfy
the constraint. In practice, we find that our mean for
Z(u) is very close to 1 and the variance is quite small
(Section 6). For each training instance, we com-
pute gradients for the observed word and each noise
word, reducing the time complexity fromO(|V |) for
MLE to O(k). However, unlike MLE, since we typ-
ically sample different noise samples for each train-
ing instance, our gradient computations for the NCE
objective are not amenable to dense matrix opera-
tions, making it difficult to benefit from fast dense
matrix arithmetic on GPUs. In this paper, we present

1218

a simple solution to this problem: sharing the noise
samples across all the training instances in a mini-
batch. Sharing noise samples allows us to describe
NCE gradients with dense matrix operations, and
implement them easily on the GPU. In the next sec-
tion, we describe our NCE implementation on the
GPU with shared noise samples.

4 Our NCE Modification

In typical Noise-Contrastive Estimation, the objec-
tive function requires noise samples coming from
some distribution (in our case, the uniform distri-
bution). The objective function for NCE is shown
above in Equation 3, where we must calculate
P (C = 1 | w,u) for the true word and the noise
samples generated. There are three components to
this calculation: p(w | u) , Z(u) , and k · q(w). In
NCE we fix Z(u) to be one, so we only need to cal-
culate p(w | u) and k · q(w). The term k · q(w) is
simply an O(1) lookup, so the only costly operation
is computing p(w | u) for all k noise samples and
the true word. The operation to compute p(w | u)
for a single word w is expDwh

T + bw where Dw

and bw represent the word embedding and bias cor-
responding to the word we are computing it for.

The main cost in calculating the NCE objective
function is computing expDwh

T + bw, where in
normal NCE a dense matrix multiplication cannot
be done. The reason is that the noise samples gen-
erated per training example will be different. There-
fore, when we parallelize our algorithm by running
multiple training examples in parallel (a minibatch),
theDw we need are different per hT that we are run-
ning in parallel. If a constraint is set such that the
noise samples must be the same across all training
examples in the minibatch, then a matrix multipli-
cation can be done to compute expDwh

T + bw for
all words across that minibatch. This matrix mul-
tiplication is DhTM , where hTM is now a matrix of
all the hidden states being used in parallel, whereas
before hT was just a vector. Additionally, D is the
matrix of word embedding for the samples that are
being shared across a minibatch. Before, this was
not possible as the D matrix would have to be much
larger, being (minibatch size) · (k + 1) in size, mak-
ing the algorithm run much slower. An alternative
is to not restrict the noise samples to be the same,

but then we must use a sparse matrix multiplica-
tion as in Williams et al. (2015), which is neither
as fast nor as easy to implement. A comparison be-
tween these two approaches is shown in Figure 1.
We find that sharing noise samples across the mini-
batch gives us significant speedups over a baseline
of using different noise samples for each word in the
minibatch. These timings were calculated for a sin-
gle layer LSTM with 1000 hidden units, a vocab-
ulary of 350k, and a minibatch of 128. Not sur-
prisingly, MLE is quite expensive, limiting it’s use
for large vocabularies. Additionally, the memory
requirements for NCE are much lower than MLE,
since we do not need to store the gradient which has
the same size as the output embedding matrix. For
this MLE run, we had to distribute the computation
across two GPUs because of memory limitations.

5 Experiments

We conducted two series of experiments to validate
the efficiency of our approach and the quality of the
models we learned using it: An intrinsic study of
language model perplexity using the standard One
Billion Word benchmark (Chelba et al., 2013) and
an extrinsic end-to-end statistical machine transla-
tion task that uses an LSTM as one of several feature
functions in re-ranking. Both experiments achieve
excellent results.

5.1 Language Modeling
For our language modeling experiment we use the
One Billion Word benchmark proposed by Chelba et
al. (2013). In this task there are roughly 0.8 billion
words of training data. We use perplexity to evalu-
ate the quality of language models we train on this
data. We train an LSTM with 4 layers, where each
layer has 2048 hidden units, with a target vocabulary
size of 793,471. For training, we also use dropout to
prevent overfitting. We follow Zaremba et al. (2014)
for dropout locations, and we use a dropout rate of
0.2. The training is parallelized across 4 GPUs, such
that each layer lies on its own GPU and communi-
cates its activations to the next layer once it finishes
its computation.

5.2 Statistical Machine Translation
We incorporate our LSTM as a rescoring feature
on top of the output of a strong Arabic-English

1219

syntax-based string-to-tree statistical machine trans-
lation system (Galley et al., 2006; Galley et al.,
2004). That system is trained on 208 million words
of parallel Arabic-English data from a variety of
sources, much of which is Egyptian discussion fo-
rum content. The Arabic side is morphologically
segmented with MADA-ARZ (Habash et al., 2013).
We use a standard set of features, including two con-
ventional count-based language models, as well as
thousands of sparsely-occurring, lexicalized syntac-
tic features (Chiang et al., 2009). The system addi-
tionally uses a source-to-target feed-forward neural
network translation model during decoding, analo-
gous to the model of (Devlin et al., 2014). These
features are tuned with MIRA (Chiang et al., 2009)
on approximately 63,000 words of Arabic discus-
sion forum text, along with three references. We
evaluate this baseline on two test sets, each with ap-
proximately 34,000 words from the same genre used
in tuning.

We generate n-best lists (n = 1000) of unique
translations for each sentence in the tuning set and
re-rank the translations using an approach based on
MERT (Och, 2003). We collapse all features other
than language models, text length, and derivation
size into a single feature, formed by taking the dot
product of the previously learned feature and weight
vectors. We then run a single iteration of MERT on
the n-best lists to determine optimal weights for the
collapsed feature, the uncollapsed features, and an
LSTM feature formed by taking the score of the hy-
pothesis according to the LSTM described in Sec-
tion 5.1. We use the weights to rerank hypotheses
from the n-best lists of the two test sets. We re-
peated this experiment, substituting instead a two-
layer LSTM trained on the English side of the train-
ing data.

6 Results

Our two experiments with LSTMs trained with our
modification of NCE show strong results in their
corresponding tasks.

Our perplexity results are shown in Table 1, where
we get significantly lower perplexities than the best
single model from Chelba et al. (2013), while having
almost 6 times fewer parameters. We also compute
the partition function values, log

(
Z(u)

)
, for our de-

velopment set and we find that the mean is 0.058 and
the variance is 0.139, indicating that training has en-
couraged self-normalization.

Model Parameters Perplexity
Chelba et al. (2013) 20m 51.3
NCE (ours) 3.4m 43.2

Table 1: For the One Billion Word Benchmark, our NCE

method performs significantly better than the best single model

in the baseline, Chelba et al. (2013), while using many fewer

parameters.

Recently, (Józefowicz et al., 2016) achieved state-
of-the-art language modeling perplexities (30.0) on
the billion word dataset with a single model, using
importance sampling to approximate the normaliza-
tion constant, Z(u).

Independent of our work, they also share noise
samples across the minibatch. However, they use
8192 noise samples, while we achieve strong per-
plexities with 100 noise samples. We also show
significant improvements in machine translation, ex-
ploiting self-normalization for fast decoding, in ad-
dition to releasing a efficient toolkit that practition-
ers can use.

Table 2 shows our re-scoring experiments. When
we incorporate only the LSTM trained on the BOLT
dataset we get a +1.1 BLEU improvement on Tune,
+1.4 on Test 1, and +1.1 on Test 2. When we
also incorporate the LSTM trained on the One Bil-
lion Word dataset as a feature, we see another
+0.2 BLEU increase on Tune and Test 2. In

System Tune Test 1 Test 2
Baseline SMT 38.7 38.9 39.7
LSTM (BOLT) 39.8 40.3 40.8
LSTM (1b+BOLT) 40.0 40.3 41.0

Table 2: Our NCE-based language model successfully re-ranks

Arabic-to-English n-best lists. The baseline is a state-of-the-

art, statistical string-to-tree system. BOLT is a 208m-word, in-

domain English corpus; “1b” refers to the One Billion Word

benchmark corpus.

these re-scoring experiments we simply use the un-
normalized numerator p(w | u) as our word score,
which means we never have to compute the costly
partition function, Z(u). This is because the parti-
tion function is so close to 1 that the un-normalized

1220

Th
ro

ug
hp

ut
 (x

 1
k

w
or

ds
 p

er
 s

ec
on

d)

0

5

10

15

20

Number of noise samples

100 200 500 1000 2000 5000

Shared (NCE) Baseline (NCE) MLE

Figure 1: Sharing noise samples across the minibatch is at least 4 times faster than a baseline of not sharing them.

scores are very close to the normalized ones.

7 Conclusion

We describe a natural extension to NCE that
achieves a large speedup on the GPU while also
achieving good empirical results. LSTM models
trained with our NCE modification achieve strong
results on the One Billion Word dataset. Addition-
ally, we get good BLEU gains when re-ranking n-
best lists from a strong string-to-tree machine trans-
lation system. We also release an efficient toolkit for
training LSTM language models with NCE.

8 Acknowledgments

This work was carried out with funding from
DARPA (HR0011-15-C-0115) and ARL/ARO
(W911NF-10-1-0533).

References
P. Baltescu and P. Blunsom. 2014. Pragmatic neu-

ral language modelling in machine translation. arXiv
preprint arXiv:1412.7119.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants,
and P. Koehn. 2013. One billion word benchmark for

measuring progress in statistical language modeling.
CoRR, abs/1312.3005.

D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new
features for statistical machine translation. In Proc.
NAACL.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz,
and J. Makhoul. 2014. Fast and robust neural net-
work joint models for statistical machine translation.
In Proc. ACL.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In Proc. HLT-NAACL.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models.
In Proc. ACL-COLING.

M. Gutmann and A. Hyvärinen. 2010. Noise-contrastive
estimation: A new estimation principle for unnormal-
ized statistical models. In Proc. AI Stats.

N. Habash, R. Roth, O. Rambow, R. Eskander, and
N. Tomeh. 2013. Morphological analysis and disam-
biguation for dialectal arabic. In Proc. NAACL.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–1780.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling. CoRR, abs/1602.02410.

M. Luong, H. Pham, and C. Manning. 2015. Effective

1221

approaches to attention-based neural machine transla-
tion. arXiv preprint arXiv:1508.04025.

Tomáš Mikolov. 2012. Statistical language models based
on neural networks. Presentation at Google, Mountain
View, 2nd April.

A. Mnih and Y. W. Teh. 2012. A fast and simple algo-
rithm for training neural probabilistic language mod-
els. arXiv preprint arXiv:1206.6426.

F. J. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. ACL.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS, pages 3104–3112.

A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang. 2013.
Decoding with large-scale neural language models im-
proves translation. In Proc. EMNLP.

W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robin-
son. 2015. Scaling recurrent neural network language
models. CoRR, abs/1502.00512.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Re-
current neural network regularization. arXiv preprint
arXiv:1409.2329.

1222

