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Abstract

Sequence labeling for extraction of medical
events and their attributes from unstructured
text in Electronic Health Record (EHR) notes
is a key step towards semantic understand-
ing of EHRs. It has important applications
in health informatics including pharmacovig-
ilance and drug surveillance. The state of
the art supervised machine learning models in
this domain are based on Conditional Random
Fields (CRFs) with features calculated from
fixed context windows. In this application, we
explored recurrent neural network frameworks
and show that they significantly outperformed
the CRF models.

1 Introduction

EHRs report patient’s health, medical history and
treatments compiled by medical staff at hospitals. It
is well known that EHR notes contain information
about medical events including medication, diagno-
sis (or Indication), and adverse drug events (ADEs)
etc. A medical event in this context can be described
as a change in patient’s medical status. Identifying
these events in a structured manner has many im-
portant clinical applications such as discovery of ab-
normally high rate of adverse reaction events to a
particular drug, surveillance of drug efficacy, etc. In
this paper we treat EHR clinical event detection as a
task of sequence labeling.

Sequence labeling in the context of machine
learning refers to the task of learning to predict a la-
bel for each data-point in a sequence of data-points.
This learning framework has wide applications in
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many disciplines such as genomics, intrusion detec-
tion, natural language processing, speech recogni-
tion etc. However, sequence labeling in EHRs is a
challenging task. Unlike text in the open domain,
EHR notes are frequently noisy, containing incom-
plete sentences, phrases and irregular use of lan-
guage. In addition, EHR notes incorporate abundant
abbreviations, rich medical jargons, and their varia-
tions, which make recognizing semantically similar
patterns in EHR notes difficult. Additionally, dif-
ferent events exhibit different patterns and possess
different prevalences. For example, while a medi-
cation comprises of at most a few words of a noun,
an ADE (e.g., “has not felt back to his normal self”’)
may vary to comprise of a significant part of a sen-
tence. While medication information is frequently
described in EHRs, ADEs are typically rare events.

Rule-based and learning-based approaches have
been developed to identify and extract informa-
tion from EHR notes (Haerian et al., 2012), (Xu
et al., 2010), (Friedman et al., 1994), (Aronson,
2001), (Polepalli Ramesh et al., 2014). Learning-
based approaches use sequence labeling algorithms
like Conditional Random Fields (Lafferty et al.,
2001), Hidden Markov Models (Collier et al.,
2000), and Max-entropy Markov Models (McCal-
lum et al.,, 2000). One major drawback of these
graphical models is that the label prediction at any
time point only depends on its data instance and the
immediate neighboring labels.

While this approach performs well in learning the
distribution of the output labels, it has some limi-
tations. One major limitation is that it is not de-
signed to learn from dependencies which lie in the
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surrounding but not quite immediate neighborhood.
Therefore, the feature vectors have to be explicitly
modeled to include the surrounding contextual in-
formation. Traditionally, bag of words representa-
tion of surrounding context has shown reasonably
good performance. However, the information con-
tained in the bag of words vector is very sensitive
to context window size. If the context window is
too short, it will not include all the information. On
the other hand if the context window is too large, it
will compress the vital information with other irrel-
evant words. Usually a way to tackle this problem
is to try different context window sizes and use the
one that gives the highest validation performance.
However, this method cannot be easily applied to
our task, because different medical events like med-
ication, diagnosis or adverse drug reaction require
different context window sizes. For example, while
a medication can be determined by a context of two
or three words containing the drug name, an adverse
drug reaction would require the context of the entire
sentence. As an example, this is a sentence from one
of the EHRs, “The follow-up needle biopsy results
were consistent with bronchiolitis obliterans, which
was likely due to the Bleomycin component of his
ABVD chemo”. In this sentence, the true labels are
Adverse Drug Event(ADE) for “bronchiolitis oblit-
erans” and Drugname for “ABVD chemo”. However
the ADE , “bronchiolitis obliterans” could be miss-
labeled as just another disease or symptom, if the
entire sentence is not taken into context.

Recent advancements in Recurrent Neural Net-
works (RNNs) have opened up new avenues of
research in sequence labeling. Traditionally, re-
current neural networks have been hard to train
through Back-Propagation, because learning long
term dependencies using simple recurrent neurons
lead to problems like exploding or vanishing gra-
dients (Bengio et al., 1994), (Hochreiter et al.,
2001). Recent approaches have modified the sim-
ple neuron structure in order to learn dependencies
over longer intervals more efficiently. In this study,
we evaluate the performance of two such neural net-
works, namely, Long Short Term Memory (LSTM)
and Gated Recurrent Units (GRU).

Timely identification of new drug toxicities is an
unresolved clinical and public health problem, cost-
ing people’s lives and billions of US dollars. In this
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study, we empirically evaluated LSTM and GRU on
EHR notes, focusing on the clinically important task
of detecting medication, diagnosis, and adverse drug
event. To our knowledge, we are the first group re-
porting the uses of RNN frameworks for information
extraction in EHR notes.

2 Related Work

Medication and ADE detection is an important NLP
task in biomedicine. Related existing NLP ap-
proaches can be grouped into knowledge or rule-
based, supervised machine learning, and hybrid ap-
proaches. For example, Hazlehurst et al. (2005) de-
veloped MediClass, a knowledge-based system that
deploys a set of domain-specific logical rules for
medical concept extraction. Wang et al. (2015)
, Humphreys et.al. (1993) and others map EHR
notes to medical concepts to an external knowledge
resource using hybrid rule-based and syntactic pars-
ing approaches. Gurulingappa et al. (2010) detect
two medical entities (disease and adverse events) in
a corpus of annotated Medline abstracts. In contrast,
our work uses a corpus of actual medical notes and
detects additional events and attributes.

Rochefort et al. (2015) developed document clas-
sifiers to classify whether a clinical note contains
deep venous thromboembolisms and pulmonary em-
bolism. Haerian et al. (2012) applied distance
supervision to identify terms (e.g., including “sui-
cidal”, “self harm”, and ‘“diphenhydramine over-
dose”) associated with suicide events. Zuofeng Li
et al. (2010) extracted medication information us-
ing CRFs.

Many named entity recognition systems in the
biomedical domain have been driven by the Shared
tasks of BioNLP (Kim et al., 2009), BioCreAtivE
(Hirschman et al., 2005) i2b2 shared NLP tasks
(Li et al., 2009) and ShARe/CLEF evaluation tasks
(Pradhan et al., 2014). The best performing clinical
NLP systems for named entity recognition includes
Tang et al (2013) which applied CRF and structured
SVM.

Neural Network models like Convolutional Neu-
ral Networks and Recurrent Neural Networks
(LSTM, GRU) have recently been been success-
fully used to tackle various sequence labeling prob-
lems in NLP. Collobert (2011) used Convolutional



Labels Annotations | Avg. Words /
Annotations
ADE 905 1.51
Indication | 1988 2.34
Other SSD | 26013 2.14
Severity 1928 1.38
Drugname | 9917 1.20
Duration 562 2.17
Dosage 3284 2.14
Route 1810 1.14
Frequency | 2801 2.35

Table 1: Annotation statistics for the corpus.

Neural Network for sequence labeling problems like
POS tagging, NER etc. Later, Huang et al.
(2015) achieved comparable or better scores using
bi-directional LSTM based models.

3 Dataset

The annotated corpus contains 780 English EHR
notes or 613,593 word tokens (an average of 786
words per note) from cancer patients who have been
diagnosed with hematological malignancy. Each
note was annotated by at least two annotators with
inter-annotator agreement of 0.93 kappa. The anno-
tated events and attributes and their instances in the
annotated corpus are shown in Table 1.

The annotated events can be broadly divided into
two groups, Medication, and Disease. The Medica-
tion group contains Drugname, Dosage, Frequency,
Duration and Route. It corresponds to information
about medication events and their attributes. The at-
tributes (Route, Frequency, Dosage, and Duration)
of a medication (Drug name) occur less frequently
than the Drugname tag itself, because few EHRSs re-
port complete attributes of an event.

The Disease group contains events related to dis-
eases (ADE, Indication, Other SSD) and their at-
tributes (Severity). An injury or disease can be la-
beled as ADE, Indication, or Other SSD depending
on the semantic context. It is marked as ADE if it is
the side effect of a drug. It is marked as Indication
if it is being diagnosed currently by the doctor and
a medication has been prescribed for it. Any sign,
symptom or disease that does not fall into the afore-
mentioned two categories is labeled as Other SSD.
Other SSD is the most common label in our corpus,
because it is frequently used to label conditions in
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the past history of the patient.

For each note, we removed special characters that
do not serve as punctuation and then split the note
into sentences using regular expressions.

4 Methods

4.1 Long Short Term Memory

Long Short Term Memory Networks (Hochreiter
and Schmidhuber, 1997) are a type of Recurrent
Neural Networks (RNNs). RNNs are modifications
of feed-forward neural networks with recurrent con-
nections. In a typical NN, the neuron output at time
t is given by:

Yt = oWz + ;) (1)

Where W; is the weight matrix, b; is the bias term
and o is the sigmoid activation function. In an RNN,
the output of the neuron at time ¢ — 1 is fed back
into the neuron. The new activation function now
becomes:

Yt = o(Wizy + Uiyl ™! + b)) )

Since these RNNs use the previous outputs as recur-
rent connections, their current output depends on the
previous states. This property remembers previous
information about the sequence, making them use-
ful for sequence labeling tasks. RNNs can be trained
through back-propagation through time. Bengio et
al.  (1994) showed that learning long term depen-
dencies in recurrent neural networks through gradi-
ent decent is difficult. This is mainly because the
back-propagating error can frequently “blow-up” or
explode which makes convergence infeasible, or it
can vanish which renders the network incapable of
learning long term dependencies (Hochreiter et al.,
2001).

In contrast, LSTM networks were proposed as so-
lutions for the vanishing gradient problem and were
designed to efficiently learn long term dependencies.
LSTMs accomplish this by keeping an internal state
that represents the memory cell of the LSTM neu-
ron. This internal state can only be read and written
through gates which control the information flowing
through the cell state. The updates of various gates
can be computed as:

i = tanh(Wyixy + Whihi—1) 3)
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Figure 1: Sequence Labeling model for LSTM network

ft =o(Wypxe + Whphi—1) “4)

)

Here i; , f; and o; denote input, forget and output
gate respectively. The forget and input gate deter-
mine the contributions of the previous output and
the current input, in the new cell state c;. The output
gate controls how much of ¢; is exposed as the out-
put. The new cell state ¢; and the output h; can be
calculated as follows:

Ot = U(onxt + Whoht—l)

ct = frOci_1+ir Otanh(Weewy + Wiehi—1) (6)

ht = oy © tanh(cy) (7

The cell state stores relevant information from the
previous time-steps. It can only be modified in an
additive fashion via the input and forget gates. Sim-
plistically, this can be viewed as allowing the error
to flow back through the cell state unchecked till it
back propagates to the time-step that added the rele-
vant information. This nature allows LSTM to learn
long term dependencies.

We use LSTM cells in the Neural Network setup
shown in figure 1. Here zy,y; are the input word,
and the predicted label for the k*" word in the sen-
tence. The embedding layer contains the word vec-
tor mapping from words to dense n-dimensional
vector representations. We initialize the embedding
layer at the start of the training with word vectors
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calculated on the larger data corpus described in sec-
tion 4.4. This ensures that words which are not seen
frequently in the labeled data corpus still have a rea-
sonable vector representation. This step is necessary
because our unlabeled corpus is much larger than the
labeled one.

The words are mapped into their corresponding
vector representations and fed into the LSTM layer.
The LSTM Ilayer consists of two LSTM chains, one
propagating in the forward direction and other in the
backward direction. We concatenate the output from
the two chains to form a combined representation of
the word and its context. This concatenated vector
is then fed into a feed-forward neuron with Softmax
activation function. The Softmax activation function
normalizes the outputs to produce probability like
outputs for each label type j as follows:

exp(u W)

Pll; = jlu) =
= dlue) = Sk )

(®)

Here [; and wu; are the label and the concatenated
vector for each time step ¢. The most likely label
at each word position is selected. The entire net-
work is trained through back-propagation. The em-
bedding vectors are also updated based on the back-
propagated errors.

4.2

Gated Recurrent Unit (GRU) is another type of re-
current neural network which was recently proposed
for the purposes of Machine Translation by Cho et.
al. (2014). Similar to LSTMs, Gated Recurrent
Units also have an additive mechanism to update the
cell state, with the current update. However, GRUs
have a different mechanism to create the update. The
candidate activation hy is computed based on the
previous cell state and the current input .

Gated Recurrent Units

hi = o(Wanxe + Whn(re © hi—1)) 9
Here 7; is the reset gate and it controls the use of
previous cell state while calculating the input acti-
vation. The reset gate itself is also computed based
on the previous cell activation h;_; and the current
candidate activation .

Ty = U(erxt + Whrhtfl) (10)



Models Recall | Precision | F-score \
CRF-nocontext 0.6562 | 0.7330 0.6925
CRF-context 0.6806 | 0.7711 0.7230
LSTM-sentence 0.8024 | 0.7803 0.7912
GRU-sentence 0.8013 | 0.7802 0.7906
LSTM-document | 0.8050 | 0.7796 0.7921
GRU-document 0.8126 | 0.7938 0.8031

Table 2: Cross validated micro-average of Precision, Recall and

F-score for all medical tags

The current cell state or activation is a linear combi-
nation of previous cell activation and the candidate
activation.

he=(1—2) O hi1+2Oh (11)

Here, z; is the update gate which decides how much
contribution the candidate activation and the previ-
ous cell state should have in the cell activation. The
update gate is computed using the following equa-
tion:

2zt = Whahi—1 + W) (12)

Gated recurrent units have some fundamental differ-
ences with LSTM. For example, there is no mech-
anism like the output gate which controls the expo-
sure of the cell activation, instead the entire current
cell activation is used as output. The mechanisms
for using the previous output for the calculation of
the current activation are also very different. Re-
cent experiments (Chung et al., 2014), (Jozefow-
icz et al., 2015) comparing both these architectures
have shown GRUs to have comparable or sometimes
better performance than LSTM in several tasks with
long term dependencies.

We use GRU with the same Neural Network struc-
ture as shown in Figure 1 by replacing the LSTM
nodes with GRU. The embedding layer used here is
also initialized in a similar fashion as the LSTM net-
work.

4.3 The Baseline System

CRFs have been widely used for sequence labeling
tasks in NLP. CRFs model the complex dependence
of the outputs in a sequence using Probabilistic
Graphical Models. Probabilistic Graphical Models
represent relationships between variables through a
product of factors where each factor is only influ-
enced by a smaller subset of the variables. A par-

477

ticular factorization of the variables provides a spe-
cific set of independence relations enforced on the
data. Unlike Hidden Markov Models which model
the joint p(x, y), CRFs model the posterior probabil-
ity p(y|x) directly. The conditional can be written as
a product of factors as follows:

1 T

Z(x) t:l_[l Ve(Yt, Ye—1, )

pylr) = (13)

Here Z is the partition function used for normaliza-
tion, 1/, are the local factor functions.

CRFs are fed the word inputs and their corre-
sponding skip-gram word embedding ( section 4.4).
To compare CRFs with RNN, we add extra context
feature for each word. This is done because our aim
is to show that RNNs perform better than CRFs us-
ing context windows. This extra feature consists of
two vectors that are bag of words representation of
the sentence sections before and after the word re-
spectively. We add this feature to explicitly provide
a mechanism that is somewhat similar to the sur-
rounding context that is generated in a Bi-directional
RNN as shown in Figure 1. This CRF model is re-
ferred to as CRF-context in our paper. We also eval-
uate a CRF-nocontext model, which trains a CRF
without the context features.

The tagging scheme used with both CRF models
is BIO (Begin, Inside and Outside). We did not use
the more detailed BILOU scheme (Begin, Inside,
Last, Outside, Unit) due to data sparsity in some of
the rarer labels.

4.4 Skip-Gram Word Embeddings

We use skip-gram word embeddings trained through
a shallow neural network as shown by Mikolov et
al., (2013) to initialize the embedding layer of the
RNNs. This embedding is also used in the baseline
CRF model as a feature. The embeddings are trained
on a large unlabeled biomedical dataset, compiled
from three sources, the English Wikipedia, an un-
labeled EHR corpus, and PubMed Open Access ar-
ticles. The English Wikipedia consists of text ex-
tracted from all the articles of English Wikipedia
2015. The unlabeled EHR corpus contains 99,700
electronic health record notes. PubMed Open Ac-
cess articles are obtained by extracting the raw text
from all openly available PubMed articles. This
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Figure 2: Change in F-score for RNN models with respect to
CRF-context (baseline). The values below the plotted bars rep-
resent the baseline f-scores for each class label.

combined raw text corpus contains more than 3 bil-
lion word tokens. We convert all words to lowercase
and use a context window of 10 words to train a 200
dimensional skip gram word embedding.

S Experiments and Evaluation Metrics

For each word, the models were trained to predict
either one of the nine medically relevant tags de-
scribed in section 3, or the Outside label. The CRF
tagger was run in two modes. The first mode (CRF-
nocontext) used only the current word and its cor-
responding skip-gram representation. The second
mode (CRF- context) used the extra context feature
described in section 4.3. The extra features are ba-
sically the bag of words representation of the pre-
ceding and following sections of the sentence. The
first mode was used to compare the performance of
CRF and RNN models when using the same input
data. It also serves as a method of contrasting with
CRF’s performance when context features are ex-
plicitly added. CRF Tagger uses L-BFGS optimizer
with L2- regularization.

The RNN frameworks are trained on sentence
level and document level. The sentence level neural
networks are fed only one sentence at a time. This
means that the LSTM and GRU states are only pre-
served and propagated within a sentence. The net-
works cell states are re-initialized before each sen-
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tence. The document level neural networks are fed
one document at a time, so they can learn context
cues that reside outside of the sentence boundary.
We use 100 dimensional hidden layer for each di-
rectional RNN chain. Since we use bi-directional
LSTMs and GRUs, this essentially amounts to a
200 dimensional recurrent hidden layer. The hidden
layer activation functions for both RNN models are
tanh. Output of this hidden layer is fed into a Soft-
max output layer which emits probabilities for each
of the nine medical labels and the Outside label. We
use categorical cross entropy as the objective func-
tion. Similar to the CRF implementation, the Neural
Net cost function also contains an L2-regularization
component. We also use dropout (Srivastava et al.,
2014) as an additional measure to avoid over-fitting.
Fifty percent dropout is used to manipulate the in-
puts to the RNN and the Softmax layer. We use
AdaGrad (Duchi et al., 2011) to optimize the net-
work cost.

We use ten-fold cross validation to calculate the
performance metric for each model. The dataset is
divided at the note level. We separate out 10 % of
the training set to form the validation set. This vali-
dation set is used to evaluate the different parameter
combinations for CRF and RNN models. We em-
ploy early stopping to terminate the training run if
the validation error increases consistently. We use a
maximum of 40 epochs to train each network. The
batch sizes used were kept constant at 128 for sen-
tence level RNNs and 16 for document level RNNs.

We report micro-averaged recall, precision and f-
score. We use exact phrase matching to calculate the
evaluation score for our experiments. Each phrase
labeled by the learned models is considered a true
positive only if it matches the exact true boundary
of the phrase and correctly labels all the words in
the phrase.

We use CRFsuite (Okazaki, 2007) for implement-
ing the CRF tagger. We use Lasagne to setup the
Neural Net framework. Lasagne' is a machine learn-
ing library focused towards neural networks that is
build on top of Theano (Bergstra et al., 2010).

"https://github.com/Lasagne/Lasagne



CRF-nocontext

CRF-context

GRU-sentence

ADE[19 80" 0 14 0 03 0401 O [B9W29 0 07 0 01 37[(28° 0 O @BN 21 0 03 0 O 56[27 01 0
Ousidie 0 JEEFO1 01 0 01 0 12 0 01 0 E:RO1 01 0 020219 0 01 O JESHO 01 0 01 0 11 0 01
Dosage 0 13 JEE 05 01 09 0 01 03 0 0 1228 03 35 08 02 06 0 0 5507 02 04 01 0 03 0

Drugname 0.1 11 12 i 02 07 01 08 03 0 0 11 1602 19 14 15 02 0 0 67 04 0 01 01 04 01 O
Duraion O [SON 1 O1@8J 27 0 03 01 0 0 881 09 08 gSEY 38 01 08 0 O 0 (23707 01 EFEA38 01 0 0 02
Frequency 0 (317 08 08 0301 0 03 0 019 12 09 O5HM 11 01 03 0 0 8 03 01 OAEEMO01 0 0 0
Indicaton 0.1 (17 0 13 0 03 18 [0 0 07 0418 01 14 01 06 @gB341 01 06 05 96 0 05 0 01 S8Y[80" 0 08
OtherssD 0326 0 01 0 0 13EP 0 02 0221 0 01 0 O 15@ O 02 02 13 0 0 0 O 13| 0 02

Route 0 17 24 28 0 06 0 O6 |l 0 0 14 18 35 01 29 1 04 HE © 0 94 05 07 0 01 01 01EER O

Seveity O @I 0 0 0 0 06 81 O |50 01985 0 02 0 0 17 10 OS2 025 0 0 01 O 06 53 0 EA
LSTM-sentence LSTM-document GRU-document

ADEEBN 19 0 06 0 0 51[(26 01 01 E@@N 21 0 04 0 0 5 [24/02 01 @8N 22 0 04 0 0O 51[25 01 01
Outside 0 0 01 0 01 0 11 0 01 O 0 01 0 01 0 1 0 01 0 0 01 0 01 0 1 0 01
Dosage 0 4.8 JEEJ 09 01 07 01 01 02 O 0 51Efg08 01 05 0 010201 0 49EP08 01 05 0 0 02 0

Drugname 0.1 62 OSJEE 0 01 02 04 01 0 01 6 OG[EEP 0 01 01 05 01 0O 0 58 O.7EH 0 01 01 03 01 O
Duraion 0 [23 08 O1Z 48 01 0 0 O 025 05 016501 0 0 01 0 [23/04 O1EW 6 01 0 0 O
Frequency 0 71 05 01 0301 0 0 0 0 61 03 01 03EEHO01 0 0 O 0 61 04 01 01 EEHO01 0 01 O
Indication 06 10 0 06 0 0 280101 07 09 10 0 06 0 O EZN24 01 09 08 98 0 05 0 O01|EH23 0 08
OterssD 02 14 0 0 0 0 16 0 02 03 13 0 0 0 O 11RO 02 02 13 0 0 0 0O 1 0 02

Rote 0 8 08 07 0 03 01 01]JE: 0 0 96 06 08 0 12 0 O 0 0 88 05 04 0 03 02 01 EW 0©

Severty 0 (26101 0 01 0 04 51 O BB 0 26 04 0 0 0 04 58 O 024 0 01 0 0O 0547 0
Ll @ @ @ c = 15 [ @ 2 Ll @ @ © c = c [a] o = w [} @ @ c = = o [} =
€ 8 § 5 £ 5 £8 3% 9 F § s <€ 528 3% 2 % 0§52 5 28 3%
84 23g¢2°“8 843333358 33z333i"4

5 L £ 8 =1 - = 8 =1 T = &

Figure 3: Heat-maps of Confusion Matrices of each method for the different class Labels. Rows are reference and columns are

predictions. The value in cell (7, j) denotes the percentage of words in label i that were predicted as label j.

6 Results

Table 2 shows the micro averaged scores for each
method. All RNN models significantly outperform
the baseline (CRF-context). Compared to the base-
line system, our best system (GRU-document) im-
proved the recall (0.8126), precision (0.7938) and F-
score (0.8031) by 19% , 2% and 11 % respectively.
Clearly the improvement in recall contributes more
to the overall increase in system performance. The
performance of different RNN models is almost sim-
ilar, except for the GRU model which exhibits an F-
score improvement of at least one percentage point
over the rest.

The changes (gain or loss) in label wise F-score
for each RNN model relative to the baseline CRF-
context method are plotted in Figure 2. GRU-
document exhibits the highest gain overall in six of
the nine tags: indication or diagnosis, route, du-
ration, severity, drug name, and other SSD. For
indication, its gain is about 0.19, a near 50% in-
crease over the baseline. While the overall sys-
tem performance of GRU-sentence, LSTM-sentence
and LSTM-document are very similar, they do ex-
hibit somewhat varied performance for different la-
bels. The sentence level models clearly outperform
the document level RNNs (both GRU and LSTM)
for ADE and Dosage. Additionally, GRU sentence
model shows the highest gain in ADE f-score.
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Figure 3 shows the word level confusion matrix of
different models for each label. Each cell shows the
percentage of word tokens in row label i that were
classified as column label j. The consistent increase
of diagonal entries of RNN models for all ten labels,
indicates an increase in the overall system accuracy
when compared to the baseline. The most densely
populated column in this figure is the Outside col-
umn, which denotes percentage of words that were
erroneously labeled as Outside.

Figure 4 shows the change in average F-scores for
each method with changing percentage of training
data used. The setup for training, development and
test data is kept the same as the ten-fold cross valida-
tion setup mentioned in Section 5. Only the training
data is randomly down-sampled to achieve the re-
duced training data size. The figure shows that Re-
current Neural Network models perform better than
traditional CRF models even with smaller training
data sizes.

7 Discussion

We already discussed in the previous section how
improved recall seems to be the major reason behind
improvements in the RNN F-score. This trend can
be observed in Figure 3 where RNN models lead to
significant decreases in confusion values present in
Outside column.
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spect to increasing training data size.

Further examination of Figure 3 shows two ma-
jor sources of error in the CRF systems. The largest
source of error is caused by confusing the relevant
medical words as Outside (false negatives) and vice
versa (false positives). The extent of false positives
is not clear from Figure 3, but can be estimated if one
takes into account that even a 1 % confusion in the
Outside row represents about 5000 words. The sec-
ond largest source of error is the confusion among
ADE, Indication and Other SSD labels. As we dis-
cuss in the following paragraphs, RNNs manage to
significantly reduce both these type of errors.

The large improvement in recall of all labels for
RNN models seems to suggest that RNNs are able
to recognize a larger set of relevant patterns than
CREF baselines. This supports our hypothesis that
learning dependencies with variable context ranges
is crucial for our task of medical information ex-
traction from EHR notes. This is also evident from
the reduced confusion among ADE, Indication and
Other SSD. Since these tags share a common vocab-
ulary of Sign, Symptom and Disease Names, identi-
fying the underlying word or phrase is not enough
to distinguish between the three. Use of relevant
patterns from surrounding context is often needed
as a discriminative cue. Consequently, ADE, Indi-
cation confusion values in the Other SSD column
for RNNs exhibit significant decreases when com-
pared to CRF-nocontext and CRF-context. We also
see large improvements in detecting Duration, Fre-
quency and Severity. The vocabulary of these la-
bels often lack specific medical jargon terms. Ex-
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”

amples of these labels include “seven days”, “one
week” for duration, “some”, “small”, “no signifi-
cant” for severity and “as needed”, “twice daily” for
frequency. Therefore, they are most likely to be con-
fused with Outside label. This is indeed the case, as
they have the highest confusion values in the Out-
side column of CRF-nocontext. Including context
in CRF improves the performance, but not as much
as RNN models which decrease the confusion by al-
most half or more in all cases. For example, GRU-
document only confuses Frequency as an unlabeled
word about 6.1 % of the time as opposed to 31 %
and 19 % for CRF-nocontext and CRF-context re-
spectively.

Document level models benefit by using context
from outside the sentence. Since the label Indica-
tion requires the most use of surrounding context, it
is clear that its performance would improve by us-
ing information from several sentences. Indications
are diseases that are diagnosed by the medical staff,
and the entire picture of the diagnosis is usually dis-
tributed across multiple sentences. Analysis of ADE
is more complicated. Several ADE instances in a
sentence also contain explicit cues similar to “sec-
ondary to” and “caused by”. When coupled with
Drugnames this is enough to classify the ADE. Sen-
tence level models might depend more on these local
cues which leads to improved performance. Docu-
ment models, on the other hand, have to recognize
patterns from a larger context, using a very small
dataset (total ADE annotations are just 905) which
is quite difficult.

The LSTM-document model does not show the
same improvement over the sentence models as
GRU-document. One possible reason for this might
be the simpler recurrence structure of GRU neuron
as compared to LSTM. Since there are only 780
document sequences in the dataset, the GRU model
with a smaller number of trainable parameters might
learn faster than LSTM. It is possible that with a
larger dataset, LSTM might perform comparable to
or better than GRU. However, our experiments with
reducing the hidden layer size of LSTM-document
model to control for the number of trainable param-
eters did not produce any significant improvements.

Moreover, figure 4 seems to indicate that there is
not much difference between the performances of
LSTM and GRU with different data sizes. However



itis clearly surprising that RNN models with a larger
number of parameters can still perform better than
CRF models on smaller dataset sizes. This might be
because the embedding layer, which contributes to
a very large section of the trainable parameters, is
initialized with a suitably good estimate using skip-
gram word embeddings described in section 4.4.

8 Conclusion

We have shown that RNNs models like LSTM and
GRU are valuable tools for extracting medical events
and attributes from noisy natural language text of
EHR notes. We believe that the significant im-
provement provided by gated RNN models is due
to their ability to remember information across dif-
ferent range of dependencies as and when required.
As mentioned previously in the introduction, this is
very important for our task because different labels
have different contextual dependencies. CRF mod-
els with hand crafted features like bag of words rep-
resentation, use fixed context windows and lose a lot
of information in the process.

RNNS are excellent in extracting relevant patterns
from sequence data. However, they do not explic-
itly enforce constraints or dependencies over the
output labels. We believe that adding a probabilis-
tic graphical model framework for structured output
prediction would further improve the performance
of our system. This experiment remains as our fu-
ture work.
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