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Abstract

We present a corpus of 2,380 natural language
queries paired with machine readable formu-
lae that can be executed against world wide
geographic data of the OpenStreetMap (OSM)
database. We use the corpus to learn an ac-
curate semantic parser that builds the basis
of a natural language interface to OSM. Fur-
thermore, we use response-based learning on
parser feedback to adapt a statistical machine
translation system for multilingual database
access to OSM. Our framework allows to map
fuzzy natural language expressions such as
“nearby”, “north of”, or “in walking distance”
to spatial polygons on an interactive map. Fur-
thermore, it combines syntactic complexity
and compositionality with a reasonable lexical
variability of queries, making it an interesting
new publicly available dataset for research on
semantic parsing.

1 Introduction

OpenStreetMap1 (OSM) is a community-built
database of geographic data, containing user-
contributed local and up-to-date information about
landmarks all over the world. Currently, the
database contains over 3 billion data objects and is
continuously growing with contributions from over
2 million registered users. While the main API is op-
timized for editing map data, there exists an API that
allow to filter map data based on search criteria such
as location, type of objects, or features with which
objects are tagged. However, issuing a query that is

1http://www.openstreetmap.org

executable against the OSM database still requires
detailed knowledge of database internals, something
that cannot be expected from a layman user.

The goal of our work is the development of an
interface to OSM that lets a user ask a question
in natural language, which is then parsed into a
database query that is executable against a web-
based filtering tool and returns OSM data on an
interactive map. For example, we want a user
without detailed knowledge of OSM to be able to
ask questions that embrace the “fuzziness” of nat-
ural language, for example, “What are the loca-
tions, names and telephone numbers of hotels in
Paris with wheelchair access that are close to the
station Gare du Nord?”. To find such informa-
tion one would have to issue a query that requires
detailed knowledge of the database and the query
language: “area[name=‘Paris’]→.a;node(area.a)
[name=‘Gare du Nord’]→.b;node(around.b:1000)
[tourism=‘hotel’][wheelchair=‘yes’];out;”. Addi-
tionally, we present an adaptation of a statistical ma-
chine translation (SMT) system for multilingual ac-
cess to OSM by response-based learning from parser
executability of translated queries.

As a starting point for our natural language in-
terface we built a corpus of 2,380 natural lan-
guage queries paired with machine readable lan-
guage (MRL) formulae that we used to extract a se-
mantic parser. We chose to manually creating a cor-
pus of MRLs from which structure and weights of a
semantic parser can be learned for three reasons:

Online availability: We want to be able to present
the OSM community with a set of sample ques-
tions that can be executed and whose database
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query representation can be inspected. We
hope it will be inspiring and helpful for OSM
users and developers to see how complex geo-
graphical facts can be issued as simple natural
language queries that are parsed into executable
filters on OSM objects.

Accuracy: For an online natural language interface,
high accuracy of semantic parsing is crucial.
So far, semi-automatic methods of constructing
semantic parsers without bootstrapping from
MRLs could not reach the accuracy of semantic
parsers extracted from manually created MRLs
(Wang et al., 2015). The semantic parser we ex-
tracted by simple monolingual machine transla-
tion (Andreas et al., 2013) achieves a F1 score
of 77.3% for answer retrieval on our data.

Complexity: Our corpus adds a new and complex
domain for research on semantic parsing: Com-
pared to existing corpora such as GEOQUERY

(Wong and Mooney, 2006) or FREE917 (Cai
and Yates, 2013), our corpus combines the
compositionality and syntactic complexity of
the former corpus with a lexical variation that
constitutes a healthy middle ground between
closed and open domains.

Our contributions in this paper are threefold:
First, we introduce OSM as a new knowledge base
that has not, to the best of our knowledge, been used
for question answering, and offer a new corpus to the
research community. Second, we show that a parser
read off the corpus achieves promising parsing accu-
racy and can be used to adapt SMT to multilingual
database access. Third, our work builds the basis of
a natural language interface to OSM that will be en-
abling for interesting directions of future research,
e.g., response-based learning to improve semantic
parsing and multilingual database access.

2 Related Work

The common approach to semantic parsing is a man-
ual annotation of a corpus with natural language ut-
terances and machine readable formulae which are
then used to learn the structure and weights of a se-
mantic parser. Corpora that have been used for train-
ing and testing a number of semantic parsers are
GEOQUERY (Zelle and Mooney, 1996; Kate et al.,

# users 2,389,374
# objects 3,464,399,738

# nodes 3,139,787,926
# ways 320,775,580

# relations 3,836,232
# tags 1,259,132,137
# distinct tags 76,204,309
# distinct keys 57,159

Table 1: Statistics of OSM as of December 14th, 2015

2005) and FREE917 (Cai and Yates, 2013). While
GEOQUERY queries are restricted to the closed do-
main of US geography, the structural complex-
ity of the questions is higher than for FREE917,
which focuses on open domain queries. Seminal
work on building semantic parsers from the GEO-
QUERY meaning representations are Zettlemoyer
and Collins (2005) or Wong and Mooney (2006).
Later approaches try to learn semantic parsers from
question-answer pairs only, for example, Liang et
al. (2009) for GEOQUERY, or Kwiatkowski et al.
(2013) or Berant et al. (2013) for FREE917. Newer
research attempts to close the gap between lexical
variability and structural complexity (Vlachos and
Clark, 2014; Artzi et al., 2015; Pasupat and Liang,
2015), however, answer retrieval accuracy is low if
semantic parsers cannot be bootstrapped from a cor-
pus of queries and MRLs (Wang et al., 2015; Pasu-
pat and Liang, 2015).

Our approach treats semantic parsing as a mono-
lingual machine translation problem in which natu-
ral language is translated into the machine readable
language. This approach is convenient because one
can make use of the efficient and robust decoders
that are freely available for SMT. Despite the sim-
plicity of the approach, Andreas et al. (2013) have
shown that highly accurate semantic parsers can be
trained from annotated data.

OSM has previously been used by Boye et al.
(2014) for pedestrian routing using a dialogue sys-
tem, however, no details on semantic parsing and no
resource are provided.

Our SMT tuning experiment builds on the work
of Riezler et al. (2014) and Haas and Riezler (2015)
who applied response-based learning for SMT to the
GEOQUERY and FREE917 domains, respectively.
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Figure 1: Illustration of a possible entity (here:

way) on the Overpass turbo website for the query

“area[name=‘Paris’]→.a;node(area.a)[name=‘Gare du

Nord’]→.b;node(around.b:1000[tourism=‘hotel’][wheelchair=

‘yes’] ;out;”. The way consists of several nodes that together

span the outline of the relevant building. Clicking on the way

gives all the key-value pairs registered for this way in the

database.

3 OpenStreetMap

OpenStreetMap is a freely available map of the
world, annotated by volunteers and editable by any-
one. Entered GPS points, referred to as nodes,
constitute the basis of the database and currently
amount to over 3 billion examples (see Figure 1
for more statistics on the OSM database). Nodes
can be given tags which are key-value pairs, such
as “amenity=restaurant”, “highway=living street”
or “abandoned:tourism=theme park”. In total there
are over 76 million distinct tags which are based
on 57,159 unique keys. Nodes may be grouped to-
gether to form ways. Ways can be given their own
set of tags and are for example used to display roads
or building outlines. Both nodes and ways may be
joined to be part of a relation which is used to model
the interdependence of several objects. A relation
can for example be employed to delineate bus lines
or to define administrative boundaries. As relations
can also be part of other relations, one can even ex-

press hierarchical structures.
The Overpass API2 can be used to query the

database made up of the aforementioned nodes,
ways and relations. It can efficiently extract the cor-
rect subset of database objects that satisfy the en-
tered constraints. The following constraints are most
relevant for our corpus creation later on:
• The simplest constraints require the database

objects to have certain keys or key-value pairs.
For example to search for hotels, one would use
“node[tourism=‘hotel’];out;”.
• Overpass can find ways and relations that form

a filled polygon. Based on this, Overpass is
able to search for database objects in only the
specified area, such as a town or country. To
search for hotels in Paris, the corresponding
Overpass would be: “area[name=‘Paris’]→.a;
node(area.a)[tourism=‘hotel’];out;”.
• The operator called around allows the

user to search for a database object in
a certain radius around another object.
For hotels in a radius of 1,000 metres
around Gare du Nord in Paris, the Overpass
query would be: “area[name=‘Paris’]→.a;
node(area.a)[name=‘Gare du Nord’]→.b;
node(around.b:1000)[tourism=‘hotel’];out;”.

Further tools related to OSM are Overpass turbo3,
a web interface that allows users to run Overpass
queries, and the Overpass turbo Query Wizard,
which supports querying by predefined human read-
able shorthands to executable Overpass queries. A
screenshot of the map and an example database en-
try for an Overpass query is shown in Figure 1.

4 Query Creation

Since even the Overpass Query Wizard requires
users to be familiar with the tag set of OSM
key-value pairs, it unusable for users with only
casual or no knowledge of OSM’s internal struc-
ture. Nonetheless, we could use parts of the user
query log to formulate natural language ques-
tions. For example users would enter the query
“(node[”abandoned:tourism”=”theme park”];
way[”abandoned:tourism”=”theme park”]; rela-

2http://wiki.openstreetmap.org/wiki/
Overpass_API

3http://overpass-turbo.eu/
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query

area

keyval

name Paris

nwr

keyval

tourism hotel

keyval

wheelchair yes

findkey

name

Figure 2: The question “Which hotels in Paris have wheelchair

access?” with MRL “query(area(keyval(name,’Paris’)),

nwr(keyval(tourism,’hotel’),keyval(wheelchair,’yes’)), find-

key(name))” can be presented as a tree. A preorder traversal

gives: “query@3 area@1 keyval@2 name@0 Paris@s nwr@2

keyval@2 tourism@0 hotel@s keyval@2 wheelchair@0 yes@s

findkey@1 name@0”

tion[”abandoned:tourism”=”theme park”];);out;”
which we then extended to “When did
the abandoned theme parks close?”
and added the corresponding MRL
“query(nwr(keyval(’abandoned:tourism’,’theme
park’ )),qtype(findkey(’end date’)))”. Additionally
we often had to provide a reference point for the
queries, as users usually searched their current map
cut-out and while all abandoned theme parks in
the world is a short list, all restaurants for example
would be too many to realistically handle. Thus
we fell back to 3 chosen cities in those cases,
Heidelberg, Paris and Edinburgh. In sum, most of
the queries are based on OSM user queries that
were issued to the Overpass turbo Query Wizard
and shared among users; others were written by
the first author with an utilization of the underlying
Overpass API in mind.

5 Machine Readable Language (MRL)

Our corpus creation process was guided by the goal
to pair a diverse range of questions with machine
readable language (MRL) formulae. These should
include the most important OSM tags so that the
parser is able to learn a mapping between these tags
and the different corresponding natural language ex-
pressions.

To answer concise questions without including
superfluous details, the MRL needs to be able to ex-
tract more specific information instead of a list of
all database objects as in the underlying Overpass

result. The MRL thus wraps around Overpass and
contains additional indicators about what informa-
tion should be returned from a database object, for
example just its GPS coordinates, or a website ad-
dress, or the number of returned objects.

Given the above consideration, we define our
MRL as a variable free language that focuses on
practicality and speed, akin in style to the GEO-
QUERY MRL language. It is unambiguously defined
via a context-free grammar (CFG) so that one can
always ascertain whether or not a formula is valid.
While the written form of the MRL is a bracket
structure, this structure can easily be encoded as a
tree by taking a pre-order traversal which makes it
easy and efficient to work with. An example CFG
tree for a MRL is given in Figure 2. In the follow-
ing, we list the operators of our MRL.

Query Operator. A single database query is en-
coded in the operator query() which will hold the
Overpass query as well as further specifications
about what kind of answer should be retrieved. A
few operators are directly derived from Overpass,
merely re-written as a tree structure. As such OSM
key-value pairs are encoded using the operator key-
val() which takes 2 arguments, the first being the key
and the second the value. The area operator from
Overpass directly translates to the operator area().
Nodes, ways and relations are grouped together un-
der the nwr() operator which will supply the union
of the query run with the 3 types in turn. This is nec-
essary because often buildings, e.g. schools, may be
represented as any of the 3 types depending on how
specific the annotator wanted to be. Both area() and
nwr() then take one ore more keyval() arguments. If
area() and nwr() appear as siblings in the tree (for an
example see Figure 2), then only the objects that lie
within area() will be searched to determine if they
fulfil the nwr() constraints.

Meta Operators. In order to add specificity be-
yond the lists returned by Overpass, each MRL for-
mula needs one or more of the following meta pa-
rameters to be valid; the meta parameters in turn
are held by the operator qtype(). The operator
latlong() retrieves the geographical coordinates of
the database objects. For a node this is simply its
recorded GPS point. In the case of ways and re-
lations the centre of the associated nodes is calcu-
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Figure 3: Mapping of natural language question to MRL (via semantic parsing) and to structured database query, returning a set of

database objects (via Overpass API) which may be represented as XML documents, from which the correct answer is retrieved.

lated. findkey() searches for a specific key (such
as name or website) in the database objects of the
retrieved set and returns its value. count() simply
counts the number of elements in the retrieved set.
least() checks for the existence of at least x elements
in the returned set, whereas x is defined in a sec-
ond meta function topx() which returns the top x
elements of a set. topx() may also be used in con-
junction with latlong() and findkey().

Additionally the user can ask for the distance
between two points of interests. This operator,
dist() needs to be supplied with two separate query()
operators using the latlong() meta operator, and
can return the value in either kilometres or miles
(unit(mi/km)). In conjunction with that the user can
inquire if the point of interest is still within walking
distance (for(“walk”)), or if a car is recommended
(for(“car”)).

Fuzzy Language Operators. Fuzzy terms such as
“nearby”, “within walking distance” and “closest”
can be modelled by making use of the around op-
erator from Overpass. around() searches for points
of interest (supplied via search()) in the vicinity of
another (supplied using center()). If only the x clos-
est points are to be returned, topx() can be added.
The radius is defined via dist(). This information
can occur either explicitly (“No further than 200m
away”), or implicitly (“Give me a cinema with a car
park close by” implies that the car park should be in

walking distance). For the implicit case 4 options are
available: walking distance, within town distance,
out of town distance, and day trip distance. Choos-
ing the appropriate distance in the implicit case is
of particular difficulty because often a term such as
“close by” implies a different distance depending on
the surrounding context. For example, “a close by
airport” may imply day trip distance, while “a close
by restaurant” at most implies a just out of town dis-
tance (see also Minock and Mollevik (2013)).

Another set of fuzzy terms are the cardinal direc-
tions, either within an area() operator (“Where are
hotels in the north of Paris?”), or beyond an nwr()
operator (“Where are hotels north of Gare du Nord
in Paris?”). The correct operator, north(), east(),
south() or west(), follows after query(), if present.

Further Operators. Some further operators were
needed to model the MRL formula for complex
questions. and() is used when the user asks for two
different nuggets of information (“Where is the clos-
est bakery and the closest butcher?” or “Give me
the website and name of ...”). or() is used to create
unions, as for example, needed in a sentence such as
“Give me the closest bar or restaurant.” “*” can be
used as a wild card in a value position, e.g. [‘his-
toric’=*] will returned any historic objects, be it a
castle, a monument or something else. nodup() re-
turns a set with no duplicates. This is, for example,
needed in “Which cuisines are there?”.
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Figure 4: Histogram of the gold formulae sizes

NLMAPS GEOQUERY FREE917

# sent. 2,380 880 917
tokens 25,906 6,660 6,785
types 1002 296 2,038
avg. sent. length. 10.88 7.57 7.4
avg. types per sent. 0.42 0.34 2.22
avg. singleton per sent. 0.1 0.1 1.52
avg. NT per sent. 21 16 16
FRES 82.18 86.61 83.77

Figure 5: Corpus statistics of the corpora NLMAPS, GEO-

QUERY, FREE917. NT stands for non-terminal and FRES is

the Flesch Reading Ease Score (Flesch, 1974).

The complete pipeline process leading from nat-
ural language question to an appropriate answer can
be seen in Figure 3. The natural language question
is first translated by the semantic parser into a MRL,
from which the Overpass query is deterministically
extracted, while keeping a list of the relevant fur-
ther indicators. These indicators then operate on the
database objects returned by the Overpass query to
form the answer.

6 Corpus Statistics

Our corpus, called NLMAPS, is more than twice as
large as GEOQUERY or FREE917. In the following,
we present a comparison of the lexical and syntactic
complexity of the three corpora. All statistics re-
ported in Figure 5 are normalized by the number of
sentences.

Lexically, NLMAPS is more diverse than GEO-
QUERY, as can be seen by the average number of
types, but less so compared to FREE917 due to the
fact that the OSM database is still a somewhat more
closed domain compared to Freebase. Syntactically
however, NLMAPS is with 3 more words on aver-
age per sentence more complex than GEOQUERY

and FREE917, which have nearly identical sentence
length. As a further test, we ran the Stanford Parser
(Klein and Manning, 2003) on the queries to gener-
ate syntactic parse trees. We then counted the num-
ber of non-terminals required to produce the parse
tree. This result reaffirms what the simpler sentence
length already reported: the language in NLMAPS is
more complex than in the other two corpora, which
have identical complexity.

In Figure 4 we report the number of operators and

values needed to construct the different gold formu-
lae. While there are a few questions that need a
formula shorter than 10, the vast majority needs a
length of around 15, followed by a long tail of sizes
with decreasing frequency of up to 36. The fact that
many of the gold formulae are in fact longer than
the average sentence length shows that the questions
are far from trivial and require elaborate database
queries to be answered. The last measure we re-
port is the Flesch Reading Ease Score (Flesch, 1974)
which is usually used to asses the text difficulty for
readers. In this score, a lower number indicates a
harder text. NLMAPS receives the lowest number,
indicating it as the most complex corpus.

Overall we can infer that NLMAPS provides a
good balance between lexical diversity as well as
stability for a machine learning algorithm to learn.
With regards to syntactic complexity, NLMAPS eas-
ily supersedes the other two corpora. We conclude
this section with a few example sentences:

What are the websites and
names of the museums or art
centers in walking distance of
the Eiffel Tower?

What are the opening times of
the Sainsbury’s Local closest
to the Edinburgh Waverley in
Edinburgh?

What are the peaks in the
north of Languedoc-Roussillon
called and how high are they?

7 Semantic Parsing

We treat semantic parsing as an SMT problem, us-
ing our own implementation of the framework in-
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Precision Recall F1

1 +intersect +stem +cdec 84.69 62.42 71.87
2 +intersect +stem +cdec +sparse 84.40 65.8 73.951

3 +intersect +stem +cdec +pass +cfg 89.45 65.19 75.411

4 +intersect +stem +cdec +sparse +pass +cfg 89.04 68.3 77.31,2,3

Table 2: Semantic Parsing results on NLMAPS (split 1500/880 for train/test set) using different settings. Tuning was carried out

on the training set. In the case of MERT tuning, the results are averaged over 3 runs due to the randomness MERT introduces.

Best results are indicated in bold face. Statistical significance in terms of F1 of system differences at p < 0.05 are indicated by

experiment number in superscript.

troduced by Andreas et al. (2013) who have shown
that this approach achieves state-of-the-art perfor-
mance on GEOQUERY. In this framework it is cru-
cial that the MRL can be represented as a tree. A
pre-order tree traversal can give a unique string in
which each node is a word (i.e. surrounded by white
space). Once the MRL has been converted into
such a structure (for an example see Figure 2), a
word aligner, here GIZA++ (Och and Ney, 2003),
can be used to generate word-to-word alignments in
both translation directions which can then be com-
bined with various heuristics (Koehn, 2010, Chap-
ter 4.5.3). From the next step onwards we use the
freely available SMT framework CDEC (Dyer et al.,
2010). After building a language model for the tar-
get (MRL) side, SCFG grammars for hierarchical
phrases for tuning and testing were extracted. Ex-
periments in n-gram order showed that 5-gram mod-
els are sufficient for language modelling.

At test time, a critical issue is the fact that mono-
lingual SMT does not ensure that the translations are
valid MRL formulae. Thus a k-best list (sorted from
most probable to least) is generated which needs to
be traversed until a valid formula is found. Experi-
mentation with the k-best list size showed that 100 is
a good trade-off between speed and performance. A
bigger size of k might enable us to find a valid (and
correct) formula further down the k-best, however,
we verified experimentally that in most cases no op-
tion in the extended k-best list contained a valid for-
mula either.

Once a valid formula is found, it is executed
against a database and the resulting answer is com-
pared to the answer the gold formula provides. Only
exact matches are considered correct. We report
Precision, Recall and F1-score to evaluate the se-

mantic parser.4

Table 2 shows experimental results for different
settings of semantic parsing on NLMAPS. Statis-
tical significance of system differences in terms of
F1 was assessed by an Approximate Randomiza-
tion test (Noreen, 1989). For the word-alignment
step, we found that the choice of the strategy for
combining word alignments from both translation
directions is crucial to the semantic parser’s perfor-
mance. The intersect strategy performs significantly
better than any other, suggesting that high precision
alignments are very important when using a mono-
lingual SMT approach for semantic parsing. Fur-
ther, stemming the words on the NL side is also
always significantly better than not doing so. In
a next step we compare the use of dense features
(Dyer et al., 2010) in conjunction with the tuning
algorithm MERT (Och, 2003) and additional sparse
features (Simianer et al., 2012). As MERT cannot
handle such a large amount of features, we paired
the sparse features with the tuning algorithm MIRA

(Crammer and Singer, 2003). Because MERT suffers
from optimizer instability (Clark et al., 2011) due to
random initialization, the experiments 1 & 3 in Ta-
ble 2 report the average result based on 3 different
MERT runs. Another variation we tested is the use of
the NLMAPS CFG to check whether or not a trans-
lation is a valid MRL, instead of a quicker check
that only ensures that a translation can be parsed
as a tree. This variation is indicated with “+cfg”.
Lastly, while the system was able to directly learn
the mapping of named entities previously seen dur-

4Recall is defined as the percentage of correct answers out of
all examples, Precision the percentage of correct answers out of
all examples with an answer, and F1-score the harmonic mean
between the two aforementioned.
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ing training, this is not possible for new named en-
tities. These unknown named entities will automati-
cally be passed through by the SMT system but they
will be missing the marker of where in the tree they
belong. As named entities always have to be in a
value position in the corresponding MRL and val-
ues are always leave nodes, this can easily be rec-
tified by appending the marker for a leave node to
passed through words (“+pass”). Of course, when
stemming is used, one has to also keep track of the
unstemmed form. The decision of which route to go
with named entities is left up to the SMT system.

Overall, the modules tested in Table 2 add up to
a total F1 score of 77.3%. Given the complexity of
our corpus and the simplicity of the semantic parser,
this is a promising result.

8 Multilingual Parsing

Riezler et al. (2014) and Haas and Riezler (2015)
have shown how to use semantic parsers for GEO-
QUERY and FREE917, respectively, to adapt an
SMT system for multilingual database access. In
this section we show that our semantic parser can
be used for response-based learning of an SMT sys-
tem to allow multilingual natural language queries
to OSM, here German. To this end, a SMT sys-
tem first translates the question from German to En-
glish and then the translation is passed to the seman-
tic parser to answer the question. The SMT system
uses the feedback from the parser, i.e. the knowl-
edge whether or not the question could be parsed to
the correct answer, to improve translations.

More formally, assume an SMT system with a
joint feature representation φ(x, y) for input sen-
tences x and output translations y ∈ Y (x), that uses
a linear scoring function to predict the most likely
translation ŷ = arg maxy∈Y (x)w

>φ(x, y). We de-
fine a cost function c(y(i), y) = (1−BLEU(y(i), y))
based on sentence-wise BLEU (Nakov et al., 2012)
and a binary feedback function e(y) ∈ {1, 0}. The
binary function evaluates to 1 if and only if a natu-
ral language’s semantic parse receives the same an-
swer as the corresponding gold parse. Training is
performed by moving w closer to a hope translation
y+ while pushing it away from a fear translation y−.
Both y+ and y− have a high model score. y+ incor-
porates the hope for a best translation to have a low

cost and positive feedback. y− is feared due to a
high cost and negative feedback, thus we define:

y+ = arg max
y∈Y (x(i)):e(y)=1

(
s(x(i), y;w)− c(y(i), y)

)
,

y− = arg max
y∈Y (x(i)):e(y)=0

(
s(x(i), y;w) + c(y(i), y)

)
.

The algorithm, called REBOL (Riezler et al.,
2014), proceeds by iterating over the training data,
predicting the top translation ŷ, and receiving feed-
back for this translation from a semantic parser. If
the feedback is positive, ŷ is set equal to y+, other-
wise to y−. The algorithm then searches the k-best
list for the missing y− or y+, respectively, and per-
forms an update that adds the feature vector of y+

onto w, and subtracts the feature vector of y−.
For our experiment, the NLMAPS questions were

translated by the first author into German. As parser
we chose to use number 3 (+intersect +stem +cdec
+pass +cfg) from Table 2, deciding against the use of
sparse features due speed reasons. The CDEC (Dyer
et al., 2010) decoder was used for machine trans-
lation from German to English. Here we employ
its standard features plus additional sparse features5

and the COMMON CRAWL6 (Smith et al., 2013) cor-
pus to built the baseline SMT system.

REBOL is compared to a baseline system with-
out discriminative training (CDEC) and to a stochas-
tic (sub)gradient descent variant of RAMPION (Gim-
pel and Smith, 2012). Both baseline systems do
not make use of the feedback from the semantic
parser. While both REBOL and RAMPION assume
the availability of both a reference translation and
a gold parse, response-based learning can also suc-
ceed without any access to reference translations or
even to gold standard parses. Riezler et al. (2014)
introduced an algorithm, called EXEC, that only re-
lies on task-based feedback and omits the cost func-
tion based on sentence-wise BLEU. Collecting real
world data for this algorithm is realistic for an on-
line interface to OSM since it only requires a user to
pose a question and then indicate if it was answered
to their satisfaction.

5https://github.com/pks/cdec-dtrain
6http://www.statmt.org/wmt13/

training-parallel-commoncrawl.tgz
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method P R F1 BLEU

1CDEC 67.8 24.89 36.41 38.3
2EXEC 75.2 31.36 44.271 40.851

3RAMPION 78.21 38.75 51.821,2 51.821,2

4REBOL 80.76 41.02 54.411,2,3 51.881,2

Table 3: SMT results on NLMAPS, reporting Precision (P), Re-

call (R) and their harmonic mean (F1). Best results are indi-

cated in bold face. Statistical significance of result differences

at p < 0.05 are indicated by algorithm number in superscript.

While we do report BLEU (Papineni et al., 2002),
the primary goal in our work is to achieve highest
possible F1 score. This is vital because our ultimate
aim is to give users asking German questions the
correct answer, whereas the English translation from
which BLEU is be calculated is only an intermediate
result that is irrelevant for the task goal.

To test significance of F1 and BLEU, we again
use Approximate Randomization. Before training,
we split of 200 sentences from the training set to use
as held out data (dev set). RAMPION, REBOL and
EXEC ran for 50 epochs and then the dev set was
used to pinpoint the best epoch for each algorithm.
In the case of RAMPION, the best epoch equalled
the epoch in which the dev set achieved the highest
BLEU score (epoch 20). For REBOL and EXEC, on
the other hand, this decision was made by the high-
est F1 score on the dev set (epoch 40 and 6 respec-
tively). The learning rate for both algorithms was set
on a per feature basis using Adadelta (Zeiler, 2012).

As shown in Table 3, REBOL can significantly im-
prove in terms of F1 and BLEU over the CDEC base-
line. It is also significantly better than RAMPION in
terms of F1 while being able to keep up in BLEU.
Should reference translations not be available, EXEC

shows that it can still significantly outperform the
CDEC baseline, it however cannot keep up with RE-
BOL or RAMPION which have a more detailed su-
pervision signal available to them.

9 Conclusion

We presented an approach to query the OSM
database for complex geographical facts via natural
language questions. The key technology is a seman-
tic parser that is trained in supervised fashion from
a large set of questions annotated with executable

MRLs. Our corpus is larger than previous annotated
question-answer corpora, while including a wide va-
riety of challenging questions.

Terms such as “nearby”, “in the south of ”, “within
x miles” are particularly well-suited for a natural lan-
guage query interface that allows to map the fuzzi-
ness of natural language to flexible spatial poly-
gons. Our corpus is publicly available7 and a web-
site where users can query OSM using natural lan-
guage is under development8. This in turn will give
us new and more realistic data which we can use
to extend the corpus and to improve the semantic
parser.

An online version of our natural language inter-
face to OSM will be enabling for various interesting
directions of future research: Besides the possibil-
ity to gain new and more realistic data which we
can use to extend the corpus, the semantic parser
can be improved itself by response-based learning,
where supervision signals can be extracted from
the executed parses of new user queries against the
database (Kwiatowski et al. (2013), Berant et al.
(2013), Goldwasser and Roth (2013), inter alia). In
a similar way, multilingual database access can be
enhanced by adapting an SMT system by response-
based learning, using executability of a parse of a
translated query as supervision signal (Riezler et al.,
2014). Both cases of response-based learning only
require a user who issues a query and gives feed-
back on whether the proposed OSM object was the
intended answer. Such an interactive scenario en-
ables further research on alternative algorithms for
learning from partial feedback (Szepesvári, 2009;
Bubeck and Cesa-Bianchi, 2012).
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