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Abstract

For many low-resource languages, spoken lan-
guage resources are more likely to be an-
notated with translations than transcriptions.
This bilingual speech data can be used for
word-spotting, spoken document retrieval, and
even for documentation of endangered lan-
guages. We experiment with the neural, atten-
tional model applied to this data. On phone-
to-word alignment and translation reranking
tasks, we achieve large improvements relative
to several baselines. On the more challeng-
ing speech-to-word alignment task, our model
nearly matches GIZA++’s performance on
gold transcriptions, but without recourse to
transcriptions or to a lexicon.

1 Introduction

For many low-resource languages, spoken language
resources are more likely to come with translations
than with transcriptions. Most of the world’s lan-
guages are not written, so there is no orthography
for transcription. Phonetic transcription is possible
but too costly to produce at scale. Even when a mi-
nority language has an official orthography, people
are often only literate in the language of formal ed-
ucation, such as the national language. Neverthe-
less, it is relatively easy to provide written or spoken
translations for audio sources. Subtitled or dubbed
movies are a widespread example.

One application of models of bilingual speech
data is documentation of endangered languages.
Since most speakers are bilingual in a higher-
resource language, they can listen to a source lan-
guage recording sentence by sentence and provide

a spoken translation (Bird, 2010; Bird et al., 2014).
By aligning this data at the word level, we hope to
automatically identify regions of data where further
evidence is needed, leading to a substantial, inter-
pretable record of the language that can be studied
even if the language falls out of use (Abney and
Bird, 2010; Bird and Chiang, 2012).

We experiment with extensions of the neural, at-
tentional model of Bahdanau et al. (2015), work-
ing at the phone level or directly on the speech sig-
nal. We assume that the target language is a high-
resource language such as English that can be auto-
matically transcribed; therefore, in our experiments,
the target side is text rather than the output of an au-
tomatic speech recognition (ASR) system.

In the first set of experiments, as a stepping
stone to direct modeling of speech, we represent
the source as a sequence of phones. For phone-to-
word alignment, we obtain improvements of 9–24%
absolute F1 over several baselines (Och and Ney,
2000; Neubig et al., 2011; Stahlberg et al., 2012).
For phone-to-word translation, we use our model to
rerank n-best lists from Moses (Koehn et al., 2007)
and observe improvements in BLEU of 0.9–1.7.

In the second set of experiments, we operate di-
rectly on the speech signal, represented as a se-
quence of Perceptual Linear Prediction (PLP) vec-
tors (Hermansky, 1990). Without using transcrip-
tions or a lexicon, the model is able to align the
source-language speech to its English translations
nearly as well as GIZA++ using gold transcriptions.

Our main contributions are: (i) proposing a
new task, alignment of speech with text transla-
tions, including a dataset extending the Spanish
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Fisher and CALLHOME datasets; (ii) extending
the neural, attentional model to outperform exist-
ing models at both alignment and translation rerank-
ing when working on source-language phones; and
(iii) demonstrating the feasibility of alignment di-
rectly on source-language speech.

2 Background

To our knowledge, there has been relatively little re-
search on models that operate directly on parallel
speech. Typically, speech is transcribed into a word
sequence or lattice using ASR, or at least a phone
sequence or lattice using a phone recognizer. This
normally requires manually transcribed data and a
pronunciation lexicon, which can be costly to cre-
ate. Recent work has introduced models that do
not require pronunciation lexicons, but train only
on speech with text transcriptions (Lee et al., 2013;
Maas et al., 2015; Graves et al., 2006). Here, we
bypass phonetic transcriptions completely, and rely
only on translations.

Such data can be found, for example, in subti-
tled or dubbed movies. Some specific examples of
corpora of parallel speech are the European Parlia-
ment Plenary Sessions Corpus (Van den Heuvel et
al., 2006), which includes parliamentary speeches in
the 21 official EU languages, as well as their inter-
pretation into all the other languages; and the TED
Talks Corpus (Cettolo et al., 2012), which provides
speech in one language (usually English) together
with translations into other languages.

As mentioned in the introduction, a stepping-
stone to model parallel speech is to assume a rec-
ognizer that can produce a phonetic transcription
of the source language, then to model the transfor-
mation from transcription to translation. We com-
pare against three previous models that can oper-
ate on sequences of phones. The first is simply to
run GIZA++ (IBM Model 4) on a phonetic tran-
scription (without word boundaries) of the source
side. Stahlberg et al. (2012) present a modifica-
tion of IBM Model 3, named Model 3P, designed
specifically for phone-to-word alignment. Finally,
pialign (Neubig et al., 2011), an unsupervised model
for joint phrase alignment and extraction, has been
shown to work well at the character level (Neubig et
al., 2012) and extends naturally to work on phones.

Speech Signal
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Figure 1: The attentional model as applied to our tasks. We

consider two types of input: discrete phone input, or continuous

audio, represented as PLP vectors at 10ms intervals

3 Model

We base our approach on the attentional translation
model of Cohn et al. (2016), an extension of Bah-
danau et al. (2015) which incorporates more fine
grained components of the attention mechanism to
mimic the structural biases in standard word based
translation models. The attentional model encodes
a source as a sequence of vectors, then decodes it
to generate the output. At each step, it “attends”
to different parts of the encoded sequence. This
model has been used for translation, image cap-
tion generation, and speech recognition (Luong et
al., 2015; Xu et al., 2015; Chorowski et al., 2014;
Chorowski et al., 2015). Here, we briefly describe
the basic attentional model, following Bahdanau et
al. (2015), review the extensions for encoding struc-
tural biases (Cohn et al., 2016), and then present our
novel means for adapting the approach handle paral-
lel speech.

3.1 Base attentional model

The model is shown in Figure 1. The speech signal is
represented as a sequence of vectors S 1, S 2, . . . , S m.
For the first set of experiments, each S i is a 128-
dimensional vector-space embedding of a phone.
For the second set of experiments, each S i is the
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39-dimensional PLP vector of a single frame of the
speech signal. Our model has two main parts: an en-
coder and a decoder. For the encoder, we used a bidi-
rectional recurrent neural network (RNN) with Long
Short-Term Memory (LSTM) units (Hochreiter and
Schmidhuber, 1997); we also tried Gated Recurrent
Units (Pezeshki, 2015), with similar results. The
source speech signal is encoded as sequence of vec-
tors HS = (H1

S ,H
2
S , . . . ,H

m
S ) where each vector H j

S
(1 ≤ j ≤ m) is the concatenation of the hidden states
of the forward and backward LSTMs at time j.

The attention mechanism is added to the model
through an alignment matrix α ∈ Rn×m, where n is
the number of target words. We add <s> and </s>
to mark the start and end of the target sentence. The
row αi ∈ Rm shows where the model should at-
tend to when generating target word wi. Note that∑m

j=1 αi j = 1. The “glimpse” vector ci of the source

when generating wi is ci =
∑

j αi jH
j
S .

The decoder is another RNN with LSTM units.
At each time step, the decoder LSTM receives ci in
addition to the previously-output word. Thus, the
hidden state1 at time i of the decoder is defined as
Hi

T = LSTM(Hi−1
T , ci,wi−1), which is used to predict

word wi:

p(wi | w1 · · ·wi−1,HS ) = softmax(g(Hi
T )), (1)

where g is an affine transformation. We use 128 di-
mensions for the hidden states and memory cells in
both the source and target LSTMs.

We train this model using stochastic gradient de-
scent (SGD) on the negative log-likelihood for 100
epochs. The gradients are rescaled if their L2
norm is greater than 5. We tried Adagrad (Duchi
et al., 2011), AdaDelta (Zeiler, 2012), and SGD
with momentum (Attoh-Okine, 1999), but found
that simple SGD performs best. We implemented
dropout (Srivastava et al., 2014) and the local atten-
tional model (Luong et al., 2015), but did not ob-
serve any significant improvements.

3.2 Structural bias components

As we are primarily interested in learning accurate
alignments (roughly, attention), we include the mod-

1The LSTM also carries a memory cell, along with the hid-
den state; we exclude this from the presentation for clarity of
notation.

elling extensions of Cohn et al. (2016) for incorpo-
rating structural biases from word-based translation
models into the neural attentional model. As shown
later, we observe that including these components
result in a substantial improvement in measured
alignment quality. We now give a brief overview of
these components.

Previous attention. In the basic attentional
model, the alignment is calculated based on the
source encoding HS and the previous hidden
state Hi−1

T of the target, αi = Attend(Hi−1
T ,HS ),

where Attend is a function that outputs m attention
coefficients. This attention mechanism is overly
simplistic, in that it is incapable of capturing
patterns in the attention over different positions i.
Recognising and exploiting these kinds of patterns
has proven critical in traditional word based models
of translation (Brown et al., 1993; Vogel et al.,
1996; Dyer et al., 2013). For this reason Cohn et al.
(2016) include explicit features encoding structural
biases from word based models, namely absolute
and relative position, Markov conditioning and
fertility:

1. previous alignment, αi−1
2. sum of previous alignments,

∑i−1
j=1 α j

3. source index vector, (1, 2, 3, . . . ,m); and
4. target index vector (i, i, i, . . . , i).

These features are concatenated to form a feature
matrix β ∈ R4×m, which are added to the alignment
calculation, i.e., αi = Attend(Hi−1

T ,HS , β) .

Coverage penalty. The sum over previous align-
ments feature, described above provides a basic fer-
tility mechanism, however as it operates locally it is
only partially effective. To address this, Cohn et al.
(2016) propose a global regularisation method for
implementing fertility.

Recall that the alignment matrix α ∈ Rn×m, each
αi is normalized, such that

∑
j αi j = 1. However,

nothing in the model requires that every source el-
ement gets used. This is remedied by encouraging
the columns of the alignment matrix to also sum to
one, that is,

∑
i αi j = 1. To do so, we add a regu-

larization penalty, λ
∑m

j=1

∥∥∥∑n
i=1 αi j − 1

∥∥∥2
2 to the ob-

jective function where λ controls the regularization
strength. We tune λ on the development set and
found that λ = 0.05 gives the best performance.
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Figure 2: Stacking three layers of LSTM to the source side as

in the second set of experiments

4 Extensions for Speech

We can easily apply the attentional model to paral-
lel data, where the source side is represented as a
sequence of phones. In cases where no annotated
data or lexicon are available, we expect it is difficult
to obtain phonetic transcriptions. Instead, we would
like to work directly with the speech signal. How-
ever, dealing with the speech signal is significantly
different than the phone representation, and so we
need to modify the base attentional model.

4.1 Stacked and pyramidal RNNs

Both the encoder and decoder can be made
more powerful by stacking several layers of
LSTMs (Sutskever et al., 2014). For the first set of
experiments below, we stack 4 layers of LSTMs on
the target side; further layers did not improve perfor-
mance on the development set.

For the second set of experiments, we work di-
rectly with the speech signal as a sequence of PLP
vectors, one per frame. Since the frames begin at
10 millisecond intervals, the sequence can be very
long. This makes the model slow to train; in our
experiments, it seems not to converge at all. Fol-
lowing Chan et al. (2016), we use RNNs stacked
into a pyramidal structure to reduce the size of the
source speech representation. As illustrated in Fig-

ure 2, we stack 3 layers of bidirectional LSTMs. The
first layer is the same as the encoder HS described in
Figure 1. The second layer uses every fourth output
of the first layer as its input. The third layer selects
every other output of the second layer as its input.
The attention mechanism is applied only to the top
layer. This reduces the size of the alignment ma-
trix by a factor of eight, giving rise to vectors at the
top layer representing 80ms intervals, which roughly
correspond in duration to input phones.

4.2 Alignment smoothing
In most bitexts, source and target sentences have
roughly the same length. However, for our task of
aligning text and speech where the speech is rep-
resented as a sequence of phones or PLP vectors,
the source can easily be several times larger than the
target. Therefore we expect that a target word will
commonly align to a run of several source elements.
We want to encourage this behavior by smoothing
the alignment matrix.

The easiest way to do this is by post-processing
the alignment matrix. We train the model as usual,
and then modify the learned alignment matrix α by
averaging each cell over a window, α′i j := 1

3 (αi, j−1 +

αi j + αi, j+1). The modified alignment matrix, α′,
is only used for generating hard alignments in our
alignment evaluation experiments. We can smooth
further by changing the computation of αi j during
training. We flatten the softmax by adding a temper-
ature factor, T ≥ 1:

αi j =
exp(ei j/T )∑
k exp(eik/T )

Note that when T = 1 we recover the standard soft-
max function; we set T = 10 in both experiments.

5 Experimental Setup

We work on the Spanish CALLHOME Corpus
(LDC96S35), which consists of telephone conversa-
tions between Spanish native speakers based in the
US and their relatives abroad. While Spanish is not
a low-resource language, we pretend that it is by not
using any Spanish ASR or resources like transcribed
speech or pronunciation lexicons (except in the con-
struction of the “silver” standard for evaluation, de-
scribed below). We also use the English translations
produced by Post et al. (2013).
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We treat the Spanish speech as a sequence of 39-
dimensional PLP vectors (order 12 with energy and
first and second order delta) encoding the power
spectrum of the speech signal. We do not have gold
standard alignments between the Spanish speech
and English words for evaluation, so we produced
“silver” standard alignments. We used a forced
aligner (Gorman et al., 2011) to align the speech to
its transcription, and GIZA++ with the gdfa sym-
metrization heuristic (Och and Ney, 2000) to align
the Spanish transcription to the English translation.
We then combined the two alignments to produce
“silver” standard alignments between the Spanish
speech and the English words.

Cleaning and splitting the data based on dialogue
turns, resulted in a set of 17,532 Spanish utterances
from which we selected 250 for development and
500 testing. For each utterance we have the corre-
sponding English translation, and for each word in
the translation we have the corresponding span of
Spanish speech.

The forced aligner produces the phonetic se-
quences that correspond to each utterance, which we
use later in our first set of experiments as an interme-
diate representation for the Spanish speech.

In order to evaluate an automatic alignment be-
tween the Spanish speech and English translation
against the “silver” standard alignment, we compute
alignment precision, recall, and F1-score as usual,
but on links between Spanish PLP vectors and En-
glish words.

6 Phone-to-Word Experiments

In our first set of experiments, we represent the
source Spanish speech as a sequence of phones. This
sets an upper bound for our later experiments work-
ing directly on speech.

6.1 Alignment

We compare our model against three baselines:
GIZA++, Model 3P, and pialign. For pialign,
in order to better accommodate the different
phrase lengths of the two alignment sides, we
modified the model to allow different parame-
ters for the Poisson distributions for the average
phrase length, as well as different null align-

Model F-score ∆

GIZA++ 29.7 −13.0
Model 3P 31.2 −11.5
Pialign (default) 42.4 −0.3
Pialign (modified) 44.0 +1.3

Base model 42.7 +0
+ alignment features 46.2 +3.5
+ coverage penalty 48.6 +5.9
+ stacking 46.3 +3.6
+ alignment smoothing 47.3 +4.6
+ alignment/softmax smoothing 48.2 +5.5

All modifications 53.6 +10.9

Table 1: On the alignment task, the base model performs much

better than GIZA++ and Model 3P, and at roughly the same

level as pialign; modifications to the model produce further

large improvements. The ∆ column shows the score difference

compared with the base model.

ment probabilities for each side.2 We used the
settings -maxsentlen 200 -maxphraselen

20 -avgphraselenF 10 -nullprobF 0.001,
improving performance by 1.6% compared with
the default setting. For Model 3P, we used the
settings -maxFertility 15 -maxWordLength

20, unrestricted max[Src/Trg]SenLen and 10
Model3Iterations. We chose the iteration with
the highest score to report as the baseline.

The attentional model produces a soft alignment
matrix, whose entries αi j indicate p(s j | wi) of align-
ing source phone s j to target word wi. For evalua-
tion, we need to convert this to a hard alignment that
we can compare against the “silver” standard. Since
each word is likely to align with several phones,
we choose a simple decoding algorithm: for each
phone s j, pick the word wi that maximizes p(wi | s j),
where this probability is calculated from alignment
matrix α using Bayes’ Rule.

Table 1 shows the results of the alignment exper-
iment. The base attentional model achieved an F-
score of 42.7%, which is much better than GIZA++

and Model 3P (by 13% and 11.5% absolute, re-
spectively) and at roughly the same level as pialign.
Adding our various modifications one at a time

2Our modifications have been submitted to the pialign
project.
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reranker
aligner decoder none AM

AM (all mods) 14.6

GIZA++ Moses 18.2 19.9
pialign Moses 18.9 19.8
pialign (mod) Moses 20.2 21.1

Word-based Reference 34.1

Table 2: BLEU score on the translation task. Using the

attentional model (AM) alone (first row) significantly under-

performed Moses. However, using the AM as a reranker yielded

improvements across several settings. The word-based refer-

ence translation provides the upper bound for our phoneme-

based systems.

yields improvements ranging from 3.5% to 5.9%.
Combining all of them yields a net improvement of
10.9% over the base model, which is 9.4% better
than the modified pialign, 22.4% better than Model
3P, and 23.9% better than GIZA++.

6.2 Translation

In this section, we evaluate our model on the trans-
lation task. We compare the model against the
Moses phrase-based translation system (Koehn et
al., 2007), applied to phoneme sequences. We also
provide baseline results for Moses applied to word
sequences, to serve as an upper bound. Since Moses
requires word alignments as input, we used various
alignment models: GIZA++, pialign, and pialign
with our modifications. Table 2 shows that transla-
tion performance roughly correlates with alignment
quality.

For the attentional model, we used all of the modi-
fications described above except alignment smooth-
ing. We also used more dimensions (256) for hid-
den states and memory cells in both encoder and de-
coder. The decoding algorithm starts with the sym-
bol <s> and uses beam search to generate the next
word. The generation process stops when we reach
the symbol </s>. We use a beam size of 5, as larger
beam sizes make the decoder slower without sub-
stantial performance benefits.

As shown in Table 2, the attentional model
achieved a BLEU score of 14.6 on the test data,
whereas the Moses baselines achieve much better

BLEU scores, from 18.2 to 20.2. We think this is
because the attentional model is powerful, but we
don’t have enough data to train it fully given that the
output space is the size of the vocabulary. More-
over, this attentional model has been configured to
optimize the alignment quality rather than transla-
tion quality.

We then tried using the attentional model to
rerank 100-best lists output by Moses. The
model gives a score for generating the next word
p(wi|w1 · · ·wi−1,HS ) as in equation (1). We simply
compute the score of a hypothesis by averaging the
negative log probabilities of the output words,

score(w1 · · ·wn) = −1
n

n∑
i=1

log(p(wi|w1 · · ·wi−1,HS )) ,

and then choosing the best scoring hypothesis. Ta-
ble 2 shows the result using the attentional model
as the reranker on top of Moses, giving improve-
ments of 0.9 to 1.7 BLEU over their corresponding
baselines. These consistent improvements suggest
that the probability estimation part of the attentional
model is good, but perhaps the search is not ade-
quate. Further research is needed to improve the at-
tentional model’s translation quality. Another possi-
bility, which we leave for future work, is to include
the attentional model score as a feature in Moses.

Table 3 shows some example translations com-
paring different models. In all examples, it appears
that using pialign produced better translations than
GIZA++. Using the attentional model as a reranker
for pialign further corrects some errors. Using the
attentional model alone seems to perform the worst,
which is evident in the third example where the at-
tentional model simply repeats a text fragment (al-
though all models do poorly here). Despite the of-
ten incoherent output, the attentional model still cap-
tures the main keywords used in the translation.

We test this hypothesis by applying the atten-
tional model for a cross-lingual keyword spotting
task where the input is the English keyword and
the outputs are all Spanish sentences (represented as
phones) containing a likely translation of the key-
word. From the training data we select the top 200
terms as the keyword based on tf.idf. The relevance
judgment is based on exact word matching. The
attentional model achieved 35.8% precision, 43.3%
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recall and 36.0% F-score on average on 200 queries.
Table 4 shows the English translations of retrieved
Spanish sentences. In the first example, the atten-
tional model identifies mañana as the translation of
tomorrow. In the second example, it does reason-
ably well by retrieving 2 correct sentences out of 3,
correctly identifying dejamos and salgo as the trans-
lation of leave.

7 Speech-to-Word Experiments

In this section, we represent the source Spanish
speech as a sequence of 39 dimensional PLP vec-
tors. The frame length is 25ms, and overlapping
frames are computed every 10ms. As mentioned
in Section 4.1, we used a pyramidal RNN to reduce
the speech representation size. Other than that, the
model used here is identical to the first set of exper-
iments.

Using this model directly for translation from
speech does not yield useful output, as is to be ex-
pected from the small training data, noisy speech
data, and an out-of-domain language model. How-
ever, we are able to produce useful results for the
ASR and alignment tasks, as presented below.

PER (%)

Our model 24.3
Our model + monotonic 22.3
Chorowski et al. (2014) 18.6
Graves et al. (2013) 17.7

Table 5: Phone-error-rate (PER) for various models evaluated

on TIMIT

7.1 ASR Evaluation

To illustrate the utility of our approach to modelling
speech input, first, we evaluate on the more common
ASR task of phone recognition. This can be consid-
ered as a sub-problem of translation, and moreover,
this allows us to benchmark our approach against
the state-of-the-art in phone recognition. We exper-
imented on the TIMIT dataset. Following conven-
tion, we removed all the SA sentences, evaluated on
the 24 speaker core test set and used the 50 aux-
iliary speaker development set for early stopping.
The model was trained to recognize 48 phonemes

and was mapped to 39 phonemes for testing. We ex-
tracted 39 dimensional PLP features from the TIMIT
dataset and trained the same model without any
modification. Table 5 shows the performance of
our model. It performs reasonably well compared
with the state-of-the-art (Graves et al., 2013), con-
sidering that we didn’t tune any hyper-parameters
or feature representations for the task. Moreover,
our model is not designed for the monotonic con-
straints inherent to the ASR problem, which pro-
cess the input without reordering. By simply adding
a masking function (equation 2 from Chorowski et
al. (2014)) to encourage the monotonic constraint
in the alignment function, we observe a 2% PER
improvement. This is close to the performance re-
ported by Chorowski et al. (2014) (Table 5), despite
the fact that they employed user-adapted speech fea-
tures.

7.2 Alignment Evaluation

We use alignment as a second evaluation, training
and testing on parallel data comprising paired Span-
ish speech input with its English translations (as de-
scribed in §5), and using the speech-based mod-
elling techniques (see §4.) We compare to a naive
baseline where we assume that each English letter
(not including spaces) corresponds to an equal num-
ber of Spanish frames. The results of our atten-
tional model and the baseline are summarized in Ta-
ble 6. The attentional model is substantially lower
than the scores in Table 1, because the PLP vector
representation is much less informative than the gold
phonetic transcription. Here, we have to identify
phones and their boundaries in addition to phone-
word alignment. However, the naive baseline does
surprisingly well, presumably because our (unreal-
istic) choice of Spanish-English does not have very
much reordering.

Figure 3 presents some examples of Spanish
speech and English text, showing a heat map of
the alignment matrix α (before smoothing). Due
to the pyramidal structure of the encoder, each col-
umn roughly corresponds to 80ms. In the example
on the left, the model is confident at aligning a lit-
tle with columns 1–5, which corresponds roughly to
their correct Spanish translation algo. We misalign
the word of with columns 8–10, when the correct
alignment should be columns 5–6, corresponding
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Phones sil e m e d i h o k e t e i B a a y a m a r sp a y e r o a n t e a y e r sp sil
Transcription eh , me dijo que te iba a llamar , ayer , o anteayer
AM eh , he told me that she was going to call , yesterday before yesterday
Giza oh , he told me that you called yesterday or before yesterday .
Mod. Pialign eh , she told me that I was going to call yesterday or before yesterday .
Mod. Pialign + AM eh , he told me that I was going to call , yesterday or before yesterday .
Reference eh , he told me that he was going to call you , yesterday , or the day before yesterday .

Phones sil i t u k o m o a s e s t a D o h w a n i t o e s t a s t r a B a h a n d o k e sp e s t a s a s y e n d o sil
Transcription y tú , cómo has estado , juanito , estás trabajando , qué estás haciendo.
AM and how have you been working , are working ?
GIZA and how are you Juanito , are you job , what are you doing ?
Mod. pialign and how have you been Juanito are you working , what are you doing ?
Mod. pialign + AM and how have you been Juan , are you working , what are you doing ?
Reference and how have you been , Juanita , are you working , what are you doing .

Phones sil t e n g o k e a s e r l e e l a s e o a s i k o m o a u n h a r D i n i n f a n t i l sp sil
Transcription tengo que hacerle el aseo ası́ como a un jardı́n infantil –
AM I have to have to him like to like that to 〈unkA〉
GIZA I have to do the , the how a vegetable information in the .
Mod. pialign I have to do the that like to a and it was , didn’t you don’t have the .
Mod. pialign + AM I have to make the or like to a and it was , didn’t you don’t have the –
Reference I have to clean it like a kindergarten

Table 3: Translation examples for various models: the attentional model (AM), the standard Moses with GIZA++ aligner (giza),

with modified Pialign aligner (Mod. pialign) and using the attentional model as reranker on top of pialign.

Keyword : tomorrow

El va mañana para Caracas. A qué va a Caracas él.
Y mañana , y mañana o pasado te voy a poner un paquete.
Oh , no , Julio no sé a dónde está y va mañana a Caracas , está con Richard.
Oye , qué bueno , entonces nos vamos tempranito en la mañana
No , aquı́ la gente se acuesta a las dos de la mañana.

Keyword : leave

Todo , organizar completo todo , desde los alquileres , la comida , mozo , cantina , todo lo pongo yo aquı́
Y entonces dónde lo dejamos pagando estacionamiento y pagando seguro
Sı́ , el veintiuno. yo salgo de para aquı́ el dieciséis para florida , y el veintiuno llego a Caracas.

Table 4: Examples of cross-lingual keyword spotting using the attentional model. The bolded terms in the retrieved text are based

on manual inspection.

0 1 2 3 4 5 6 7 8 9 10 11

〈s〉
a
little
bit
of
knowledge
〈/s〉

sil ALGO DE CONOCIMIENTO sil

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

〈s〉
I
say
get
a
used
one
,

Irma
.

〈/s〉

sil YO DIGO HASTA UNO USADO IRMA sil

Figure 3: PLP-word alignment examples. The heat maps shows the alignment matrix which is time-aligned with the speech signals

and their transcriptions.
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ASR aligner F1

none Naive baseline 31.7
none AM (all mods) 26.4
cz AM (all mods) 28.0
hu AM (all mods) 27.9
ru AM (all mods) 27.4

es GIZA++ 29.7

Table 6: Alignment of Spanish speech to English translations.

In the first two rows, no gold or automatic transcriptions of any

sort are used. In the next three rows, non-Spanish phone rec-

ognizers (cz, hu, ru) are used on the Spanish speech and the

attentional model is run on the noisy transcription; this does

better than no transcriptions. The last row is an unfair compar-

ison because it uses gold Spanish (es) phonetic transcriptions;

nevertheless, our model performs nearly as well.

to Spanish translation de. The word knowledge is
aligned quite well with columns 7–10, correspond-
ing to Spanish conocimiento. The example on the
right is for a longer sentence. The model is less
confident about this example, mostly because there
are words that appear infrequently, such as the per-
sonal name Irma. However, we are still observing
diagonal-like alignments that are roughly correct. In
both examples, the model correctly leaves silence
(sil) unaligned.

As a middle ground between assuming gold pho-
netic transcriptions (cf. Section 6) and no transcrip-
tions at all, we use noisy transcriptions by running
speech recognizers for other languages on the Span-
ish speech: Russian (ru), Hungarian (hu) and Czech
(cz) (Vasquez et al., 2012). These distantly related
languages were chosen to be a better approximation
to the low-resource scenario. All three models per-
form better than operating directly on the speech
signal (Table 6), and notably, the Russian result is
nearly as good as GIZA++’s performance on gold
phonetic transcriptions.

8 Conclusion

This paper reports our work to train models directly
on parallel speech, i.e. source-language speech with
English text translations that, in the low-resource
setting, would have originated from spoken trans-
lations. To our knowledge, it is the first exploration

of this type. We augmented the Spanish Fisher and
CALLHOME datasets and extended the alignment
F1 evaluation metric for this setting. We extended
the attentional model of Bahdanau et al. to work
on parallel speech and observed improvements rela-
tive to all baselines on phone-to-word alignment. On
speech-to-word alignment, our model, without using
any knowledge of Spanish, performs almost as well
as GIZA++ using gold Spanish transcriptions.

Language pairs with word-order divergences and
other divergences will of course be more challenging
than Spanish-English. This work provides a proof-
of-concept that we hope will spur future work to-
wards solving this important problem in a true low-
resource language.
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