
Proceedings of NAACL-HLT 2016, pages 828–838,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Comparing Convolutional Neural Networks
to Traditional Models for Slot Filling

Heike Adel and Benjamin Roth and Hinrich Schütze
Center for Information and Language Processing (CIS)

LMU Munich
Oettingenstr. 67, 80538 Munich, Germany

heike@cis.lmu.de

Abstract

We address relation classification in the con-
text of slot filling, the task of finding and eval-
uating fillers like “Steve Jobs” for the slot X
in “X founded Apple”. We propose a convo-
lutional neural network which splits the input
sentence into three parts according to the re-
lation arguments and compare it to state-of-
the-art and traditional approaches of relation
classification. Finally, we combine different
methods and show that the combination is bet-
ter than individual approaches. We also ana-
lyze the effect of genre differences on perfor-
mance.

1 Introduction

Structured knowledge about the world is useful for
many natural language processing (NLP) tasks, such
as disambiguation, question answering or semantic
search. However, the extraction of structured infor-
mation from natural language text is challenging be-
cause one relation can be expressed in many differ-
ent ways. The TAC Slot Filling (SF) Shared Task
defines slot filling as extracting fillers for a set of
predefined relations (“slots”) from a large corpus of
text data. Exemplary relations are the city of birth
of a person or the employees or founders of a com-
pany. Participants are provided with an evaluation
corpus and a query file consisting of pairs of enti-
ties and slots. For each entity slot pair (e.g. “Ap-
ple” and “founded by”), the systems have to return
the second argument (“filler”) of the relation (e.g.
“Steve Jobs”) as well as a supporting sentence from
the evaluation corpus. The key challenge in slot

filling is relation classification: given a sentence s
of the evaluation corpus containing the name of a
queried entity (e.g., “Apple”) and a filler candidate
(e.g., “Steve Jobs”), we need to decide whether s ex-
presses the relation (“founded by”, in this case). We
will refer to the mentions of the two arguments of
the relation as name and filler. Performance on re-
lation classification is crucial for slot filling since its
effectiveness directly depends on it.

In this paper, we investigate three complementary
approaches to relation classification.

The first approach is pattern matching, a leading
approach in the TAC evaluations. Fillers are vali-
dated based on patterns. In this work, we consider
patterns learned with distant supervision and pat-
terns extracted from Universal Schema relations.

The second approach is support vector machines.
We evaluate two different feature sets: a bag-of-
word feature set (BOW) and more sophisticated skip
n-gram features.

Our third approach is a convolutional neural net-
work (CNN). CNNs have been applied to NLP tasks
like sentiment analysis, part-of-speech tagging and
semantic role labeling. They can recognize phrase
patterns independent of their position in the sen-
tence. Furthermore, they make use of word embed-
dings that directly reflect word similarity (Mikolov
et al., 2013). Hence, we expect them to be ro-
bust models for the task of classifying filler candi-
dates and to generalize well to unseen test data. In
this work, we train different variants of CNNs: As
a baseline, we reimplement the recently developed
piecewise CNN (Zeng et al., 2015). Then, we ex-
tend this model by splitting the contexts not only for
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pooling but also for convolution (contextwise CNN).
Currently, there is no benchmark for slot fill-

ing. Therefore, it is not possible to directly com-
pare results that were submitted to the Shared Task
to new results. Comparable manual annotations for
new results, for instance, cannot be easily obtained.
There are also many different system components,
such as document retrieval from the evaluation cor-
pus and coreference resolution, that affect Shared
Task performance and that are quite different in na-
ture from relation classification. Even in the sub-
task of relation classification, it is not possible to
directly use existing relation classification bench-
marks (e.g. Riedel et al. (2013), Hendrickx et al.
(2010)) since data and relations can be quite differ-
ent. Many benchmark relations, for instance, corre-
spond to Freebase relations but not all slots are mod-
eled in Freebase and some slots even comprise more
than one Freebase relation. While most relation clas-
sification benchmarks either use newswire or web
data, the SF task includes documents from both do-
mains (and discussion fora). Another difference to
traditional relation classification benchmarks arises
from the pipeline aspect of slot filling. Depending
on the previous steps, the input for the relation clas-
sification models can be incomplete, noisy, include
coreferent mentions, etc.

The official SF Shared Task evaluations only as-
sess whole systems (with potential subsequent faults
in their pipelines (Pink et al., 2014)). Thus, we ex-
pect component wise comparisons to be a valuable
addition to the Shared Task: With comparisons of
single components, teams would be able to improve
their modules more specifically. To start with one
of the most important components, we have created
a benchmark for slot filling relation classification,
based on 2012 – 2014 TAC Shared Task data. It
will be described below and published along with
this paper.1 In addition to presenting model results
on this benchmark dataset, we also show that these
results correlate with end-to-end SF results. Hence,
optimizing a model on this dataset will also help im-
proving results in the end-to-end setting.

In our experiments, we found that our models suf-
fer from large genre differences in the TAC data.
Hence, the SF Shared Task is a task that conflates an

1http://cistern.cis.lmu.de

investigation of domain (or genre) adaptation with
the one of slot filling. We argue that both problems
are important NLP problems and provide datasets
and results for both within and across genres. We
hope that this new resource will encourage others
to test their models on our dataset and that this will
help promote research on slot filling.

In summary, our contributions are as follows.
(i) We investigate the complementary strengths and
weaknesses of different approaches to relation clas-
sification and show that their combination can better
deal with a diverse set of problems that slot filling
poses than each of the approaches individually. (ii)
We propose to split the context at the relation ar-
guments before passing it to the CNN in order to
better deal with the special characteristics of a sen-
tence in relation classification. This outperforms the
state-of-the-art piecewise CNN. (iii) We analyze the
effect of genre on slot filling and show that it is an
important conflating variable that needs to be care-
fully examined in research on slot filling. (iv) We
provide a benchmark for slot filling relation classifi-
cation that will facilitate direct comparisons of mod-
els in the future and show that results on this dataset
are correlated with end-to-end system results.

Section 2 gives an overview of related work. Sec-
tion 3 discusses the challenges that slot filling sys-
tems face. In Section 4, we describe our slot filling
models. Section 5 presents experimental setup and
results. Section 6 analyzes the results. We present
our conclusions in Section 7 and describe the re-
sources we publish in Section 8.

2 Related Work

Slot filling. The participants of the SF Shared Task
(Surdeanu, 2013) are provided with a large text cor-
pus. For evaluation, they get a collection of queries
and need to provide fillers for predefined relations
and an offset of a context which can serve as a justi-
fication. Most participants apply pipeline based sys-
tems. Pink et al. (2014) analyzed sources of recall
losses in these pipelines. The results of the systems
show the difficulty of the task: In the 2014 evalua-
tion, the top-ranked system had an F1 of .37 (Angeli
et al., 2014a). To train their models, most groups use
distant supervision (Mintz et al., 2009). The top-
ranked systems apply machine learning based ap-
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proaches rather than manually developed patterns or
models (Surdeanu and Ji, 2014). The methods for
extracting and scoring candidates range from pat-
tern based approaches (Gonzàlez et al., 2012; Liu
and Zhao, 2012; Li et al., 2012; Qiu et al., 2012;
Roth et al., 2014) over rule based systems (Varma
et al., 2012) to classifiers (Malon et al., 2012; Roth
et al., 2013). The top ranked system from 2013
used SVMs and patterns for evaluating filler candi-
dates (Roth et al., 2013); their results suggest that
n-gram based features are sufficient to build reli-
able classifiers for the relation classification module.
They also show that SVMs outperform patterns.

CNNs for relation classification. Zeng et al.
(2014) and Dos Santos et al. (2015) apply CNNs to
the relation classification SemEval Shared Task data
from 2010 and show that CNNs outperform other
models. We train CNNs on noisy distant supervised
data since (in contrast to the SemEval Shared Task)
clean training sets are not available. Malon et al.
(2012) describe a CNN for slot filling that is based
on the output of a parser. We plan to explore pars-
ing for creating a more linguistically motivated input
representation in the future.

Baseline models. In this paper, we will compare
our methods against traditional relation classifica-
tion models: Mintz++ (Mintz et al., 2009; Surdeanu
et al., 2012) and MIMLRE (Surdeanu et al., 2012).
Mintz++ is a model based on the Mintz features (lex-
ical and syntactic features for relation extraction). It
was developed by Surdeanu et al. (2012) and used
as a baseline model by them. MIMLRE is a graph-
ical model designed to cope with multiple instances
and multiple labels in distant supervised data. It is
trained with Expectation Maximization.

Another baseline model which we use in this work
is a piecewise convolutional neural network (Zeng
et al., 2015). This recently published network is de-
signed especially for the relation classification task
which allows to split the context into three parts
around the two relation arguments. While it uses
the whole context for convolution, it performs max
pooling over the three parts individually. In contrast,
we propose to split the context even earlier and ap-
ply the convolutional filters to each part separately.

Genre dependency. There are many studies
showing the genre dependency of machine learn-
ing models. In 2012, the SANCL Shared Task fo-

cused on evaluating models on web data that have
been trained on news data (Petrov and McDonald,
2012). The results show that POS tagging perfor-
mance can decline a lot when the genre is changed.
For other NLP tasks like machine translation or sen-
timent analysis, this is also a well-known challenge
and domain adaptation has been extensively stud-
ied (Glorot et al., 2011; Foster and Kuhn, 2007).
We do not investigate domain adaptation per se, but
show that the genre composition of the slot filling
source corpus poses challenges to genre independent
models.

3 Challenges of Slot Filling

Slot filling includes NLP challenges of various na-
tures. Given a large evaluation corpus, systems first
need to find documents relevant to the entity of
the query. This involves challenges like alternate
names for the same entity, misspellings of names
and ambiguous names (different entities with the
same name). Then for each relevant document, sen-
tences with mentions of the entity need to be ex-
tracted, as well as possible fillers for the given slot.
In most cases, coreference resolution and named en-
tity recognition tools are used for these tasks. Fi-
nally, the systems need to decide which filler candi-
date to output as the solution for the given slot. This
step can be reduced to relation classification. It is
one of the most crucial parts of the whole pipeline
since it directly influences the quality of the final
output. The most important challenges for rela-
tion classification for slot filling are little or noisy
(distant supervised) training data, data from differ-
ent domains and test sentences which have been ex-
tracted with a pipeline of different NLP components.
Thus, their quality directly depends on the perfor-
mance of the whole pipeline. If, for example, sen-
tence splitting fails, the input can be incomplete or
too long. If coreference resolution or named en-
tity recognition fails, the relation arguments can be
wrong or incomplete.

4 Models for Relation Classification

Patterns. The first approach we evaluate for rela-
tion classification is pattern matching. For a given
sentence, the pattern matcher classifies the relation
as correct if one of the patterns matches; otherwise
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the candidate is rejected. In particular, we apply
two different pattern sets: The first set consists of
patterns learned using distant supervision (PATdist).
They have been used in the SF challenge by the top-
ranked system in the 2013 Shared Task (Roth et al.,
2013). The second set contains patterns from univer-
sal schema relations for the SF task (PATuschema).
Universal schema relations are extracted based on
matrix factorization (Riedel et al., 2013). In this
work, we apply the universal schema patterns ex-
tracted for slot filling by Roth et al. (2014).

Support vector machines (SVMs). Our sec-
ond approach is support vector machines. We eval-
uate two different feature sets: bag-of-word fea-
tures (SVMbow) and skip n-gram features (SVM-
skip). Based on the results of Roth et al. (2013), we
will not use additional syntactic or semantic features
for our classifiers. For SVMbow, the representation
of a sentence consists of a flag and four bag-of-word
vectors. Let m1 and m2 be the mentions of name
and filler (or filler and name) in the sentence, with
m1 occurring before m2. The binary flag indicates
in which order name and filler occur. The four BOW
vectors contain the words in the sentence to the left
of m1, between m1 and m2, to the right of m2 and
all words of the sentence. For SVMskip, we use the
previously described BOW features and additionally
a feature vector which contains skip n-gram features.
They wildcard tokens in the middle of the n-gram
(cf. Roth et al. (2013)). In particular, we use skip
3-grams, skip 4-grams and skip 5-grams. A possi-
ble skip 4-gram of the context “, founder and direc-
tor of”, for example, would be the string “founder
of”, a pattern that could not have been directly ex-
tracted from this context otherwise. We train one
linear SVM (Fan et al., 2008) for each relation and
feature set and tune parameter C on dev.

Convolutional neural networks (CNNs). CNNs
are increasingly applied in NLP (Collobert et al.,
2011; Kalchbrenner et al., 2014). They extract n-
gram based features independent of the position in
the sentence and create (sub-)sentence representa-
tions. The two most important aspects that make this
possible are convolution and pooling. Max pooling
(Collobert et al., 2011) detects the globally most rel-
evant features obtained by local convolution.

Another promising aspect of CNNs for relation
classification is that they use an embedding based in-

put representation. With word embeddings, similar
words are represented by similar vectors and, thus,
we can recognize (near-)synonyms – synonyms of
relation triggers as well as of other important con-
text words. If the CNN has learned, for example,
that the context “is based in” triggers the relation lo-
cation of headquarters and that “based” has a simi-
lar vector representation as “located”, it may recog-
nize the context “is located in” correctly as another
trigger for the same relation even if it has never seen
it during training. In the following paragraphs, we
describe the different variants of CNNs which we
evaluate in this paper. For each variant, we train
one binary CNN per slot and optimize the number
of filters (∈ {300, 1000, 3000}), the size of the hid-
den layer (∈ {100, 300, 1000}) and the filter width
(∈ {3, 5}) on dev. We use word2vec (Mikolov et al.,
2013) to pre-train word embeddings (dimensionality
d = 50) on a May-2014 English Wikipedia corpus.

Piecewise CNN. Our baseline CNN is the model
developed by Zeng et al. (2015). It represents the
input sentence by a matrix of word vectors, applies
several filters for convolution and then divides the
resulting n-gram representation into left, middle and
right context based on the positions m1 and m2 of
name and filler (see SVM description). For each of
the three parts, one max value is extracted by pool-
ing. The results are passed to a softmax classifier.

Contextwise CNN. In contrast to the piecewise
CNN, we propose to split the context before con-
volution as shown in Figure 1. Hence, similar to
our BOW vectors for the SVM, we split the origi-
nal context words into left, middle and right context.
Then, we apply convolution and pooling to each of
the contexts separately. In contrast to the piecewise
CNN, there is no convolution across relation argu-
ments. Thus, the network learns to focus on the con-
text words and cannot be distracted by the presence
of (always present) relation arguments. The filter
weights W are shared for the three contexts. Our in-
tuition is that the most important sequence features
we want to extract by convolution can appear in two
or three of the regions. Weight sharing also reduces
the number of parameters and increases robustness.
We also found in initial experiments that sharing fil-
ter weights across left, middle, right outperformed
not sharing weights. The results of convolution are
pooled using k-max pooling (Kalchbrenner et al.,
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Figure 1: Contextwise CNN for relation classification

2014): only the k = 3 maximum values of each
filter application are kept. The pooling results are
then concatenated to a single vector and extended
by a flag indicating whether the name or the filler
appeared first in the sentence.

In initial experiments, we found that a fully con-
nected hidden layer after convolution and pooling
leads to a more powerful model. It connects the rep-
resentations of the three contexts and, thus, can draw
conclusions based on cooccurring patterns across
contexts. Therefore, the result vector after convolu-
tion and pooling is fed into a fully connected hidden
layer. A softmax layer makes the final decision.

For a fair comparison of models, we also add a
hidden layer to the piecewise CNN and apply k-
max pooling there as well. Thus, the number of pa-
rameters to learn is the same for both models. We
call this model CNNpieceExt. The key difference
between CNNpieceExt and CNNcontext is the time
when the context is split into three parts: before or
after convolution. This affects the windows of words
to which the convolutional filters are applied.

Model combination (CMB). To combine a setM
of models for classification, we perform a simple lin-

ear combination of the scores of the models:

qCMB =
∑

m=1...M

αmqm

where qm is the score of model m and αm is its
weight (optimized on dev using grid search). All
weights sum to 1.

For a comparison of different combination possi-
bilities, see, for example, (Viswanathan et al., 2015).

5 Experiments and Results

5.1 Training Data

We used distant supervision for generating training
data. We created a set of (subject, relation, object)
tuples by querying Freebase (Bollacker et al., 2008)
for relations that correspond to the slot relations.
Then we scanned the following corpora for sen-
tences containing both arguments of a relation in the
tuple set: (i) the TAC source corpus (TAC, 2014), (ii)
a snapshot of Wikipedia (May 2014), (iii) the Free-
base description fields, (iv) a subset of Clueweb2,
(v) a New York Times corpus (LDC2008T19). The
resulting sentences are positive training examples.
Based on the tuple set, we selected negative exam-
ples by scanning the corpora for sentences that (i)
contain a mention of a name occurring in a tuple,
(ii) do not contain the correct filler, (iii) contain a
mention different from the correct filler, but with the
same named entity type (based on CoreNLP NER
(Manning et al., 2014)). All negative examples for
date slots, for instance, are sentences containing an
incorrect date.

This procedure gave us a large but noisy train-
ing set for most slots. In order to reduce incor-
rect labels, we applied a self-training procedure: We
trained SVMs on the SF dataset created by Angeli
et al. (2014b). With the resulting SVMs, we pre-
dicted labels for our training set. If the predicted
label did not match the distant supervised label, we
deleted the corresponding training example (Min et
al., 2012). This procedure was conducted in sev-
eral iterations on different chunks of the training set.
Finally, the SF dataset and the filtered training ex-
amples were merged. (We do not use the SF dataset
directly because (i) it provides few examples per slot

2http://lemurproject.org/clueweb12
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(min: 1, max: 4960) and (ii) it consists of exam-
ples for which the classifiers of Angeli et al. (2014b)
were indecisive, i.e., presumably contexts that are
hard to classify.) Since their contexts are similar, we
also merged city, state-or-province and country slots
to one location slot.

5.2 Evaluation Data

One of the main challenges in building and evaluat-
ing relation classification models for SF is the short-
age of training and evaluation data. Each group has
their own datasets and comparisons across groups
are difficult. Therefore, we have developed a script
that creates a clean dataset based on manually an-
notated system outputs from previous Shared Task
evaluations. In the future, it can be used by all par-
ticipants to evaluate components of their slot filling
systems.3 The script only extracts sentences that
contain mentions of both name and filler. It con-
ducts a heuristic check based on NER tags to de-
termine whether the name in the sentence is a valid
mention of the query name or is referring to another
entity. In the latter case, the example is filtered out.
One difficulty is that many published offsets are in-
correct. We tried to match these using heuristics. In
general, we apply filters that ensure high quality of
the resulting evaluation data even if that means that
a considerable part of the TAC system output is dis-
carded. In total, we extracted 39,386 high-quality
evaluation instances out of the 59,755 system output
instances published by TAC and annotated as either
completely correct or completely incorrect.

A table in the supplementary material4 gives
statistics: the number of positive and negative exam-
ples per slot and year (without duplicates). For 2013,
the most examples were extracted. The lower num-
ber for 2014 is probably due to the newly introduced
inference across documents. This limits the number
of sentences with mentions of both name and filler.
The average ratio of positive to negative examples is
1:4. The number of positive examples per slot and
year ranges from 0 (org:member of, 2014) to 581
(per:title, 2013), the number of negative examples
from 5 (org:website, 2014) to 1886 (per:title, 2013).

3http://cistern.cis.lmu.de. We publish scripts
since we cannot distribute data.

4also available at http://cistern.cis.lmu.de

In contrast to other relation classification bench-
marks, this dataset is not based on a knowledge
base (such as Freebase) and unrelated text (such as
web documents) but directly on the SF assessments.
Thus, it includes exactly the SF relations and ad-
dresses the challenges of the end-to-end task: noisy
data, possibly incomplete extractions of sentences
and data from different domains.

We use the data from 2012/2013 as development
and the data from 2014 as evaluation set.

5.3 Experiments
We evaluate the models described in Section 4, se-
lect the best models and combine them.

Experiments with patterns. First, we compare
the performance of PATdist and PATuschema on our
dataset. We evaluate the pattern matchers on all slots
presented in Table 1 and calculate their average F1

scores on dev. PATdist achieves a score of .35, PAT-
uschema of .33. Since it performs better, we use
PATdist in the following experiments.

Experiments with SVMs. Second, we train and
evaluate SVMbow and SVMskip. Average F1 of
SVMskip and SVMbow are .62 and .59, respec-
tively. Thus, we use SVMskip. We expected that
SVMskip beats SVMbow due to its richer feature
set, but SVMbow performs surprisingly well.

Experiments with CNNs. Finally, we compare
the performance of CNNpiece, CNNpieceExt and
CNNcontext. While the baseline network CNN-
piece (Zeng et al., 2015) achieves F1 of .52 on dev,
CNNpieceExt has an F1 score of .55 and CNNcon-
text an F1 of .60. The difference of CNNpiece and
CNNpieceExt is due to the additional hidden layer
and k-max pooling. The considerable difference
in performance of CNNpieceExt and CNNcontext
shows that splitting the context for convolution has
a positive effect on the performance of the network.

Overall results. Table 1 shows the slot wise re-
sults of the best patterns (PATdist), SVMs (SVM-
skip) and CNNs (CNNcontext). Furthermore, it
provides a comparison with two baseline models:
Mintz++ and MIMLRE. SVM and CNN clearly out-
perform these baselines. They also outperform PAT
for almost all slots. The difference between dev and
eval results varies a lot among the slots. We suspect
that this is a result of genre differences in the data
and analyze this in Section 6.4.
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Mintz++ MIMLRE PATdist SVMskip CNNcontext CMB
dev eval dev eval dev eval dev eval dev eval dev eval

per:age .84 .71 .83 .73 .69 .80 .86 .74 .83 .76 .86 .77
per:alternate names .29 .03 .29 .03 .50 .50 .35 .02 .32 .04 .50 .50
per:children .76 .43 .77 .48 .10 .07 .81 .68 .82 .61 .87 .76
per:cause of death .76 .42 .75 .36 .44 .11 .82 .32 .77 .52 .82 .31
per:date of birth 1.0 .60 .99 .60 .67 .57 1.0 .67 1.0 .77 1.0 .67
per:date of death .67 .45 .67 .45 .30 .32 .79 .54 .72 .48 .79 .54
per:empl memb of .38 .36 .41 .37 .24 .22 .42 .36 .41 .37 .47 .39
per:location of birth .56 .22 .56 .22 .30 .30 .59 .27 .59 .23 .74 .36
per:loc of death .65 .41 .66 .43 .13 .00 .64 .34 .63 .28 .70 .35
per:loc of residence .14 .11 .15 .18 .10 .03 .31 .33 .20 .23 .31 .31
per:origin .40 .48 .42 .46 .13 .11 .65 .64 .43 .39 .65 .59
per:parents .64 .59 .68 .65 .27 .38 .65 .79 .65 .78 .72 .71
per:schools att .75 .78 .76 .75 .27 .26 .78 .71 .72 .55 .79 .71
per:siblings .66 .59 .64 .59 .14 .50 .60 .68 .63 .70 .65 .70
per:spouse .58 .23 .59 .27 .40 .53 .67 .32 .67 .30 .78 .57
per:title .49 .39 .49 .40 .48 .42 .54 .48 .57 .46 .59 .46
org:alternate names .49 .46 .50 .48 .70 .71 .62 .62 .65 .66 .72 .67
org:date founded .41 .71 .42 .73 .47 .40 .57 .70 .64 .71 .68 .68
org:founded by .60 .62 .70 .65 .39 .62 .77 .74 .80 .68 .85 .77
org:loc of headqu .13 .19 .14 .20 .39 .30 .43 .42 .43 .45 .50 .46
org:members .58 .06 .55 .16 .03 .29 .70 .13 .65 .04 .76 .13
org:parents .32 .14 .36 .17 .31 .18 .37 .20 .41 .16 .52 .21
org:subsidiaries .32 .43 .35 .35 .32 .56 .38 .37 .36 .44 .42 .49
org:top memb empl .35 .44 .37 .46 .53 .46 .43 .55 .43 .53 .58 .51
average .53 .41 .54 .42 .35 .36 .62 .48 .60 .46 .68 .53

Table 1: Performance on Slot Filling benchmark dataset (dev: data from 2012/2013, eval: from 2014). CMB denotes the combina-

tion of PATdist, SVMskip and CNNcontext.

Slot wise results of the other models (PAT-
uschema, SVMbow, CNNpiece, CNNpieceExt) can
be found in the supplementary material.

Comparing PAT, SVM and CNN,5 different pat-
terns emerge for different slots. Each is best on a
subset of the slots (see bold numbers). This indi-
cates that relation classification for slot filling is not
a uniform problem: each slot has special properties
and the three approaches are good at modeling a
different subset of these properties. Given the big
differences, we expect to gain performance by com-
bining the three approaches. Indeed, CMB (PATdist
+ SVMskip + CNNcontext), the combination of the
three best performing models, obtains the best re-
sults in average (in bold).

Section 6.3 shows that the performance on our
dataset is highly correlated with SF end-to-end per-

5In prior experiments, we also compared with recurrent neu-
ral networks. RNN performance was comparable to CNNs, but
required much more training time and parameter tuning. There-
fore, we focus on CNNs in this paper. See also Vu et al. (2016).

formance. Thus, our results indicate that a combina-
tion of different models ist the most promising ap-
proach to getting good performance on slot filling.

6 Analysis

6.1 Contribution of Each Model

To see how much each model contributes to CMB,
we count how often each weight between 0.0 and
1.0 is selected for the linear interpolation. The re-
sults are plotted as a histogram (Figure 2). A weight
of 0.0 means that the corresponding model does not
contribute to CMB. We see that all three models con-
tribute to CMB for most of the slots. The CNN, for
instance, is included in the combination for 14 of 24
slots.

6.2 Comparison of CNN to Traditional Models

Our motivation for using a CNN is that convolution
and max pooling can recognize important n-grams
independent of their position in the sentence. To in-
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Figure 2: # times each weight is selected in CMB

vestigate this effect, we select for each CNN the top
five kernels whose activations are the most corre-
lated with the final score of the positive class. Then
we calculate which n-grams are selected by these
kernels in the max pooling step. This corresponds to
those n-grams which are recognized by the kernel to
be the most informative for the given slot. Figure 3
shows the result for an example sentence express-
ing the slot relation org:parents. The height of a bar
is the number of times that the 3-gram around the
corresponding word was selected by k-max pooling;
e.g., the bar above “newest” corresponds to the tri-
gram “its newest subsidiary”. The figure shows that
the convolutional filters are able to learn phrases that
trigger a relation, e.g., “its subsidiary”. In contrast
to patterns, they do not rely on exact matches. The
first reason is embeddings. They generalize similar
words and phrases by assigning similar word vectors
to them. For PAT and SVM, this type of generaliza-
tion is more difficult. The second type of generaliza-
tion that the CNN learns concerns insertions, similar
to skip n-gram features. The recognition of impor-
tant phrases in convolution is robust against inser-
tions. An example is “newest” in Figure 3, a word
that is not important for the slot.

A direct comparison of results with PAT shows
that the CNN has better eval scores for about 67%
of the slots (see Table 1). Our reasoning above can
explain this. Compared to the SVM, the CNN gen-
eralizes better to unseen data in only 42% of all
cases. The fact that this does not happen in more
cases shows the power of the skip n-gram features
of the SVM: they also provide a kind of generaliza-
tion against insertions. The SVM might also need
less data to train than the CNN. Nevertheless, the
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Figure 3: Analysis of convolution and pooling

final scores show that the CNN performs almost as
well as the SVM in average (.60 vs .62 on dev, .46 vs
.48 on eval) and contributes to a better combination
score.

6.3 Correlation with End-to-end Results

In this section, we show that using the dataset we
provide with this paper allows tuning classification
models for the end-to-end SF task. For each model
and each possible combination of models, we cal-
culate average results on our evaluation set as well
as final F1 scores when running the whole slot fill-
ing pipeline with our in-house system. The best re-
sults of our slot filling system are an F1 of .29 on
the 2013 queries and of .25 on the 2014 queries. We
calculate Pearson’s correlation coefficient to assess
correlation of relation classification and end-to-end
performances for the n different system configura-
tions (i.e., model combinations). The correlation of
the results on our eval dataset with the SF results on
2013 queries is .89, the correlation with the SF re-
sults on 2014 queries is .82. This confirms that good
results on the dataset we propose lead to good results
on the slot filling end-to-end task.

6.4 Effect of Genre and Time

The TAC source corpus consists of about 1M news
documents, 1M web documents and 100K docu-
ments from discussion forums (TAC, 2014). The
distribution of these different genres in the extracted
assessment data is as shown in Table 2.

The proportion of non-news more than doubled
from 12.5% to 26.6%. Thus, when using 2012/2013
as the development and 2014 as the test set, we are
faced with a domain adaptation problem.
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2012/3 2014
news 87.5% 73.4%
web + forums 12.5% 26.6%

Table 2: Distribution of genres

In this section, we show the effect of domain dif-
ferences on our models in more detail. For our genre
analysis, we retrain our models on genre specific
training sets WEB and NEWS⊂ and show within-
genre as well as cross-genre evaluations. To avoid
performance differences due to different training set
sizes, we reduced the news training set to the same
size as the web training set. We refer to this subset
as NEWS⊂.

Cross-genre evaluation. Table 3 shows results
of testing models trained on genre-specific data: on
data of the same genre and on data of the other genre.
We present results only for a subset of relations in
this paper, however, the numbers for the other slots
follow the same trends.

Models trained on news (left part) show clearly
higher performance in the within-genre evaluation
than cross-genre. For models trained on web (right
part), this is different. We suspect that the reason
is that web data is much noiser and thus less pre-
dictable, even for models trained on web. For all
evaluations, the differences among dev and eval are
quite large. Especially for slot filling on web (bot-
tom part of Table 3), the results on dev do not seem
much related to the results on eval. This domain ef-
fect increases the difficulties of training robust re-
lation classification models for slot filling. It can
also explain why optimizing models for unseen data
(with unknown genre distributions) as in Table 1 is
challenging. Since slot filling by itself is a challeng-
ing task, even in the absence of domain differences,
we will distribute two splits: a split by year and a
split by genre. For training and tuning models for
the slot filling research challenge, the year split can
be used to cover the challenge of mixing different
genres. For experiments on domain adaptation or
genre-specific effects, our genre split can be used.

7 Conclusion

In this paper, we presented different approaches to
slot filling relation classification: patterns, support
vector machines and convolutional neural networks.

Train on NEWS⊂ Train on WEB
SVM CNN SVM CNN

dev ev dev ev dev ev dev ev

Te
st

on
ne

w
s per:age .79 .80 .88 .87 .78 .76 .85 .83

per:children .85 .86 .78 .78 .75 .80 .00 .07
per:spouse .74 .64 .76 .71 .77 .65 .73 .67
org:alt names .22 .32 .69 .67 .65 .70 .66 .66
org:loc headqu .51 .50 .53 .51 .51 .53 .53 .50
org:parents .30 .32 .29 .34 .26 .33 .30 .34

Te
st

on
w

eb

per:age .33 .73 .57 .83 .00 .67 .57 .83
per:children .59 .33 .70 .33 .63 .57 .00 .00
per:spouse .52 .50 .60 .57 .56 .57 .67 .62
org:alt names .27 .19 .51 .37 .60 .49 .56 .38
org:loc headqu .39 .46 .43 .44 .44 .48 .36 .47
org:parents .09 .08 .11 .07 .10 .08 .15 .08

Table 3: Genre specific F1 scores. Genre specific training data

(of the same sizes). Top: news results. Bottom: web results.

We investigated their complementary strengths and
weaknesses and showed that their combination can
better deal with a diverse set of problems that slot
filling poses than each of the approaches individu-
ally. We proposed a contextwise CNN which out-
performs the recent state-of-the-art piecewise CNN.
Furthermore, we analyzed the effect of genre on slot
filling and showed that it needs to be carefully ex-
amined in research on slot filling. Finally, we pro-
vided a benchmark for slot filling relation classifi-
cation that will facilitate direct comparisons of ap-
proaches in the future.

8 Additional Resources

We publish the scripts that we developed to extract
the annotated evaluation data and our splits by genre
and by year as well as the dev/eval splits.
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