
Proceedings of NAACL-HLT 2016, pages 11–19,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Flexible Non-Terminals for Dependency Tree-to-Tree Reordering

John Richardson†, Fabien Cromières‡, Toshiaki Nakazawa‡ and Sadao Kurohashi†
†Graduate School of Informatics, Kyoto University, Kyoto 606-8501

‡Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012
john@nlp.ist.i.kyoto-u.ac.jp, {fabien, nakazawa}@pa.jst.jp,

kuro@i.kyoto-u.ac.jp

Abstract

A major benefit of tree-to-tree over tree-
to-string translation is that we can use
target-side syntax to improve reordering.
While this is relatively simple for binarized
constituency parses, the reordering prob-
lem is considerably harder for dependency
parses, in which words can have arbitrarily
many children. Previous approaches have
tackled this problem by restricting gram-
mar rules, reducing the expressive power
of the translation model.
In this paper we propose a general
model for dependency tree-to-tree reorder-
ing based on flexible non-terminals that
can compactly encode multiple insertion
positions. We explore how insertion po-
sitions can be selected even in cases where
rules do not entirely cover the children
of input sentence words. The proposed
method greatly improves the flexibility of
translation rules at the cost of only a 30%
increase in decoding time, and we demon-
strate a 1.2–1.9 BLEU improvement over
a strong tree-to-tree baseline.

1 Introduction
Translation is most commonly performed by
splitting an input sentence into manageable
parts, translating these segments, then arrang-
ing them in an appropriate order. The first two
steps have roughly the same difficulty for close
and distant language pairs, however the reorder-
ing step is considerably more challenging for lan-
guage pairs with dissimilar syntax. We need to

be able to make linguistic generalizations, such
as learning to translate between SVO and SOV
clauses and converting post-modifying preposi-
tional and pre-modifying postpositional phrases
(Quirk et al., 2005). Such generalizations often
require syntactically motivated long-distance re-
ordering.

The first approaches to reordering were based
on linear distortion (Koehn et al., 2003), which
models the probability of swapping pairs of
phrases over some given distance. The linear
distance is the only parameter, ignoring any
contextual information, however this model has
been shown to work well for string-to-string
translation. Linear reordering was improved
with lexical distortion (Tillmann, 2004), which
characterizes reordering in terms of type (mono-
tone, swap, or discontinuous) as opposed to dis-
tance. This approach however is prone to spar-
sity problems, in particular for distant language
pairs.

In order to improve upon linear string-based
approaches, syntax-based approaches have also
been proposed. Tree-to-string translation has
been the most popular syntax-based paradigm
in recent years, which is reflected by a number
of reordering approaches considering source-only
syntax (Liu et al., 2006; Neubig, 2013). One
particularly interesting approach is to project
source dependency parses to the target side and
then learn a probability model for reordering
children using features such as source and target
head words (Quirk et al., 2005).

While tree-to-tree translation (Graehl and

11

Figure 1: Examples of tree-to-tree translation rules ex-
tracted from an aligned and parsed bitext. Colored boxes
represent aligned phrases and [X] is a non-terminal.

Figure 2: Combination of translation rules, demonstrat-
ing non-terminal substitution and multiple possible inser-
tion positions for a non-matching input phrase (‘昨日’).

Knight, 2004; Cowan and Collins, 2006; Chiang,
2010) has been somewhat less popular than tree-
to-string translation, we believe there are many
benefits of considering target-side syntax. In
particular, reordering can be defined naturally
with non-terminals in the target-side grammar.
This is relatively simple when the target struc-
ture of rules is restricted to ‘well-formed’ depen-
dencies (Shen et al., 2008), however in this pa-
per we consider more general rules with flexible
non-terminal insertion positions.

2 Dependency Tree-To-Tree
Translation

Dependency tree-to-tree translation begins with
the extraction of translation rules from a bilin-
gual corpus that has been parsed and word
aligned. Figure 1 shows an example of three
rules that can be extracted from aligned and
parsed sentence pairs. In this paper we consider
rules similar to previous work on tree-to-tree de-

pendency MT (Richardson et al., 2014).
The simplest type of rule, containing only ter-

minal symbols, can be extracted trivially from
aligned subtrees (see rules 2 and 3 in Figure 1).
Non-terminals can be added to rules (see rule
1 in Figure 1) by omitting aligned subtrees and
replacing on each side with non-terminal sym-
bols. We can naturally express phrase reorder-
ing as the source/target-side non-terminals are
aligned.

Decoding is performed by combining these
rules to form a complete translation, as shown
in Figure 2. We are able to translate part of the
sentence with non-ambiguous reordering (‘read
a magazine’), as we can insert ‘雑誌 → a maga-
zine’ into the rule ‘[X] を 読んだ → read [X]’.

We cannot however decide clearly where to
insert the rule ‘昨日 → yesterday’ as there is no
matching non-terminal in the rule containing its
parent in the input sentence (‘読んだ’). We use
the term floating to describe words such as ‘yes-
terday’ in this example, i.e. for an input subtree
matched to the source side of a rule, children
of the input root that are not contained in the
source side of the rule as terminals and cannot
be inserted using fixed-position non-terminals in
the rule.

Previous work deals with this problem by ei-
ther using simple glue rules (Chiang, 2005) or
limiting rules in a way to avoid isolated float-
ing children (Shen et al., 2008). For example, it
is possible to disallow the first rule in Figure 1
when translating a sentence such as that in Fig-
ure 2 with uncovered children (in this case the
word ‘yesterday’). This method greatly reduces
the expressiveness and flexibility of translation
rules.

In our generalized model, we allow any num-
ber of terminals and non-terminals and permit
arbitrarily many floating children in each rule.
To our knowledge this is the first study to take
this more comprehensive approach.

Note that in the case of constituency-based
tree-to-tree translation it is possible to binarize
the input tree and therefore gluing floating chil-
dren becomes simpler, as we only have to choose
between pre-insertion and post-insertion. In the
dependency case it is in general much more dif-

12

Figure 3: Possible insertion positions for flexible non-
terminals with target-side head ‘read’. Allowed positions
are shown in green and disallowed positions are shown
in red. We do not allow insertion position 3 because it
could allow a non-projective dependency structure.

ficult because we must order an arbitrarily large
group of children sharing a common head.

3 Flexible Non-Terminals

In this paper we propose flexible non-terminals
in order to create generalized tree-to-tree trans-
lation rules that can overcome the problems de-
scribed in the previous section. Rather than
fixed insertion positions for child nodes, we in-
stead consider multiple possible insertion posi-
tions and give features to each position. These
are stored in a compact representation allowing
for efficient decoding.

We define flexible non-terminals as non-
terminals with multiple possible insertion posi-
tions and associated features. During decoding
we select the most promising insertion position
for each non-terminal.

3.1 Rule Augmentation
As is standard practice in phrase-based SMT,
before translation we filter translation rules to
those relevant to the input sentence. At this
time, for each accepted rule we check the input
sentence for floating children, and flexible non-
terminals are added for each floating child.

We allow all insertion positions between the
children (along with their descendants) of the
target-side head for each floating child, includ-
ing insertion before the first child and after the
last child. We do not allow insertion positions
between deeper descendants of the head to avoid

Figure 4: Example of translation rule with flexible non-
terminals generated from the first parallel sentence in
Figure 1. [X] has a fixed position (4) but [Y] can have
multiple positions (1, 3, 5). Each position has an as-
sociated set of features shown in curly brackets, where
θi,j is the jth feature for insertion position i. The first
feature (0 or 1) shows whether the insertion position is
unambiguous.

non-projective dependencies. See Figure 3 for an
example of allowed/disallowed positions.

Features are then set for each insertion po-
sition and these are used to determine the
best insertion position during decoding (see Sec-
tion 3.2). Figure 4 shows an example of the pro-
posed rule augmentation.

3.2 Features
In previous work reordering is mostly decided by
the combination of a standard distortion model
and language model to score possible insertion
positions. We instead consider the following four
features and combine them during decoding to
find the most appropriate insertion positions for
floating children. All features are real numbers
between 0 and 1.

3.2.1 Insertion Position Features
We first define a set of features to estimate

the likelihood of each insertion position for some
given non-terminal. The features for inserting
the translation f of a source phrase into the
target-side e of a rule at insertion position i are
defined as follows, for surface forms (S) and POS
tags (P):

• Reordering probability:
PS(i | f, e), PP (i | f, e)

13

• Marginalized over target-side:
PS(i | f), PP (i | f)

• Marginalized over source-side:
PS(i | e), PP (i | e)

The probabilities P (i | X) are calculated by
counting insertions of X in each position i across
the whole training corpus (aligned and parsed
bitext). The exact formula is given below, for
position i (X is one of {f}, {e} or {f, e}):

P (i | X) =
count(i,X)∑
j count(j, X)

(1)

Instead of applying smoothing, in order to re-
duce sparsity issues we use both the full proba-
bility P (i | f, e) and also probabilities marginal-
ized over the source/target phrases. We also
consider both probabilities trained on surface
forms (S) and POS tags (P).

While traditional models use linear distance
for i, this is impractical for long-distance re-
ordering. Instead we restrict insertion types i to
one of the following 6 types: first-pre-child, mid-
pre-child, final-pre-child, first-post-child, mid-
post-child, and final-post-child. These corre-
spond to the first (first), last (final) or central
(mid) children on the left (pre) or right (post)
side of the parent word. We found this was more
effective than using either linear distance or a
binary (pre/post) position type.

3.2.2 Relative Position Feature
We also consider a relative position, or ‘swap-

ping’ feature, inspired by the swap operation of
classic lexical distortion (Tillmann, 2004).

Let T be the children of the root word of the
target-side of a rule. We also include in T a
pseudo-token M splitting the left and right chil-
dren of the target-side root to differentiate be-
tween pre-insertion and post-insertion.

We first learn a model describing the proba-
bility of the translation of input phrase I ap-
pearing to the left (PL(I, t)) or right (PR(I, t))
of word t in the target-side of a translation rule.
The probabilities are calculated by counting oc-
currences of I being translated to the left/right
sides of t over the aligned and parsed training
bitext.

The relative position feature is calculated by
considering the relative position of the transla-
tion of I with all the target-side root children
T . For each insertion position i, let Ti,L be the
t ∈ T to the left of position i and Ti,R the t ∈ T
to the right of position i. Then we have:

P (i | I, T) =
∏

t∈Ti,R

PL(I, t)
∏

t∈Ti,L

PR(I, t) (2)

3.2.3 Left/Right Attachment Preference
We also set an attachment direction prefer-

ence feature for each rule, specifying whether we
prefer to insert the rule as a left child or right
child of the root of a parent rule.

The attachment preference is determined by
the position of the target-side of the rule in the
target-side of the parallel sentence from which it
was extracted. For example, in Figure 1 the rule
‘昨日 → yesterday’ was extracted from a par-
allel sentence in which ‘yesterday’ was a right-
side child of its head (‘saw’), so we set the at-
tachment preference to ‘right’. In cases when
we cannot determine the attachment preference
(for example ‘read’ in the first rule in Figure 1),
because it is the sentence root), we arbitrarily
choose ‘right’.

3.2.4 Unambiguous Insertion Preference
In cases where we have a single unambiguous

insertion position for a non-terminal (e.g. [X] in
Figure 4), we set an additional binary feature
to the value 1 (otherwise 0) to specify that this
position is unambiguous. We found that a large
positive weight is almost always given to this fea-
ture, which is to be expected as we would prefer
to use fixed non-terminals if possible. We set all
features related to insertion position choice to
the maximum value (1).

3.3 Decoding
The flexible non-terminals that we are propos-
ing can lead to some interesting challenges when
it comes to decoding. A naive approach is to
expand each translation rule containing flexible
non-terminals into a set of ‘simple’ rules with
fixed non-terminals, and then apply classic de-
coding with cube-pruning.

14

However, this can be quite inefficient in prac-
tice. Due to the combinatorial aspect, a single
rule can expand into a very large number of sim-
ple rules. It is common for our translation rules
to have more than four flexible non-terminals,
each with more than four possible insertion posi-
tions. Such rules will already generate hundreds
of simple rules. In the most extreme cases, we
may encounter rules having more than ten flex-
ible non-terminals, leading to the generation of
many millions of simple rules. This explosion of
rules can lead to impractical decoding time and
memory usage.

It is therefore important to make use of the
compact encoding of many simple rules provided
by the concept of flexible non-terminals in the
decoding process itself. We use the decoding
approach of right-hand lattices (Cromières and
Kurohashi, 2014), an efficient way of encoding
many simple rules. The idea is to encode the
translation rules into a lattice form, then use this
lattice to decode efficiently without the need to
expand the flexible non-terminals explicitly.

Figure 5 shows how the concept of flexible
non-terminals can be efficiently encoded into lat-
tice form. The top half shows a target-side tree
translation rule with flexible non-terminals X1,
X2, X3 and X4 allowed to be inserted at any
position that is a child of the word ‘a’, with the
constraint that X1 comes before X2 and that
X2 comes before X3. X5 is another flexible non-
terminal that will be a child of the word ‘f’. The
lower half shows a lattice compactly encoding all
the possible combinations of non-terminal posi-
tions. Each path from the top-left to the bottom
right in this lattice represents a choice for the
insertion positions of the non-terminals. For ex-
ample, the path marked with a dotted line rep-
resents the flattened sequence ‘b c X1 X2 a X3
X4 d e f X5 g’. The lattice form has only 48
edges, while an explicit enumeration of all com-
binations of insertion positions for the flexible
non-terminals would force the decoder to con-
sider 8C4 × 3× 12 = 2520 edges.

The insertion position features described
above are added to the edges of the lattice. They
are combined alongside the standard set of fea-
tures, such as word penalty and language model

Figure 5: Example showing how a rule containing many
flexible non-terminals is encoded into lattice form for de-
coding.

JA–EN EN–JA JA–ZH ZH–JA
Train 3M 3M 676K 676K
Dev 1790 1790 2123 2123
Test 1812 1812 2171 2171

Table 1: Translation experiment data (number of sen-
tences).

score, using a standard log-linear model. The
weights for the reordering features are tuned to-
gether with the standard features.

4 Experiments

4.1 Data and Settings
We performed translation experiments on four
distant language pairs, Japanese–English (JA–
EN), English–Japanese (EN–JA), Japanese–
Chinese (JA–ZH) and Chinese–Japanese (ZH–
JA), from the Asian Scientific Paper Excerpt
Corpus (ASPEC)1. The data was split into
training, development and test folds as shown
in Table 1.

Our experiments were conducted using a
state-of-the-art dependency tree-to-tree frame-
work KyotoEBMT (Richardson et al., 2014).

1http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

15

JA–EN EN–JA JA–ZH ZH–JA
BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES

Moses 18.09 63.97 27.48 68.37 27.96 79.03 34.65 77.25
Baseline 19.97 65.10 28.41 74.78 28.13 78.00 33.51 77.86
Flexible 21.23† 69.94† 30.11† 77.11† 29.42† 80.44† 35.37† 81.33†
+Pref 21.66‡ 70.73‡ 29.90† 76.85† 29.48† 80.43† 35.57‡ 81.79‡

+Pref+Ins 21.47‡ 70.85‡ 30.03† 77.01† 29.64† 80.65† 35.71‡ 82.05‡
+Pref+Ins+Rel 21.34† 70.69‡ 29.99† 76.93† 29.78‡ 80.51† 35.81‡ 81.95‡

Table 2: Automatic evaluation of translation quality (BLEU and RIBES). Results marked with † are significantly
higher than the baseline system and those marked with ‡ are significantly higher than the proposed system with no
insertion position features (‘Flexible’). Significance was calculated with bootstrapping for p < 0.05.

Experiments were performed with the default
settings by adding the proposed non-terminal
reordering features to the rules extracted with
the baseline system. We used lattice-based de-
coding (Cromières and Kurohashi, 2014) to sup-
port multiple non-terminal insertion positions
and default tuning using, k-best MIRA (Cherry
and Foster, 2012). Dependency parsing was
performed with: KNP (Kawahara and Kuro-
hashi, 2006) (Japanese), SKP (Shen et al., 2012)
(Chinese), NLParser (Charniak and Johnson,
2005) (English, converted to dependencies with
hand-written rules). Alignment was performed
with Nile (Riesa et al., 2011) and we used a 5-
gram language model with modified Kneser-Ney
smoothing built with KenLM (Heafield, 2011).

4.2 Evaluation
As our baseline (‘Baseline’), we used the de-
fault tree-to-tree settings and features of Ky-
otoEBMT, allowing only fixed-position non-
terminals. We dealt with floating children not
covered by any other rules by adding glue rules
similar to those in hierarchical SMT (Chiang,
2005), joining floating children to the rightmost
slots in the target-side parent. For reference,
we also show results using Moses (Koehn et al.,
2007) with default settings and distortion limit
set to 20 (‘Moses’).

The proposed system (‘Flexible’) adds flex-
ible non-terminals with multiple insertion po-
sitions, however we do not yet add the inser-
tion choice features. This means that the in-
sertion positions are in practice chosen by the
language model. Note that we do not get a

substantial hit in performance by adding the
flexible non-terminals because of their compact
lattice representation. The systems ‘+Pref’,
‘+Pref+Ins’ and ‘+Pref+Ins+Rel’ show the re-
sults of adding insertion choice position features
(left/right preference, insertion position choice,
relative position choice).

We give translation scores measured in BLEU
(Papineni et al., 2002) and RIBES (Isozaki et
al., 2010), which is designed to reflect quality
of translation word order more effectively than
BLEU. The translation evaluation is shown in
Table 2.

5 Discussion and Error Analysis
The experimental results showed a significantly
positive improvement in terms of both BLEU
and RIBES over the baseline tree-to-tree system.
The baseline system uses fixed non-terminals
and is competitive with the most popular string-
to-string system (Moses).

The extensions of the proposed model (adding
a variety of features) also all showed signifi-
cant improvement over the baseline, and ap-
proximately half of the extended settings per-
formed significantly better than the core pro-
posed model. It is unclear however which of
the extended settings is the most effective for
all language pairs. There are a number of fac-
tors such as parse quality, corpus size and out-
of-vocabulary occurrence that could affect the
potential value of these features. Furthermore,
Japanese is strongly left-branching (head-final),
so the left/right preference distinction is likely
to be less useful than for English and Chinese,

16

which contain both left-branching and right-
branching structures.

Compared to the baseline, the flexible non-
terminals gave around a 1.2–1.9 BLEU improve-
ment at the cost of only a 30% increase in de-
coding time (approximately 2.04 vs. 2.66 sec-
onds per sentence). This is made possible by
the compact non-terminal representation com-
bined with lattice decoding.

5.1 Non-Terminal Matching Analysis
We found that roughly half of all our trans-
lation rules were augmented with flexible non-
terminals, with one flexible non-terminal added
per rule on average. This led to roughly half
of non-terminals having flexible insertion posi-
tions. The decoder chose to use ambiguous in-
sertion positions between 30%–60% of the time
(depending on language pair), allowing for many
more new translation hypotheses than the base-
line system. For detailed results, see Table 3.

5.2 Translation Examples
The following translation is an example of an im-
provement achieved by using the proposed flex-
ible non-terminals. There were multiple word
order errors in the baseline translation that im-
peded understanding, and these have all been
corrected.

• Input: 磁場入口と出口の温度差により生ずる磁性
流体の圧力差と流速を測定した。

• Reference: The pressure difference and
the flow velocity of the magnetized fluid
caused by the temperature difference be-
tween the inlet and outlet of the magnetic
field were measured.

• Baseline: We have measured the pressure
difference and flow rate of a magnetic fluid
generated by an entrance of a magnet and
an exit temperature, and the difference be-
tween.

• Proposed: The pressure difference and
the flow rate of a magnetic fluid generated
by the temperature difference between the
magnetic field inlet and exit were measured.

There are also cases where the proposed
model decreases translation quality. In the ex-
ample below, the proposed system output was
selected by the decoder since it had a higher
language model score than the baseline output,
despite having incorrect word order. The in-
correct translation was made available by the
increased flexibility of the proposed model, and
selected because the LM feature had a higher
impact than the insertion position features.

• Input: このソフトウエアのＲ５バージョンの特徴，利
用マニュアルと設計文書をまとめた。

• Reference: The characteristics of R5 ver-
sion of this software, instruction manual,
and design document were summarized.

• Baseline: The R5 version of this software
features, the manual for the utilization and
design documents are summarized.

• Proposed: This software design docu-
ments of R5 version features, the manual
for the utilization and summarized.

6 Conclusion and Future Work
In this paper we have proposed flexible non-
terminals for dependency tree-to-tree transla-
tion. We plan to continue working on feature
design for insertion position choice, and in the
future would like to consider using neural net-
works for learning these features. We believe
that it is important to continue to explore ap-
proaches that exploit more general target-side
syntax, faithful to the tree-to-tree translation
paradigm.

Flexible non-terminals allow multiple inser-
tion positions to be expressed compactly and
selected with features based on both source and
target syntax. We have shown that a significant
improvement in BLEU and RIBES scores can
be gained by using the proposed model to in-
crease the generality of dependency tree-to-tree
translation rules.

Acknowledgments
We would like to thank the anonymous reviewers
for their feedback.

17

JA–EN EN–JA JA–ZH ZH–JA
% rules with flexible NTs 53.2 70.4 55.7 61.2

Average flexible NTs per rule 0.973 1.11 0.977 1.05
% all NTs that are flexible 48.0 48.6 54.5 56.1

% selected NTs that are flexible 32.2 35.1 40.5 58.4

Table 3: Results of non-terminal (NT) matching analysis.

References
Eugene Charniak and Mark Johnson. 2005. Coarse-

to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual
Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 173–180. Association for
Computational Linguistics.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 427–436, Montréal, Canada, June. As-
sociation for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’05),
pages 263–270.

David Chiang. 2010. Learning to translate with
source and target syntax. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1443–1452, Uppsala,
Sweden, July. Association for Computational Lin-
guistics.

Brooke Cowan and Michael Collins. 2006. A dis-
criminative model for tree-to-tree translation. In
EMNLP, pages 232–241.

Fabien Cromières and Sadao Kurohashi. 2014.
Translation rules with right-hand side lattices.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 577–588, Doha, Qatar, October.
Association for Computational Linguistics.

Jonathan Graehl and Kevin Knight. 2004. Train-
ing tree transducers. In HLT-NAACL 2004:
Main Proceedings, pages 105–112, Boston, Mas-
sachusetts, USA, May 2 - May 7. Association for
Computational Linguistics.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Transla-
tion.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Kat-
suhito Sudoh, and Hajime Tsukada. 2010. Auto-
matic evaluation of translation quality for distant
language pairs. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 944–952, Cambridge, MA, Oc-
tober. Association for Computational Linguistics.

Daisuke Kawahara and Sadao Kurohashi. 2006. A
fully-lexicalized probabilistic model for Japanese
syntactic and case structure analysis. In Pro-
ceedings of the Main Conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, pages 176–183. As-
sociation for Computational Linguistics.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statis-
tical Phrase-Based Translation. In NAACL ’03:
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics on Human Language Technol-
ogy, pages 48–54, Morristown, NJ. Association for
Computational Linguistics, Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and
Demonstration Sessions, ACL ’07, pages 177–180,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine
translation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics
and 44th Annual Meeting of the Association for
Computational Linguistics, pages 609–616, Syd-
ney, Australia, July. Association for Computa-
tional Linguistics.

Graham Neubig. 2013. Travatar: A forest-to-string
machine translation engine based on tree trans-
ducers. In ACL (Conference System Demonstra-

18

tions), pages 91–96. The Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: A method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, pages 311–
318. Association for Computational Linguistics.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically in-
formed phrasal SMT. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 271–279.

John Richardson, Fabien Cromières, Toshiaki
Nakazawa, and Sadao Kurohashi. 2014. Ky-
otoEBMT: An example-based dependency-to-
dependency translation framework. In Proceed-
ings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstra-
tions, pages 79–84, Baltimore, Maryland, June.
Association for Computational Linguistics.

Jason Riesa, Ann Irvine, and Daniel Marcu. 2011.
Feature-rich language-independent syntax-based
alignment for statistical machine translation. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP
’11, pages 497–507. Association for Computational
Linguistics.

Libin Shen, Jinxi Xu, and Ralph M Weischedel.
2008. A new string-to-dependency machine trans-
lation algorithm with a target dependency lan-
guage model. In Association for Computational
Linguistics.

Mo Shen, Daisuke Kawahara, and Sadao Kurohashi.
2012. A reranking approach for dependency pars-
ing with variable-sized subtree features. In Pro-
ceedings of the 26th Pacific Asia Conference on
Language, Information, and Computation, pages
308–317, Bali, Indonesia, November. Faculty of
Computer Science, Universitas Indonesia.

Christoph Tillmann. 2004. A unigram orienta-
tion model for statistical machine translation. In
Proceedings of HLT-NAACL 2004: Short Papers,
pages 101–104, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

19

