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Abstract

The Lexical Substitution task involves select-
ing and ranking lexical paraphrases for a target
word in a given sentential context. We present
PIC, a simple measure for estimating the ap-
propriateness of substitutes in a given con-
text. PIC outperforms another simple, com-
parable model proposed in recent work, es-
pecially when selecting substitutes from the
entire vocabulary. Analysis shows that PIC
improves over baselines by incorporating fre-
quency biases into predictions.

1 Introduction

Lexical substitution (McCarthy and Navigli, 2009)
is a task in which word meaning in context is de-
scribed not through dictionary senses but through
substitutes (paraphrases) chosen by annotators. For
example, consider the following usage of the adjec-
tive bright: “The bright girl was reading a book.”
Valid lexical substitutions for bright include adjec-
tives like smart and intelligent, but not words like
luminous or colorful.

Originally introduced as a SemEval task in 2007,
lexical substitution has often been used to evaluate
the ability of distributional models to handle pol-
ysemy (Erk and Padó, 2008; Thater et al., 2010;
Dinu and Lapata, 2010; Van de Cruys et al., 2011;
Melamud et al., 2015b; Melamud et al., 2015a;
Kawakami and Dyer, 2015). Recent models include
a simple but high-performing method by Melamud
et al. (2015b), which uses the Skip-gram model of
Mikolov et al. (Mikolov et al., 2013) to compute the
probability of a substitute given a sentence context,

and integrates it with the probability of the substi-
tute given the target. The current state of the art is
held by another model of Melamud (Melamud et al.,
2015a), which uses a more complex architecture.

In this paper we build on the simple model of
Melamud et al. (2015b), as simpler methods are eas-
ier to recreate and integrate into larger pipelines.1

We explore a weak form of supervision that recently
has proved beneficial on many NLP tasks: using a
language modeling task on unannotated data. We
find a strong improvement over Melamud’s simple
measure, particularly on the all-words ranking task.
Interestingly, analysis of PIC shows it improves over
baselines by incorporating frequency biases into pre-
dictions.

2 Prior Work

In the lexical substitution task, an annotator is given
a target word in context and generates one or more
substitutes. As multiple annotators label a target,
the result is a weighted list of substitutes, where
weights indicate how many annotators chose a par-
ticular substitute (McCarthy and Navigli, 2009).

There have been numerous approaches on the lex-
ical substitution task of varying complexity and us-
ing various lexical resources (McCarthy and Nav-
igli, 2007). Some approaches focus on explic-
itly modeling an in-context vector (Erk and Padó,
2008; Dinu and Lapata, 2010; Thater et al., 2010;
Van de Cruys et al., 2011; Kremer et al., 2014;
Kawakami and Dyer, 2015), while others approach
it using more sophisticated pipelines, in both super-

1Code and models available at https://github.com/
stephenroller/naacl2016.
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vised (Szarvas et al., 2013) and unsupervised (Mela-
mud et al., 2015a) settings. The latter is the current
state-of-art system, and is based around generating
and pruning second-order word representations us-
ing language models.

In this work, we limit our comparisons to the
model of Melamud et al. (2015b), a method which
performs nearly state-of-art, is extremely easy to
implement, and is a good testbed for focused hy-
potheses. They propose a novel measure which
uses dependency-based word and context embed-
dings derived from Skip-gram Negative Sampling
algorithm (SGNS) (Mikolov et al., 2013; Levy and
Goldberg, 2014a). Their measure addCos for es-
timating the appropriateness of a substitute s as a
substitute for t in the context C = {c1, c2, . . .} is
defined as follows:2

addCos(s|t, C) = cos(s, t) +
∑
c∈C

cos(s, c).

They also propose a similar measure balAddCos,
which controls for the context size:

balAddCos(s|t, C) = |C|cos(s, t) +
∑
c∈C

cos(s, c).

3 Proposed Measure

We propose a new measure, called Probability-in-
Context (PIC), based on SGNS context vectors to
estimate the appropriateness of a lexical substitute.
Similar to balAddCos, the measure has two equally-
weighted, independent components measuring the
appropriateness of the substitute for both the target
and the context, each taking the form of a softmax:3

PIC(s|t, C) = P (s|t)× P (s|C)

P (s|t) =
1
Zt

exp
{
sT t
}

P (s|C) =
1
ZC

exp

{∑
c∈C

sT [Wc+ b]

}
2We abuse notation and allow s, t and c to refer to both the

lexical items and their corresponding vectors.
3Note that P (s|t) measures paradigmatic similarity of s and

t, while P (s|C) is syntagmatic fit to the context. For P (s|t),
Mikolov et al. (2013) show that cosine similarity of SGNS em-
beddings predicts paradigmatic similarity. P (s|C) can be inter-
preted as the PMI of s and C (Levy and Goldberg, 2014b).

The values Zt and ZC are normalizing constants
to make sure each distribution sums to one. This
measure has two free parameters, W and b, which
act as a linear transformation over the context vec-
tors. These parameters are estimated from the orig-
inal corpus, and are trained to maximize the pre-
diction of a target from only its syntactic contexts
(c.f. Section 4.4). Given this formulation, a natural
question is why not train the embeddings to opti-
mize the softmax directly? We choose to parameter-
ize the measure rather than the embeddings because
(i) SGNS embeddings are already popular and read-
ily available and (ii) it ensures the quality of embed-
dings remains constant across experimental settings.

To measure the importance of parameteriza-
tion, we also compare to a non-parameterized PIC
(nPIC), which only uses a softmax over the dot prod-
uct:

nPIC(s|t, C) = P (s|t)× Pn(s|C)

Pn(s|C) =
1
Zn

exp

{∑
c∈C

sT c

}
4 Experimental Setup

We compare our proposed measures to three base-
lines: OOC, the Out-of-Context cosine similarity
between the word and target (cos(s, t)), and the
addCos and balAddCos measures. It is important
to note that existing papers on Lexical Substitution
all contain subtle differences in experimental setup
(vocabulary coverage, candidate pooling, etc.). We
compare to our own re-implementation of the base-
lines, so our numbers differ slightly from those in
the literature.

4.1 Data sets
We evaluate on three lexical substitution data sets.

SE07: The data set used in the original SemEval
2007 shared task (McCarthy and Navigli, 2007) con-
sists of 201 words manually chosen to exhibit poly-
semy, with 10 sentences per target. For a given target
in a particular context, five annotators were asked to
propose up to 3 substitutes. As all our experiments
are unsupervised, we always evaluate over the entire
data set, rather than the original held-out test set.

Coinco: The Concepts-in-Context data set (Kre-
mer et al., 2014) is a large lexical substitution cor-
pus with proposed substitutes for nearly all content
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words in roughly 2,500 sentences from a mixture of
genres (newswire, emails, and fiction). Crowdsourc-
ing was used to obtain a minimum of 6 contextually-
appropriate substitutes for over 15k tokens.

TSWI2: The Turk bootstrap Word Sense Inven-
tory 2.0 (Biemann, 2012) is a crowdsourced lexical
substitution corpus focused on about 1,000 common
English nouns. The data set contains nearly 25,000
contextual uses of these nouns. Though the data set
was originally constructed to induce a word-sense
lexicon based on common substitution patterns, here
we only use it as a lexical substitution data set.

4.2 Task Evaluation

We compare models on two variations of the lexical
substitution task: candidate ranking and all-words
ranking. In the candidate ranking task, the model
is given a list of candidates and must select which
are most appropriate for the given target. We follow
prior work in pooling candidates from all substitu-
tions for a given lemma and POS over all contexts,
and measure performance using Generalized Aver-
age Precision (GAP). GAP is similar to Mean Aver-
age Precision, but weighted by the number of times
a substitute was given by annotators. See Thater et
al. (2010) for full details of the candidate ranking
task.

The second task is the much more difficult task
of all-words ranking. In this task, the model is not
provided any gold list of candidates, but must se-
lect possible substitutes from the entire vocabulary.4

We measure performance by (micro) mean Preci-
sion@1 and P@3: that is, of a system’s top one/three
guesses, the percentage also given by human annota-
tors. These evaluation metrics are similar to the best
and oot metrics reported in the literature, but we find
P@1 and P@3 easier to interpret and analyze.

4.3 Word and Context Vectors

We use the word and context vectors released by
Melamud et al. (2015b),5 which were previously
shown to perform strongly in lexical substitution
tasks. These embeddings were computed from a cor-

4All models are also hardcoded not to predict substitutes
with the same stem as the target, e.g. for the bright girl ex-
ample, models cannot predict brighter or brightest.

5http://www.cs.biu.ac.il/nlp/resources/
downloads/lexsub_embeddings

pus of (word, relation, context) tuples extracted from
ukWaC and processed using the dependency-based
word2vec model of Levy and Goldberg (2014a).
These embeddings contain 600d vectors for 173k
words and about 1M syntactic contexts.

4.4 Training Procedure

To train the W and b parameters, we extract to-
kens with syntactic contexts using the same corpus
(ukWaC), parser (Chen and Manning, 2014), and ex-
traction procedure used to generate the embeddings.
See (Melamud et al., 2015b) for complete details.
After extracting every token with its contexts, we
randomly sample 10% of the data to reduce compu-
tation time, leaving us with 190M tokens for training
W and b. We use sampled softmax to reduce train-
ing time (Jean et al., 2015), sampling 15 negative
candidates uniformly from the vocabulary, optimiz-
ing cross-entropy over just these 16 words per sam-
ple. We optimizeW and b in one epoch of stochastic
gradient descent (SGD) with a learning rate of 0.01,
momentum of 0.98, and a batch size of 2048. We
found all of these hyperparameters worked well ini-
tially, and did not tune them.

5 Results

Table 1 contains results for all measures across all
experimental settings.

The first observation we make is that the PIC mea-
sure performs best in all evaluations on all data
sets by a significant margin.6 In the GAP evalua-
tion, all measures perform substantially better than
the OOC baseline, and the nPIC measure performs
comparably to balAddCos. We note that context-
sensitive measures give the most improvement in
SE07, reflecting its greater emphasis on polysemy.

As we turn to the all-words ranking evaluations,
we observe that the absolute numbers are much
lower, reflecting the increased difficulty of the task.
We also see the that nPIC and PIC both improve
greatly over all baselines: The nPIC measure is a
relative 30% improvement over balAddCos in SE07
and Coinco, and the PIC measure is a relative 50%
improvement over balAddCos in 5 evaluations.

Since both measures have a clear improvement
over the baselines, especially in the more difficult

6Wilcoxon signed-rank test, p < 0.01
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Measure SE07 Coinco TWSI2
Candidate Ranking (GAP)

OOC 44.2 44.5 57.9
addCos 51.2 46.3 62.2
balAddCos 49.6 46.5 61.3
nPIC 51.3 46.4 61.8
PIC 52.4 48.3 62.8
All-Words Ranking (Mean Precision@1)
OOC 11.7 10.9 9.8
addCos 12.9 10.5 7.9
balAddCos 13.4 11.8 9.8
nPIC 17.3 16.3 11.1
PIC 19.7 18.2 13.7
All-Words Ranking (Mean Precision@3)
OOC 9.7 8.6 7.0
addCos 9.0 7.9 6.1
balAddCos 9.8 9.1 7.4
nPIC 13.1 12.1 7.9
PIC 14.8 13.8 10.1

Table 1: Lexical Substitution results for candidate ranking

(GAP) and all-words ranking tasks (P@1, P@3).

all-words task, we next strive to understand why.

5.1 Analysis

We first an few cherry and lemon-picked examples
to give intuitions about why our model performs bet-
ter. Table 2 contains the cherry example, where our
model performs better than prior work. While OOC
and balAddCos both suggest replacements with rea-
sonable semantics, but are all misspelled. nPIC and
PIC only pick words with the correct spellings, with
the exception of “realy.”

Table 3 shows the lemon example, where our
model performs worse. We notice that the unusual
“sea-change” item is prominent in the OOC and
balAddCos models, but has dropped from the rank-
ings in our models. From these and other examples,
we hypothesize the model is simply guessing more
frequent terms.

We consider a few experiments with this hypoth-
esis that the measures do better because they cap-
ture better unigram statistics than the baselines. Re-
cent literature found that the vector norm of SGNS
embeddings correlates strongly with word frequency
(Wilson and Schakel, 2015). We verified this for

ourselves, computing the Spearman’s rank correla-
tion between the corpus unigram frequency and the
vector length and found rho = 0.90, indicating the
two correlate very strongly. Since the dot prod-
uct is also the unnormalized cosine, it follows that
nPIC and PIC should depend on unigram frequency.

To verify that the nPIC and PIC measures are
indeed preferring more frequent substitutes, we
compare the single best predictions (P@1) of the
balAddCos and nPIC systems on all-words predic-
tion on Coinco. Roughly 42% of the predictions
made by the systems are identical, but of the remain-
ing items, 74% of predictions made by nPIC have
a higher corpus frequency than balAddCos (where
chance is 50%). We find balAddCos and PIC make
the same prediction 37% of the time, and PIC pre-
dicts a more frequent word in 83% of remaining
items. The results for SE07 and TWSI2 are similar.

This indicates that the unigram bias is even higher
for PIC than nPIC. To gain more insight, we manu-
ally inspect the learned parametersW and b. We find
that the W matrix is nearly diagonal, with the val-
ues along the diagonal normally distributed around
µ = 1.11 (σ = 0.02) and the rest of the ma-
trix normally distributed roughly around 0 (µ=2e-5,
σ=0.02). This is to say, the PIC model is approxi-
mately learning to exaggerate the magnitude of the
dot product, sT c. This suggests one could even re-
place our parameter W with a single scaling param-
eter, though we leave this for future work.

To inspect the bias b, we compute the inner prod-
uct of the b vector with the word embedding matrix,
to find each word’s a priori bias, and correlate it with
word frequencies. We find rho = 0.25, indicating
that b is also capturing unigram statistics.

Is it helpful in lexical substitution to prefer more
frequent substitutes? To test this, we pool all anno-
tator responses for all contexts in Coinco, and find
the number of times a substitute is given correlates
strongly with frequency (rho = 0.54).

These results emphasize the importance of incor-
porating unigram frequencies when attempting the
lexical substitution task (as with many other tasks
in NLP). Compared to cosine, the dot product in
nPIC stresses unigram frequency, and the parame-
ters W and b strengthen this tendency.
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OOC balAddCos nPIC PIC
You can sort of challenge them well, did you

really know the time when you said yes?
trully proably realy actually

actually trully truly truly
actaully acutally actually already
acutally actaully hardly barely
proably probaly definitely just

Table 2: Example where the PIC performs better in the All-Words Ranking task. The target word and correct answers are bolded.

OOC balAddCos nPIC PIC
As a general rule, point of view should not change during a scene.
sea-change alter reoccur re-occur

alter sea-change re-occur appear
shift shift prevail overstate

downshift downshift deviate differ
re-configure increase/decrease divulged disappear

Table 3: Example where the PIC performs worse the All-Words Ranking task. The target word and correct answers are bolded.

6 Conclusion

We have presented PIC, a simple new measure for
assessing the appropriateness of a substitute in a
particular context for the Lexical Substitution task.
The measure assesses the fit of the substitute both to
the target word and the sentence context. It signifi-
cantly outperforms comparable baselines from prior
work, and does not require any additional lexical re-
sources. An analysis indicates its performance im-
provements derive primarily from a tendency to lean
more strongly on unigram statistics than baselines.
In future work, our measure could be simplified by
implementing the bias as a single scaling parameter.
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