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Abstract

Compositional embedding models build a rep-
resentation for a linguistic structure based on
its component word embeddings. While re-
cent work has combined these word embed-
dings with hand crafted features for improved
performance, it was restricted to a small num-
ber of features due to model complexity, thus
limiting its applicability. We propose a new
model that conjoins features and word em-
beddings while maintaing a small number of
parameters by learning feature embeddings
jointly with the parameters of a compositional
model. The result is a method that can scale to
more features and more labels, while avoiding
overfitting. We demonstrate that our model at-
tains state-of-the-art results on ACE and ERE
fine-grained relation extraction.

1 Introduction

Word embeddings represent words in some low-
dimensional space, where each dimension might in-
tuitively correspond to some syntactic or semantic
property of the word.1 These embeddings can be
used to create novel features (Miller et al., 2004;
Koo et al., 2008; Turian et al., 2010; Sun et al., 2011;
Nguyen and Grishman, 2014; Roth and Woodsend,
2014), and can also be treated as model parameters

∗ The work was done while the author was visiting JHU.
1Such embeddings have a long history in NLP, such as term

co-occurrence frequency matrices and their low-dimensional
counterparts obtained by linear algebra tools (LSA, PCA, CCA,
NNMF) and word clusters. Recently, neural networks have be-
come popular methods for obtaining such embeddings (Bengio
et al., 2006; Collobert et al., 2011; Mikolov et al., 2013).

to build representations for higher-level structures in
some compositional embedding models (Collobert
et al., 2011; Collobert, 2011; Socher et al., 2012;
Socher et al., 2013b; Hermann et al., 2014). Appli-
cations of embedding have boosted the performance
of many NLP tasks, including syntax (Turian et al.,
2010; Collobert et al., 2011), semantics (Socher et
al., 2012; Socher et al., 2013b; Hermann et al.,
2014), question answering (Bordes et al., 2014) and
machine translation (Devlin et al., 2014).

While compositional models aim to learn higher-
level structure representations, composition of em-
beddings alone may not capture important syntac-
tic or semantic patterns. Consider the task of re-
lation extraction, where decisions require examin-
ing long-distance dependencies in a sentence. For
the sentence in Figure 1, “driving” is a strong in-
dicator of the “ART” (ACE) relation because it ap-
pears on the dependency path between a person and
a vehicle. Yet such conjunctions of different syntac-
tic/semantic annotations (dependency and NER) are
typically not available in compositional models.

In contrast, hand-crafted features can easily cap-
ture this information, e.g. feature fi3 (Figure 1).
Therefore, engineered features should be combined
with learned representations in compositional mod-
els. One approach is to use the features to select spe-
cific transformations for a sub-structure (Socher et
al., 2013a; Hermann and Blunsom, 2013; Hermann
et al., 2014; Roth and Woodsend, 2014), which can
conjoin features and word embeddings, but is im-
practical as the numbers of transformations will ex-
ponentially increase with additional features. Typ-
ically, less than 10 features are used. A solution
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bc cts wl
Model P R F1 P R F1 P R F1
HeadEmb
CNN (wsize=1) + local features
CNN (wsize=3) + local features
FCT local only
FCT global 60.69 42.39 49.92 56.41 34.45 42.78 41.95 31.77 36.16
FCT global (Brown) 63.15 39.58 48.66 62.45 36.47 46.05 54.95 29.93 38.75
FCT global (WordNet) 59.00 44.79 50.92 60.20 39.60 47.77 50.95 34.18 40.92
PET (Plank and Moschitti, 2013) 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
BOW (Plank and Moschitti, 2013) 57.2 37.1 45.0 57.5 31.8 41.0 41.1 27.2 32.7
Best (Plank and Moschitti, 2013) 55.3 43.1 48.5 54.1 38.1 44.7 39.9 35.8 37.8

Table 7: Performance on ACE2005 test sets. The first part of the table shows the performance of different models on
different sources of entity types, where ”G” means that the gold types are used and ”P” means that we are using the
predicted types. The second part of the table shows the results under the low-resource setting, where the entity types
are unknown.

Dev MRR Test MRR
Model Fine-tuning 1,000 10,000 100,000 1,000 10,000 100,000
SUM - 46.95 35.29 30.69 52.63 41.19 37.32
SUM Y 50.81 36.81 32.92 57.23 45.01 41.23
Best Recursive NN (d=50) Y 45.67 30.86 27.05 54.84 39.25 35.49
Best Recursive NN (d=200) Y 48.97 33.50 31.13 53.59 40.50 38.57
FCT N 47.53 35.58 31.31 54.33 41.96 39.10
FCT Y 51.22 36.76 33.59 61.11 46.99 44.31
FCT + LM - 49.43 37.46 32.22 53.56 42.63 39.44
FCT + LM +supervised Y 53.82 37.48 34.43 65.47 49.44 45.65

joint 56.53 41.41 36.45 68.52 51.65 46.53

Table 8: Performance on the semantic similarity task with PPDB data.

Appendix 1: Features Used in FCT

7.1 Overall performances on ACE 2005
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(wi=“driving”) 

fi3 : (wi is on path, M1 
is PER and M2 is VEH ) 

… 

y=ART(M1,M2) 

M1=man M2=taxicab 

w1=“A” wi=“driving” 

A 
… 

fi f1 

[A man]M1 driving what appeared to be [a taxicab]M2 

Figure 1: Example of input structure. Left: a sentence
with target entities (M1,M2) and annotations A (e.g. de-
pendency tree). Right: outer product representation of a
single word wi with an example of useful features fi3.

is provided by the recent work of Yu et al. (2014),
which reduces this complexity by using a tensor to
transform the input feature vectors to a matrix trans-
formation. The model is equivalent to treating the
outer product between word embeddings and fea-
tures as input to a parameter tensor, thus model pa-
rameters increase linearly with the number of fea-
tures. Yet this model also uses too many parameters
when a large number of features (e.g. over 1000) are
used. This limits the applicability of their method
to settings where there are a large number of train-
ing examples. For smaller training sets, the variance
of their estimator will be high resulting in increased
generalization error on test data. We seek to use
many more features (based on rich annotations such
as syntactic parsing and NER) and larger label sets,
which further exacerbates the problem of overfitting.

We propose a new method of learning interactions
between engineered features and word embeddings
by combining the idea of the outer product in FCM

(Yu et al., 2014) with learning feature embeddings
(Collobert et al., 2011; Chen and Manning, 2014).2

Our model jointly learns feature embeddings and
a tensor-based classifier which relies on the outer
product between features embeddings and word em-
beddings. Therefore, the number of parameters are
dramatically reduced since features are only repre-
sented as low-dimensional embeddings, which al-
leviates problems with overfitting. The resulting
model benefits from both approaches: conjunctions
between feature and word embeddings allow model

2Collobert et al. (2011) and Chen and Manning (2014) also
capture interactions between word embeddings and features by
using deep convolutional networks with max-pooling or cube
activate function, but they cannot directly express conjunctions
of word embeddings and features.

expressiveness, while keeping the number of param-
eters small. This is especially beneficial when con-
sidering tasks with many labels, such as fine-grained
relation extraction. We demonstrate these advan-
tages on two relation extraction tasks: the well stud-
ied ACE 2005 dataset and the new ERE relation
extraction task. We consider both coarse and fine-
grained relations, the latter of which has been largely
unexplored in previous work.

2 Factor-based Compositional Embedding
Models (FCM)

We begin by briefly summarizing the FCM model
proposed by Yu et al. (2014) in the context of re-
lation extraction. In relation extraction, for a pair of
mentions in a given sentence, the task is to determine
the type of relation that holds between the two enti-
ties, if any. For each pair of mentions in a sentence,
we have a training instance (x, y); x is an annotated
sentence, including target entity mentions M1 and
M2, and a dependency parse. We consider directed
relations: for relation type Rel, y = Rel(M1,M2)
and y′ = Rel(M2,M1) are different.

FCM has a log-linear form, which defines a partic-
ular utilization of the features and embeddings. FCM

decomposes the structure of x into single words.
For each word wi, a binary feature vector fi is de-
fined, which considers the ith word and any other
substructure of the annotated sentence x. We de-
note the dense word embedding by ewi and the label-
specific model parameters by matrix Ty, e.g. in Fig-
ure 1, the gold label corresponds to matrix Ty where
y=ART(M1,M2). FCM is then given by:

P (y|x;T ) ∝ exp(
∑

i Ty � (fi ⊗ ewi)) (1)

where ⊗ is the outer-product of the two vectors and
� is the ‘matrix dot product’ or Frobenious inner
product of the two matrices. Here the model param-
eters form a tensor T = [T1 : ... : T|L|], which
transforms the input matrix to the labels.

The key idea in FCM is that it gives similar words
(i.e. those with similar embeddings) with simi-
lar functions in the sentence (i.e. those with sim-
ilar features) similar matrix representations. Thus,
this model generalizes its model parameters across
words with similar embeddings only when they
share similar functions in the sentence. For the
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Figure 2: Neural network representation of LRFCM.

example in Figure 1, FCM can learn parameters
which give words similar to “driving” with the
feature f3 = 1 (is-on-dependency-path
∧ type(M1)=PER ∧ type(M2)=VEH ) high
weight for the ART label.

3 Low-Rank Approximation of FCM

FCM achieved state of the art performance on Se-
mEval relation extraction (Yu et al., 2014), yet its
generalization ability is limited by the size of the
tensor T , which cannot easily scale to large num-
ber of features. We propose to replace features with
feature embeddings (Chen and Manning, 2014),
thereby reducing the dimensionality of the feature
space, allowing for more generalization in learning
the tensor. This will be especially beneficial with an
increased number of output labels (i.e. more relation
types), as this increases the number of parameters.

Our task is to determine the label y (relation)
given the instance x. For each word wi ∈ x,
there exists a list of m associated features fi =
fi,1, fi,2, ..., fi,m. The model then transforms the
feature vector into a dg-dimensional (dg � m)
vector with a matrix (i.e. a lookup table) Wf as:
gi = fi ·Wf . Here we use a linear transformation
for computational efficiency. We score label y given
x as (replacing Eq. 1):

P (y|x;T,Wf ) ∝ exp(
∑

i Ty � (gi ⊗ ewi)) (2)

We call this model low-rank FCM (LRFCM). The
result is a dramatic reduction in the number of model
parameters, from O(md|L|) to O(dgd|L| + dgm),
where d is the size of the word embeddings. This re-
duction is intended to reduce the variance of our es-
timator, possibly at the expense of higher bias. Con-
sider the case of 32 labels (fine-grained relations in

§4), 3,000 features, and 200 dimensional word em-
beddings. For FCM, the size of T is 1.92 × 107;
potentially yielding a high variance estimator. How-
ever, for LRFCM with 20-dimensional feature em-
beddings, the size of T is 1.28 × 105, significantly
smaller with lower variance. Moreover, feature em-
beddings can capture correlations among features,
further increasing generalization.

Figure 2 shows the vectorized form of LRFCM as
a multi-layer perceptron. LRFCM constructs a dense
low-dimensional matrix used as the input to Eq. 2.
By contrast, FCM does not have a feature embedding
layer and both feature vector f and word embed-
ding ew are feed forward directly to the outer prod-
uct layer.

Training We optimize the following log-
likelihood (of the probability in Eq. 2) objective
with AdaGrad (Duchi et al., 2011) and compute
gradients via back-propagation:

L(T,Wf ) = 1
|D|
∑

(y,x)∈D logP (y|x;T,Wf ),
(3)

where D is the training set. For each instance
(y,x) we compute the gradient of the log-likelihood
` = logP (y|x;T,Wf ). We define the vec-
tor s = [

∑
i Ty � (gi ⊗ ewi)]1≤y≤L, which yields

∂`/∂s =
[
(I[y = y′]− P (y′|x;T,Wf ))1≤y′≤L

]T
,

where I[x] is the indicator function equal to 1 if x
is true and 0 otherwise. Then we have the following
stochastic gradients, where ◦ is the tensor product:

∂`

∂T
=
∂`

∂s
⊗

n∑
i=1

gi ⊗ ewi
, (4)
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∂Wf
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n∑
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∂`

∂gi
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∂Wf
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i=1

(
T ◦ ∂`

∂s
◦ ewi

)
⊗ fi.

4 Experiments

Datasets We consider two relation extraction
datasets: ACE2005 and ERE, both of which contain
two sets of relations: coarse relation types and fine
relation (sub-)types. Prior work on English ACE
2005 has focused only on coarse relations (Plank
and Moschitti, 2013; Nguyen and Grishman, 2014;
Li and Ji, 2014); to the best of our knowledge, this
paper establishes the first baselines for the other
datasets. Since the fine-grained relations require a
large number of parameters, they will test the ability
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ACE-bc (|L|=11) ACE-bc (|L|=32) ERE (|L|=9) ERE (|L|=18)
Model P R F1 P R F1 P R F1 P R F1
PM’13 (S) 55.3 43.1 48.5 - - - - - - - - -
FCM (S) 62.3 45.1 52.3 59.7 41.6 49.0 68.3 52.6 59.4 67.1 51.5 58.2
LRFCM(S) 58.5 46.8 52.0 57.4 46.2 51.2 65.1 56.1 60.3 65.4 55.3 59.9
BASELINE (ST) 72.2 52.0 60.5 60.2 51.2 55.3 76.2 64.0 69.5 73.5 62.1 67.3
FCM (ST) 66.2 54.2 59.6 62.9 49.6 55.4 73.0 65.4 69.0 74.0 60.1 66.3
LRFCM (ST) 65.1 54.7 59.4 63.5 51.1 56.6 75.0 65.7 70.0 73.2 63.2 67.8

Table 1: Results on test for ACE and ERE where only the entity spans (S) are known (top) and where both the entity
spans and types are known (ST). PM’13 is an embedding method. The sizes of relation sets are indicated by |L|.

of LRFCM to scale and generalize. As is standard,
we report precision, recall, and F1 for all tasks.

ACE 2005 We use the English portion of the
ACE 2005 corpus (Walker et al., 2006). Following
Plank and Moschitti (2013), we train on the union of
the news domains (Newswire and Broadcast News),
hold out half of the Broadcast Conversation (bc) do-
main as development data, and evaluate on the re-
mainder of bc. There are 11 coarse types and 32
fine (sub-)type classes in total. In order to com-
pare with traditional feature-based methods (Sun et
al., 2011), we report results in which the gold en-
tity spans and types are available at both train and
test time. We train the models with all pairs of en-
tity mentions in the training set to yield 43,518 clas-
sification instances. Furthermore, for comparison
with prior work on embeddings for relation extrac-
tion (Plank and Moschitti, 2013), we report results
using gold entity spans but no types, and generate
negative relation instances from all pairs of entities
within each sentence with three or fewer intervening
entities.

ERE We use the third release of the ERE anno-
tations from Phase 1 of DEFT (LDC, 2013) . We
divided the proxy reports summarizing news articles
(pr) into training (56,889 relations), development
(6,804 relations) and test data (6,911 relations). We
run experiments under both the settings with and
without gold entity types, while generating negative
relation instances just as in ACE with the gold entity
types setting. To the best of our knowledge, we are
the first to report results on this task.

Following the annotation guidelines of ERE
relations, we treat all relations, except for
“social.business”, “social.family” and “so-
cial.unspecified”, as asymmetric relations. For

coarse relation task, we treat all relations as
asymmetric, including the “social” relation. The
reason is that the asymmetric subtype, “social.role”,
dominates the class: 679 of 834 total “social”
relations.

Setup We randomly initialize the feature embed-
dings Wf and pre-train 200-dimensional word em-
beddings on the NYT portion of Gigaword 5.0
(Parker et al., 2011) with word2vec (default set-
ting of the toolkit) (Mikolov et al., 2013). Depen-
dency parses are obtained from the Stanford Parser
(De Marneffe et al., 2006). We use the same fea-
ture templates as Yu et al. (2014). When gold entity
types are unavailable, we replace them with Word-
Net tags annotated by Ciaramita and Altun (2006).
Learning rates, weights of L2-regularizations, the
number of iterations and the size of the feature em-
beddings d are tuned on dev sets. We selected d
from {12, 15, 20, 25, 30, 40}. We used d=30 for
feature embeddings for fine-grained ACE without
gold types, and d=20 otherwise. For ERE, we have
d=15. The weights of L2 λ was selected from {1e-
3, 5e-4, 1e-4}. As in prior work (Yu et al., 2014),
regularization did not significantly help FCM. How-
ever for LRFCM, λ=1e-4 slightly helps. We use a
learning rate of 0.05.

We compare to two baselines. First, we use the
features of Sun et al. (2011), who build on Zhou
et al. (2005) with additional highly tuned features
for ACE-style relation extraction from years of re-
search. We implement these in a logistic regression
model BASELINE, excluding country gazetteer and
WordNet features. This baseline includes gold en-
tity types and represents a high quality feature rich
model. Second, we include results from Plank and
Moschitti (2013) (PM’13), who obtained improve-
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ERE LRFCM
(|L|=18) Correct Incorrect

FCM
Correct 423 34

Incorrect 57 246

Table 2: Confusion Matrix between the results of FCM
and LRFCM on the test set of ERE fine relation task. Each
item in the table shows the number of relations on which
the two models make correct/incorrect predictions.

ments for coarse ACE relations with word embed-
dings (Brown clusters and LSA) without gold entity
types. To demonstrate improvements of the low rank
approximation of LRFCM, we compare to FCM 3.

Results Both FCM and LRFCM outperform Plank
and Moschitti (2013) (no gold entities setting) (Ta-
ble 1). With gold entity types, the feature-rich base-
line beats both composition models for ACE coarse
types. However, as we consider more labels, LR-
FCM improves over this baseline, as well as for
ERE coarse types. Furthermore, LRFCM outper-
forms FCM on all tasks, save ACE coarse types, both
with and without gold entity types. The fine-grained
settings demonstrate that our model can better gen-
eralize by using relatively fewer parameters. Addi-
tionally, the gap between train and test F1 makes this
clear. For coarse relations, FCM’s train to test F1 gap
was 35.2, compared to LRFCM with 25.4. On fine
relations, the number increases to 40.2 for FCM but
only 31.2 for LRFCM. In both cases, LRFCM does
not display the same degree of overfitting.

Analysis To highlight differences in the results we
provide the confusion matrix of the two models on
ERE fine relations. Table 2 shows that the two mod-
els are complementary to each other to a certain
degree. It indicates that the combination of FCM

and LRFCM may further boost the performance. We
leave the combination of FCM and LRFCM, as well
as their combination with the baseline method, to fu-
ture work.

5 Conclusion

Our LRFCM learns conjunctions between features
and word embeddings and scales to many features

3We used their implementation: https://github.com/Gorov/
FCM_nips_workshop/

and labels, achieving improved results for relation
extraction tasks on both ACE 2005 and ERE.

To the best of our knowledge, we are the first to
report relation extraction results on ERE. To make it
easier to compare to our results on these tasks, we
make the data splits used in this paper and our im-
plementation available for general use4.
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