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Abstract

Vector space word representations are learned
from distributional information of words in
large corpora. Although such statistics are
semantically informative, they disregard the
valuable information that is contained in se-
mantic lexicons such as WordNet, FrameNet,
and the Paraphrase Database. This paper
proposes a method for refining vector space
representations using relational information
from semantic lexicons by encouraging linked
words to have similar vector representations,
and it makes no assumptions about how the in-
put vectors were constructed. Evaluated on a
battery of standard lexical semantic evaluation
tasks in several languages, we obtain substan-
tial improvements starting with a variety of
word vector models. Our refinement method
outperforms prior techniques for incorporat-
ing semantic lexicons into word vector train-
ing algorithms.

1 Introduction

Data-driven learning of word vectors that capture
lexico-semantic information is a technique of cen-
tral importance in NLP. These word vectors can
in turn be used for identifying semantically related
word pairs (Turney, 2006; Agirre et al., 2009) or
as features in downstream text processing applica-
tions (Turian et al., 2010; Guo et al., 2014). A vari-
ety of approaches for constructing vector space em-
beddings of vocabularies are in use, notably includ-
ing taking low rank approximations of cooccurrence
statistics (Deerwester et al., 1990) and using internal
representations from neural network models of word
sequences (Collobert and Weston, 2008).

Because of their value as lexical semantic repre-
sentations, there has been much research on improv-
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ing the quality of vectors. Semantic lexicons, which
provide type-level information about the semantics
of words, typically by identifying synonymy, hyper-
nymy, hyponymy, and paraphrase relations should
be a valuable resource for improving the quality of
word vectors that are trained solely on unlabeled
corpora. Examples of such resources include Word-
Net (Miller, 1995), FrameNet (Baker et al., 1998)
and the Paraphrase Database (Ganitkevitch et al.,
2013).

Recent work has shown that by either changing
the objective of the word vector training algorithm
in neural language models (Yu and Dredze, 2014;
Xu et al., 2014; Bian et al., 2014; Fried and Duh,
2014) or by relation-specific augmentation of the
cooccurence matrix in spectral word vector models
to incorporate semantic knowledge (Yih et al., 2012;
Chang et al., 2013), the quality of word vectors can
be improved. However, these methods are limited to
particular methods for constructing vectors.

The contribution of this paper is a graph-based
learning technique for using lexical relational re-
sources to obtain higher quality semantic vectors,
which we call “retrofitting.” In contrast to previ-
ous work, retrofitting is applied as a post-processing
step by running belief propagation on a graph con-
structed from lexicon-derived relational information
to update word vectors (§2). This allows retrofitting
to be used on pre-trained word vectors obtained
using any vector training model. Intuitively, our
method encourages the new vectors to be (i) simi-
lar to the vectors of related word types and (ii) simi-
lar to their purely distributional representations. The
retrofitting process is fast, taking about 5 seconds for
a graph of 100,000 words and vector length 300, and
its runtime is independent of the original word vec-
tor training model.
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Figure 1: Word graph with edges between related words
showing the observed (grey) and the inferred (white)
word vector representations.

Experimentally, we show that our method works
well with different state-of-the-art word vector mod-
els, using different kinds of semantic lexicons and
gives substantial improvements on a variety of
benchmarks, while beating the current state-of-the-
art approaches for incorporating semantic informa-
tion in vector training and trivially extends to mul-
tiple languages. We show that retrofitting gives
consistent improvement in performance on evalua-
tion benchmarks with different word vector lengths
and show a qualitative visualization of the effect of
retrofitting on word vector quality. The retrofitting
tool is available at: https://github.com/
mfaruqui/retrofitting.

2 Retrofitting with Semantic Lexicons

Let V = {wi,...,w,} be a vocabulary, i.e, the set
of word types, and €2 be an ontology that encodes se-
mantic relations between words in V. We represent
Q as an undirected graph (V, E') with one vertex for
each word type and edges (w;, w;) € E CV xV
indicating a semantic relationship of interest. These
relations differ for different semantic lexicons and
are described later (§4).

The matrix Q will be the collection of vector rep-
resentations §; € R? for each w; € V, learned
using a standard data-driven technique, where d is
the length of the word vectors. Our objective is
to learn the matrix @ = (qi,...,qyn) such that the
columns are both close (under a distance metric) to
their counterparts in Q and to adjacent vertices in ).
Figure 1 shows a small word graph with such edge
connections; white nodes are labeled with the () vec-
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tors to be retrofitted (and correspond to V); shaded
nodes are labeled with the corresponding vectors in
@, which are observed. The graph can be interpreted
as a Markov random field (Kindermann and Snell,
1980).

The distance between a pair of vectors is defined
to be the Euclidean distance. Since we want the
inferred word vector to be close to the observed
value ¢; and close to its neighbors ¢;, Vj such that
(i,7) € E, the objective to be minimized becomes:

n

S ailla—a@l®+ Y Billa— gl
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where o and 3 values control the relative strengths
of associations (more details in §6.1).

In this case, we first train the word vectors inde-
pendent of the information in the semantic lexicons
and then retrofit them. W is convex in () and its so-
lution can be found by solving a system of linear
equations. To do so, we use an efficient iterative
updating method (Bengio et al., 2006; Subramanya
et al., 2010; Das and Petrov, 2011; Das and Smith,
2011). The vectors in () are initialized to be equal
to the vectors in Q We take the first derivative of ¥
with respect to one g; vector, and by equating it to
zero arrive at the following online update:

Xiigyer Piiti + aidi
2jitiyer Pig + o

4 = D

In practice, running this procedure for 10 iterations
converges to changes in Euclidean distance of ad-
jacent vertices of less than 1072, The retrofitting
approach described above is modular; it can be ap-
plied to word vector representations obtained from
any model as the updates in Eq. 1 are agnostic to the
original vector training model objective.

Semantic Lexicons during Learning. Our pro-
posed approach is reminiscent of recent work on
improving word vectors using lexical resources (Yu
and Dredze, 2014; Bian et al., 2014; Xu et al., 2014)
which alters the learning objective of the original
vector training model with a prior (or a regularizer)
that encourages semantically related vectors (in £2)
to be close together, except that our technique is ap-
plied as a second stage of learning. We describe the



prior approach here since it will serve as a baseline.
Here semantic lexicons play the role of a prior on )
which we define as follows:

n
p@ocexp | =y Y > Fillei — g
i=1j:(i,j)eE
2

Here, + is a hyperparameter that controls the
strength of the prior. As in the retrofitting objec-
tive, this prior on the word vector parameters forces
words connected in the lexicon to have close vec-
tor representations as did (@) (with the role of Q
being played by cross entropy of the empirical dis-
tribution).

This prior can be incorporated during learn-
ing through maximum a posteriori (MAP) estima-
tion. Since there is no closed form solution of
the estimate, we consider two iterative procedures.
In the first, we use the sum of gradients of the
log-likelihood (given by the extant vector learning
model) and the log-prior (from Eq. 2), with respect
to () for learning. Since computing the gradient of
Eq. 2 has linear runtime in the vocabulary size n, we
use lazy updates (Carpenter, 2008) for every k words
during training. We call this the lazy method of
MAP. The second technique applies stochastic gra-
dient ascent to the log-likelihood, and after every k
words applies the update in Eq. 1. We call this the
periodic method. We later experimentally compare
these methods against retrofitting (§6.2).

3 Word Vector Representations

We now describe the various publicly available pre-
trained English word vectors on which we will test
the applicability of the retrofitting model. These
vectors have been chosen to have a balanced mix
between large and small amounts of unlabeled text
as well as between neural and spectral methods of
training word vectors.

Glove Vectors. Global vectors for word represen-
tations (Pennington et al., 2014) are trained on ag-
gregated global word-word co-occurrence statistics
from a corpus, and the resulting representations
show interesting linear substructures of the word
vector space. These vectors were trained on 6 bil-
lion words from Wikipedia and English Gigaword
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Lexicon Words Edges
PPDB 102,902 | 374,555
WordNet,,,, | 148,730 | 304,856
WordNet,;; | 148,730 | 934,705
FrameNet 10,822 | 417,456

Table 1: Approximate size of the graphs obtained from
different lexicons.

and are of length 300.!

Skip-Gram Vectors (SG). The word2vec
tool (Mikolov et al., 2013a) is fast and currently in
wide use. In this model, each word’s Huffman code
is used as an input to a log-linear classifier with
a continuous projection layer and words within a
given context window are predicted. The available
vectors are trained on 100 billion words of Google
news dataset and are of length 300.?

Global Context Vectors (GC). These vectors are
learned using a recursive neural network that incor-
porates both local and global (document-level) con-
text features (Huang et al., 2012). These vectors
were trained on the first 1 billion words of English
Wikipedia and are of length 50.3

Multilingual Vectors (Multi). Faruqui and Dyer
(2014) learned vectors by first performing SVD on
text in different languages, then applying canonical
correlation analysis (CCA) on pairs of vectors for
words that align in parallel corpora. The monolin-
gual vectors were trained on WMT-2011 news cor-
pus for English, French, German and Spanish. We
use the Enligsh word vectors projected in the com-
mon English-German space. The monolingual En-
glish WMT corpus had 360 million words and the
trained vectors are of length 512.4

4 Semantic Lexicons

We use three different semantic lexicons to evaluate
their utility in improving the word vectors. We in-
clude both manually and automatically created lexi-
cons. Table 1 shows the size of the graphs obtained

'nttp://www-nlp.stanford.edu/projects/
glove/
https://code.google.com/p/word2vec
*http://nlp.stanford.edu/~socherr/
ACL2012_wordVectorsTextFile.zip
‘nttp://cs.cmu.edu/~mfaruqui/soft.html



from these lexicons.

PPDB. The paraphrase database (Ganitkevitch et
al., 2013) is a semantic lexicon containing more than
220 million paraphrase pairs of English.’ Of these, 8
million are lexical (single word to single word) para-
phrases. The key intuition behind the acquisition of
its lexical paraphrases is that two words in one lan-
guage that align, in parallel text, to the same word in
a different language, should be synonymous. For ex-
ample, if the words jailed and imprisoned are trans-
lated as the same word in another language, it may
be reasonable to assume they have the same mean-
ing. In our experiments, we instantiate an edge in
FE for each lexical paraphrase in PPDB. The lexical
paraphrase dataset comes in different sizes ranging
from S to XXXL, in decreasing order of paraphras-
ing confidence and increasing order of size. We
chose XL for our experiments. We want to give
higher edge weights (a;) connecting the retrofitted
word vectors (q) to the purely distributional word
vectors (¢) than to edges connecting the retrofitted
vectors to each other (3;;), so all a; are set to 1 and
f3;; to be degree(i) ! (with i being the node the up-
date is being applied t0).°

WordNet. WordNet (Miller, 1995) is a large
human-constructed semantic lexicon of English
words. It groups English words into sets of syn-
onyms called synsets, provides short, general defini-
tions, and records the various semantic relations be-
tween synsets. This database is structured in a graph
particularly suitable for our task because it explicitly
relates concepts with semantically aligned relations
such as hypernyms and hyponyms. For example, the
word dog is a synonym of canine, a hypernym of
puppy and a hyponym of animal. We perform two
different experiments with WordNet: (1) connecting
a word only to synonyms, and (2) connecting a word
to synonyms, hypernyms and hyponyms. We refer
to these two graphs as WNy,,, and WN;, respec-
tively. In both settings, all «; are set to 1 and (3;; to

be degree(i) 1.

Shttp://www.cis.upenn.edu/~ccb/ppdb

%In principle, these hyperparameters can be tuned to opti-
mize performance on a particular task, which we leave for fu-
ture work.
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FrameNet. FrameNet (Baker et al., 1998; Fill-
more et al., 2003) is a rich linguistic resource
containing information about lexical and predicate-
argument semantics in English. Frames can be re-
alized on the surface by many different word types,
which suggests that the word types evoking the same
frame should be semantically related. For exam-
ple, the frame Cause_change_of_position_on_a_scale
is associated with push, raise, and growth (among
many others). In our use of FrameNet, two words
that group together with any frame are given an edge
in E/. We refer to this graph as FN. All «; are set to
1 and 3;; to be degree(i) 1.

5 Evaluation Benchmarks

We evaluate the quality of our word vector represen-
tations on tasks that test how well they capture both
semantic and syntactic aspects of the representations
along with an extrinsic sentiment analysis task.

Word Similarity. We evaluate our word represen-
tations on a variety of different benchmarks that
have been widely used to measure word similarity.
The first one is the WS-353 dataset (Finkelstein et
al., 2001) containing 353 pairs of English words that
have been assigned similarity ratings by humans.
The second benchmark is the RG-65 (Rubenstein
and Goodenough, 1965) dataset that contain 65 pairs
of nouns. Since the commonly used word similar-
ity datasets contain a small number of word pairs
we also use the MEN dataset (Bruni et al., 2012) of
3,000 word pairs sampled from words that occur at
least 700 times in a large web corpus. We calculate
cosine similarity between the vectors of two words
forming a test item, and report Spearman’s rank cor-
relation coefficient (Myers and Well, 1995) between
the rankings produced by our model against the hu-
man rankings.

Syntactic Relations (SYN-REL). Mikolov et al.
(2013b) present a syntactic relation dataset com-
posed of analogous word pairs. It contains pairs
of tuples of word relations that follow a common
syntactic relation. For example, given walking and
walked, the words are differently inflected forms of
the same verb. There are nine different kinds of rela-
tions and overall there are 10,675 syntactic pairs of
word tuples. The task is to find a word d that best



fits the following relationship: “aistobascistod,”
given a, b, and c. We use the vector offset method
(Mikolov et al., 2013a; Levy and Goldberg, 2014),
computing ¢ = g, — qp + g and returning the vector
from () which has the highest cosine similarity to q.

Synonym Selection (TOEFL). The TOEFL syn-
onym selection task is to select the semantically
closest word to a target from a list of four candi-
dates (Landauer and Dumais, 1997). The dataset
contains 80 such questions. An example is “rug —
{sofa, ottoman, carpet, hallway}”, with carpet be-
ing the most synonym-like candidate to the target.

Sentiment Analysis (SA). Socher et al. (2013)
created a treebank containing sentences annotated
with fine-grained sentiment labels on phrases and
sentences from movie review excerpts. The coarse-
grained treebank of positive and negative classes
has been split into training, development, and test
datasets containing 6,920, 872, and 1,821 sentences,
respectively. We train an {2-regularized logistic re-
gression classifier on the average of the word vectors
of a given sentence to predict the coarse-grained sen-
timent tag at the sentence level, and report the test-
set accuracy of the classifier.

6 Experiments

We first show experiments measuring improvements
from the retrofitting method (§6.1), followed by
comparisons to using lexicons during MAP learn-
ing (§6.2) and other published methods (§6.3). We
then test how well retrofitting generalizes to other
languages (§6.4).

6.1 Retrofitting

We use Eq. 1 to retrofit word vectors (§3) using
graphs derived from semantic lexicons (§4).

Results. Table 2 shows the absolute changes in
performance on different tasks (as columns) with
different semantic lexicons (as rows). All of the lexi-
cons offer high improvements on the word similarity
tasks (the first three columns). On the TOEFL task,
we observe large improvements of the order of 10
absolute points in accuracy for all lexicons except
for FrameNet. FrameNet’s performance is weaker,
in some cases leading to worse performance (e.g.,
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with Glove and SG vectors). For the extrinsic senti-
ment analysis task, we observe improvements using
all the lexicons and gain 1.4% (absolute) in accuracy
for the Multi vectors over the baseline. This increase
is statistically significant (p < 0.01, McNemar).
We observe improvements over Glove and SG
vectors, which were trained on billions of tokens on
all tasks except for SYN-REL. For stronger base-
lines (Glove and Multi) we observe smaller im-
provements as compared to lower baseline scores
(SG and GC). We believe that FrameNet does not
perform as well as the other lexicons because its
frames group words based on very abstract concepts;
often words with seemingly distantly related mean-
ings (e.g., push and growth) can evoke the same
frame. Interestingly, we almost never improve on
the SYN-REL task, especially with higher baselines,
this can be attributed to the fact that SYN-REL is in-
herently a syntactic task and during retrofitting we
are incorporating additional semantic information in
the vectors. In summary, we find that PPDB gives
the best improvement maximum number of times
aggreagted over different vetor types, closely fol-
lowed by WN,;;, and retrofitting gives gains across
tasks and vectors. An ensemble lexicon, in which
the graph is the union of the WN,; and PPDB
lexicons, on average performed slightly worse than
PPDB; we omit those results here for brevity.

6.2 Semantic Lexicons during Learning

To incorporate lexicon information during training,
and compare its performance against retrofitting,
we train log-bilinear (LBL) vectors (Mnih and Teh,
2012). These vectors are trained to optimize the
log-likelihood of a language model which predicts
a word token w’s vector given the set of words in its
context (h), also represented as vectors:

p(w | h; Q) o exp <Z a4 + bj) 3)
i€h

We optimize the above likelihood combined with the
prior defined in Eq. 2 using the lazy and periodic
techniques described in §2. Since it is costly to com-
pute the partition function over the whole vocab-
ulary, we use noise constrastive estimation (NCE)
to estimate the parameters of the model (Mnih and
Teh, 2012) using AdaGrad (Duchi et al., 2010) with
a learning rate of 0.05.



Lexicon || MEN-3k | RG-65 | WS-353 || TOEFL | SYN-REL [ SA |
Glove 737 ] 767 60.5 89.7 67.0 [ 79.6
+PPDB 14 29 -12 5.1 -04 || 1.6
+WNy 0.0 27 0.5 5.1 -124 || 0.7
+WN ) 2.2 7.5 0.7 2.6 -84 || 05
+FN 3.6 | -1.0 -5.3 2.6 -7.0 | 0.0
SG 678 [ 728 65.6 853 739 [[ 81.2
+PPDB 54 35 44 10.7 23] 09
+WNyn 0.7 3.9 0.0 9.3 -13.6 || 0.7
+WNg 25 5.0 1.9 9.3 -10.7 || -0.3
+FN =32 2.6 4.9 13 -13 || 05
GC 313 628 62.3 60.8 109 ][ 67.8
+PPDB 7.0 6.1 2.0 13.1 53 11
+WNy, 3.6 6.4 0.6 73 -1.7 || 0.0
+WN 67| 10.2 23 44 -0.6 || 0.2
+FN 1.8 4.0 0.0 44 -0.6 || 0.2
Multi 758 | 755 68.1 84.0 455 [ 81.0
+PPDB 38 40 6.0 12.0 43 [ 06
+WNyp 1.2 0.2 22 6.6 -123 || 14
+WN; 29 8.5 43 6.6 -10.6 || 1.4
+FN 1.8 4.0 0.0 44 0.6 | 02

Table 2: Absolute performance changes with retrofitting.

Spearman’s correlation (3 left columns) and accuracy (3

right columns) on different tasks. Higher scores are always better. Bold indicates greatest improvement for a vector

type.
Method k.~ || MEN-3k | RG-65 | WS-353 || TOEFL | SYN-REL || SA
LBL (Baseline) k=007 =0 580 | 427 536 66.7 315 || 725
v=1 04 42 0.6 0.1 06 || 12
LBL + Lazy v =0.1 0.7 8.1 0.4 14 07| 08
v =0.01 0.7 9.5 1.7 2.6 19 || 04
k = 100M 38| 184 36 12.0 43 13
LBL + Periodic k = 50M 34| 195 44 18.6 06 || 1.9
k = 25M 05| 18.1 2.7 21.3 371 08
LBL + Retrofitting - 57 156 55 18.6 147 || 09

Table 3: Absolute performance changes for including PPDB information while training LBL vectors. Spearman’s
correlation (3 left columns) and accuracy (3 right columns) on different tasks. Bold indicates greatest improvement.

We train vectors of length 100 on the WMT-2011
news corpus, which contains 360 million words,
and use PPDB as the semantic lexicon as it per-
formed reasonably well in the retrofitting experi-
ments (§6.1). For the lazy method we update with
respect to the prior every k 100,000 words’
and test for different values of prior strength v €
{1,0.1,0.01}. For the periodic method, we up-
date the word vectors using Eq. 1 every k €
{25, 50,100} million words.

7k = 10,000 or 50,000 yielded similar results.
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Results. See Table 3. For lazy, v = 0.01 performs
best, but the method is in most cases not highly sen-
sitive to ’s value. For periodic, which overall leads
to greater improvements over the baseline than lazy,
k = 50M performs best, although all other values
of k also outperform the the baseline. Retrofitting,
which can be applied to any word vectors, regardless
of how they are trained, is competitive and some-
times better.



Corpus Vector Training MEN-3k | RG-65 | WS-353 || TOEFL | SYN-REL SA
CBOW 55.2 44.8 54.7 73.3 40.8 || 74.1
WMT-11 | Yu and Dredze (2014) 50.1 471 53.7 61.3 29.9 || 71.5
CBOW + Retrofitting 60.5 57.7 58.4 81.3 52.5 || 75.7
SG 76.1 66.7 68.6 72.0 40.3 || 73.1
Wikipedia | Xu et al. (2014) - - 68.3 - 444 -
SG + Retrofitting 65.7 73.9 67.5 86.0 49.9 || 74.6

Table 4: Comparison of retrofitting for semantic enrichment against Yu and Dredze (2014), Xu et al. (2014). Spear-
man’s correlation (3 left columns) and accuracy (3 right columns) on different tasks.

6.3 Comparisons to Prior Work

Two previous models (Yu and Dredze, 2014; Xu
et al.,, 2014) have shown that the quality of word
vectors obtained using word2vec tool can be im-
proved by using semantic knowledge from lexicons.
Both these models use constraints among words as
a regularization term on the training objective dur-
ing training, and their methods can only be applied
for improving the quality of SG and CBOW vectors
produced by the word2vec tool. We compared the
quality of our vectors against each of these.

Yu and Dredze (2014). We train word vectors us-
ing their joint model training code® while using ex-
actly the same training settings as specified in their
best model: CBOW, vector length 100 and PPDB for
enrichment. The results are shown in the top half of
Table 4 where our model consistently outperforms
the baseline and their model.

Xu et al. (2014). This model extracts categori-
cal and relational knowledge among words from
Freebase’ and uses it as a constraint while train-
ing. Unfortunately, neither their word embeddings
nor model training code is publicly available, so
we train the SG model by using exactly the same
settings as described in their system (vector length
300) and on the same corpus: monolingual English
Wikipedia text.! We compare the performance of
our retrofitting vectors on the SYN-REL and WS-
353 task against the best model'! reported in their
paper. As shown in the lower half of Table 4, our
model outperforms their model by an absolute 5.5
points absolute on the SYN-REL task, but a slightly

$https://github.com/Gorov/JointRCM
‘https://www.freebase.com
Yhttp://mattmahoney.net/dc/enwik9.zip
"'Their best model is named “RC-NET” in their paper.

inferior score on the WS-353 task.

6.4 Multilingual Evaluation

We tested our method on three additional languages:
German, French, and Spanish. We used the Univer-
sal WordNet (de Melo and Weikum, 2009), an au-
tomatically constructed multilingual lexical knowl-
edge base based on WordNet.'? Tt contains words
connected via different lexical relations to other
words both within and across languages. We con-
struct separate graphs for different languages (i.e.,
only linking words to other words in the same lan-
guage) and apply retrofitting to each. Since not
many word similarity evaluation benchmarks are
available for languages other than English, we tested
our baseline and improved vectors on one bench-
mark per language.

We used RG-65 (Gurevych, 2005), RG-65
(Joubarne and Inkpen, 2011) and MC-30 (Hassan
and Mihalcea, 2009) for German, French and Span-
ish, respectively.'> We trained SG vectors for each
language of length 300 on a corpus of 1 billion to-
kens, each extracted from Wikipedia, and evaluate
them on word similarity on the benchmarks before
and after retrofitting. Table 5 shows that we obtain
high improvements which strongly indicates that our
method generalizes across these languages.

7 Further Analysis

Retrofitting vs. vector length. With more di-
mensions, word vectors might be able to cap-
ture higher orders of semantic information and
retrofitting might be less helpful. We train SG vec-

Phttp://www.mpi-inf.mpg.de/yago-naga/
uwn

These benchmarks were created by translating the corre-
sponding English benchmarks word by word manually.
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Figure 3: Two-dimensional PCA projections of 100-dimensional SG vector pairs holding the “adjective to adverb”

relation, before (left) and after (right) retrofitting.

Language | Task SG | Retrofitted SG
German RG-65 | 534 60.3
French RG-65 | 46.7 60.6
Spanish MC-30 | 54.0 59.1

Table 5: Spearman’s correlation for word similarity eval-
uation using the using original and retrofitted SG vectors.

74

Spearman's correlation

e -e SG + Retrofitting
SG

*—x

200 400 600

Vector length

800 1000

Figure 2: Spearman’s correlation on the MEN word sim-
ilarity task, before and after retrofitting.

tors on 1 billion English tokens for vector lengths
ranging from 50 to 1,000 and evaluate on the MEN
word similarity task. We retrofit these vectors to
PPDB (§4) and evaluate those on the same task. Fig-
ure 2 shows consistent improvement in vector qual-
ity across different vector lengths.

Visualization. We randomly select eight word
pairs that have the “adjective to adverb” relation
from the SYN-REL task (§5). We then take a two-
dimensional PCA projection of the 100-dimensional

1613

SG word vectors and plot them in R?. In Figure 3 we
plot these projections before (left) and after (right)
retrofitting. It can be seen that in the first case the
direction of the analogy vectors is not consistent, but
after retrofitting all the analogy vectors are aligned
in the same direction.

8 Related Work

The use of lexical semantic information in training
word vectors has been limited. Recently, word sim-
ilarity knowledge (Yu and Dredze, 2014; Fried and
Duh, 2014) and word relational knowledge (Xu et
al., 2014; Bian et al., 2014) have been used to im-
prove the word2vec embeddings in a joint train-
ing model similar to our regularization approach.
In latent semantic analysis, the word cooccurrence
matrix can be constructed to incorporate relational
information like antonym specific polarity induc-
tion (Yih et al., 2012) and multi-relational latent se-
mantic analysis (Chang et al., 2013).

The approach we propose is conceptually similar
to previous work that uses graph structures to prop-
agate information among semantic concepts (Zhu,
2005; Culp and Michailidis, 2008). Graph-based
belief propagation has also been used to induce
POS tags (Subramanya et al., 2010; Das and Petrov,
2011) and semantic frame associations (Das and
Smith, 2011). In those efforts, labels for unknown
words were inferred using a method similar to
ours. Broadly, graph-based semi-supervised learn-
ing (Zhu, 2005; Talukdar and Pereira, 2010) has
been applied to machine translation (Alexandrescu



and Kirchhoff, 2009), unsupervised semantic role
induction (Lang and Lapata, 2011), semantic docu-
ment modeling (Schuhmacher and Ponzetto, 2014),
language generation (Krahmer et al., 2003) and sen-
timent analysis (Goldberg and Zhu, 2006).

9 Conclusion

We have proposed a simple and effective method
named retrofitting to improve word vectors using
word relation knowledge found in semantic lex-
icons. Retrofitting is used as a post-processing
step to improve vector quality and is more modu-
lar than other approaches that use semantic informa-
tion while training. It can be applied to vectors ob-
tained from any word vector training method. Our
experiments explored the method’s performance
across tasks, semantic lexicons, and languages and
showed that it outperforms existing alternatives.
The retrofitting tool is available at: https://
github.com/mfaruqui/retrofitting.
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