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Abstract

It is well known that prosodic information is
used by infants in early language acquisition.
In particular, prosodic boundaries have been
shown to help infants with sentence and word-
level segmentation. In this study, we extend
an unsupervised method for word segmen-
tation to include information about prosodic
boundaries. The boundary information used
was either derived from oracle data (hand-
annotated), or extracted automatically with
a system that employs only acoustic cues
for boundary detection. The approach was
tested on two different languages, English and
Japanese, and the results show that boundary
information helps word segmentation in both
cases. The performance gain obtained for two
typologically distinct languages shows the ro-
bustness of prosodic information for word seg-
mentation. Furthermore, the improvements
are not limited to the use of oracle informa-
tion, similar performances being obtained also
with automatically extracted boundaries.

1 Introduction

Prosodic information is thought to play a fundamen-
tal role in early language acquisition, and provide
infants with rich structural information about their
language (Christophe et al., 1997). In particular,
prosody has been claimed to help infants find word
boundaries (Christophe and Dupoux, 1996). New-
borns are able discriminate between disyllables that
contains vs. does not contain a phonological phrase
boundary (Christophe et al., 1994; Christophe et al.,
2001), showing that they are able to encode the cor-
responding prosodic cues. Nine-month olds show
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evidence of parsing utterances into prosodic units,
and show ’surprise’ when a pause is inappropriately
inserted inside as opposed to between these units
(Jusczyk et al., 1992; Gerken et al., 1994). Ten to 13
month olds show evidence of using prosodic units to
parse utterances into words, as they fail to recognize
a familiar word if it appears to straddle a prosodic
boundary (Gout et al., 2004).

Curiously enough, however, prosody is not used
very much in unsupervised models of language ac-
quisition, and in particular, in models of word seg-
mentation. Most such models use text as input, and
apply some form of lexical optimization. For in-
stance, Brent and Cartwright (1996) used a Min-
imal Description Length Principle to optimize the
size of the description of a corpus. State of the art
systems use hierarchical Bayesian models (Goldwa-
ter et al., 2009) which parse a corpus into words
or other linguistic units with a bias to reuse pre-
viously parsed elements. Adaptor Grammars is a
generic framework which enables to formulate such
Bayesian models within an overarching architecture
based on probabilistic context free grammars (John-
son et al., 2007). Such models have been used to
study the role of linguistic information such as syl-
labic structure (Johnson and Goldwater, 2009), mor-
phology (Johnson, 2008), function words (Johnson
et al., 2014), as well as the role of non-linguistic
context (Synnaeve et al., 2014). To our knowledge,
only one paper studied the role of prosodic informa-
tion (Borschinger and Johnson, 2014). In this study,
the authors used the role of word stress in constrain-
ing word segmentation (as in stress languages, there
is only one main stress per word).
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Here, we test whether prosodic boundaries could
directly help symbolic word segmentation by pro-
viding some word boundaries ’for free’, as this was
already shown to be true in the case of signal-based
term discovery systems (Ludusan et al., 2014). Be-
ing a feasibility study, we will use gold prosodic
boundaries in order to quantify what is the maxi-
mum gain we can expect using this type of informa-
tion. In addition to that, we test whether prosodic
boundaries automatically derived from the speech
signal (Ludusan and Dupoux, 2014) could also pro-
vide a performance gain. As this study relies on
the existence of prosodic information (either gold,
or derived from speech), we did not use the standard
corpora used in these studies (the Bernstein-Ratner
corpus), but introduced three new corpora, two in
English and one in Japanese.

The paper is structured as follows: In the next
sections we introduce the systems employed in this
study - the prosodic boundary detection system in
section 2 and the word segmentation procedure in
section 3. Next, we present the datasets used in the
experiments, with the results obtained being illus-
trated in section 5. The paper will conclude with a
general discussion and some final remarks.

2 Prosodic annotation

There are numerous studies in the speech process-
ing literature focusing on the detection of prosodic
boundaries (e.g. Wightman and Ostendorf (1991),
Ananthakrishnan and Narayanan (2008), Huang et
al. (2008), Jeon and Liu (2009), just to name a
few). While the approaches taken vary between
these studies, they tend to use either supervised
learning, thus needing large, prosodically annotated
corpora, or higher level information (syntactic, lex-
ical, etc) which would also require further annota-
tions. Since unsupervised word segmentation is a
process that requires low resources (only symbolic
transcription), we have decided to use for the auto-
matic detection of prosodic boundaries a previously
proposed method which employs only acoustic cues
that can be extracted from the speech signal (Ludu-
san and Dupoux, 2014).

The algorithm takes into consideration four
acoustic cues which had been shown, in the lan-
guage acquisition literature, to be used by young in-
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fants for the recognition of prosodic boundaries. The
cues correspond to the following phenomena that
occur next to prosodic breaks: silent pauses, final
lengthening, initial strengthening and FO reset. The
acoustic cues were extracted at the syllable level and
they include: the duration of the pause following the
syllable (pause cue), the syllable nucleus duration
(nucleus cue), the distance between the nucleus on-
set of the current syllable and that of the following
one (onset cue) and the difference between the FO
end value of the current syllable and the FO begin-
ning value of the following syllable (FO reset cue).
The nucleus and onset cues are computed for all the
syllables, the later being a combination of the nu-
cleus cue, pause cue and the onset of the following
syllable, which is the domain of the initial strength-
ening phenomenon. The pause cue is set to 0 for
syllables not followed by a silence pause, while FO
reset is only computed for syllables which are at a
local minimum for FO, otherwise it is set to 0. Then,
for each individual cue function except pause, we
considered only the values which were local max-
ima, the other values being set to 0.

Once a numerical value for each of the cues is ob-
tained, they are standardized between O and 1 and
combined in a detector function, by summing them
up. The local maxima of the detector function are
then obtained and the syllables corresponding to the
maxima will be considered as prosodic boundary
candidates. Next, a thresholding of these values is
applied and all the right-hand boundaries of the syl-
lables greater or equal to this threshold are marked
as prosodic boundaries. This operation is followed
by a second step in which prosodic boundaries are
marked based on a different rule, rule that we would
call conjunction of cues. This rule was inspired by
the results of several studies in the infant literature
(Seidl, 2007; Wellmann et al., 2012) showing that
most prosodic boundaries tend to be marked by more
than one acoustic cue. Taking these findings into ac-
count, we could also mark as prosodic boundaries all
syllables which are signalled by at least two differ-
ent cues, regardless of the value of these cues. Thus,
by employing the conjunction of cues we can give a
higher weight to a group of cues which, by appear-
ing together, mark more reliably the presence of a
boundary, in the hope that it would increase recall
without decreasing too much the precision.
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Figure 1: Speech waveform and corresponding detector function employed for prosodic boundary detection of the
phrase: “My tape machine records well, but the knobs are too small, the buttons are flimsy and the counter misplaced”

(for details, see (Ludusan and Dupoux, 2014)).

The parameters of the algorithm: the combination
of cues, the cut-off threshold and the combination
of conjunction of cues are obtained on a hold-out
set, by aiming to maximize the performance of the
system on that particular set.

The prosodic boundary detection procedure is il-
lustrated in Figure 1 for the following utterance:
“My tape machine records well, but the knobs are
too small, the buttons are flimsy and the counter
misplaced”. The waveform of the speech signal is
shown in the upper panel, with prosodic boundaries
marked with dashed lines. In the lower panel are the
values of the computed detector function, for each
syllable, and the contribution of each of the cues to-
wards the value of the function (the asterisk denotes
the position of the syllable nucleus). The syllables
corresponding to local maxima of the detector func-
tion (syllables 2, 4, 7, 10, 13, 17, 19, 21 and 25)
would be considered as possible candidates for the
position of a prosodic boundary. Provided that their
value is higher than the decision threshold, they will
be marked as actual boundaries. For example, if the
threshold is set to the first percentile of the function,
all the candidates will be kept, for the 50th percentile
only syllables 10, 13, 17 and 25 will be considered,
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while a threshold equal to the value of the 100th per-
centile will leave only syllable 13 to be marked as a
boundary. If we also use what we called conjunc-
tion of cues, and we set the cues to be the nucleus
and the onset, syllables 10, 13, 22 and 25 will be
marked as boundary placeholders, regardless of the
fact they are or not a local maximum or they pass or
not over the decision threshold.

3 Word segmentation models

3.1 Adaptor grammars

Adaptor Grammars (AGs) are an extension of prob-
abilistic context-free grammars (PCFGs) that learn
probability of entire subtrees as well as probabil-
ities of rules (Johnson et al., 2007). A PCFG
(N, W, R, S, ) consists of a start symbol S, N and
W disjoints sets of nonterminals and terminal sym-
bols respectively. R is a set of rules producing ele-
ments of N or W. Finally, 6 is a set of distributions
over the rules Rx,VX € N (Rx are the rules that
expand X). An AG (N,W, R, S,0, A, C) extends
the above PCFG with a subset (A C N) of adapted
nonterminals, each of them (X € A) having an as-
sociated adaptor (Cx € C'). An AG defines a dis-



tribution over trees Gx,VX € NUW.If X ¢ A,
then G'x is defined exactly as for a PCFG:

Gx =

D

X—Y]...Yn
€Rx

(9_)(Hy1mynTDX(Gy1 ... Gyn)

With TDx (G ... G,,) the distribution over trees
with root node X and each subtree ¢t; ~ G; i.i.d.
If X € A, then there is an additional indirection
(composition) with the distribution Hx:

Gx =

>

X—Y]...Yn
€ERy

0x_y,.v,TDx(Hy, ... Hy,)

Hx ~Cx(Gx)

We used Cx adaptors following the Pitman-Yor
process (PYP) (Perman et al., 1992; Teh, 2006) with
parameters a and b. The PYP generates (Zipfian)
type frequencies that are similar to those that oc-
cur in natural language (Goldwater et al., 2011).
Metaphorically, if there are n customers and m ta-
bles, the n + 1th customer is assigned to table z,,11
according to (g is the Kronecker delta function):

ma+b
n+b

m

Zntil|z1 e zn ~ 5m+1+kzln:+;5k

For an AG, this means that adapted non-terminals
(X € A) either expand to a previously generated
subtree (7'(X)g) with probability proportional to
how often it was visited (ny), or to a new subtree
(T'(X)m+1) generated through the PCFG with prob-
ability proportional to ma + b.

3.2 Grammars including prosodic information

The baseline that we are using is commonly called
the “Colloc3-Syll” model (Johnson and Goldwater,
2009) and is reported at 87% token F-score on the
standard Brent version of the Bernstein-Ratner cor-
pus corpus. It posits that sentences are composed of
3 hierarchical levels of collocations, the lower level
being collocations of words, and words are com-
posed of syllables. Goldwater et al. (2009) showed
how an assumption of independence between words
(a unigram model) led to under-segmentation. So,
above the Word level, we take the collocations (co-
occurring sequences) of words into account.
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Sentence — Colloc3™
Colloc3 — Colloc2™
Colloc2 — Collocl™
Collocl — Word"
Word — StructSyll

where the rule Colloc2 — Collocl™ is imple-
mented by:

Colloc2 — Collocsl
Collocsl — Collocl
Collocsl — Collocl Collocsl

Word splits into general syllables and initial- or
final- specific syllables in StructSyll. In English,
syllables consist of onsets or codas (producing con-
sonants), and nuclei (vowels). Onsets, nuclei and
codas are adapted, thus allowing this model to mem-
orize sequences or consonants or sequences of vow-
els, dependent on their position in the word. Conso-
nants and vowels are the pre-terminals, their deriva-
tion is specified in the grammar into phonemes of
the language. In Japanese, syllables are adapted and
are composed either of (Consonant-)Vowel(-Nasal)
or Nasal. Phonemes are annotated either as conso-
nant, vowel, or nasal (the moraic nasal /N/).

To allow for these grammars to use the prosodic
information, we modify them so that prosodic
boundaries are considered as breaks at a given level
of collocations (or words). For instance we describe
below how we change a Colloc3-Syll grammar to
make use of the prosodic boundaries information at
the lower level of collocations (Colloc1), by using
the terminal symbols ““|” (the rest is unchanged):

Colloc2 — Collocsl
Collocs1 — Collocl
Collocsl — Collocl | Collocsl
Collocsl — Collocl Collocsl
Collocl — Word"

We produced and tested grammars which incor-

porated these prosodic boundary annotations at dif-
ferent levels, from C'ollocs3 down to Word level.
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Figure 2: Colloc3-Syll based grammars scores on the BU and CSJ datasets. We show the best results without prosodic
annotation, with hand-annotated prosody information (oracle), and with automatically derived annotations that maxi-
mize either F-score, precision, or recall of prosodic boundaries.

4 Materials

The experiments were performed on two distinct
languages: English and Japanese. For English, we
have chosen the Boston University radio news (BU)
corpus (Ostendorf et al., 1995) and the LUCID cor-
pus (Baker and Hazan, 2010). The first one, the
BU corpus, consists of broadcast news recorded by
professional speakers and is widely used in speech
prosody research. Here, we only used the prosody
annotated portion of the corpus, containing about 3
hours of recordings, labelled for accent tones and
prosodic breaks following the ToBI standard for
American English (Silverman et al., 1992). Level 3
and level 4 break indices, corresponding to interme-
diate and intonational phrase boundaries, were con-
sidered in this work. The recordings belonging to 6
speakers were used for the experiments, while those
belonging to one speaker were employed as a devel-
opment set, for setting the parameters of the auto-
matic boundary detection algorithm. The evaluation
set was divided into utterances, at pauses longer or
equal to 200 ms, giving in total 2,273 utterances hav-
ing 27,980 tokens.

While the BU corpus has the advantage of being
annotated for prosodic boundaries, and thus being
able to provide us with an upper bound of the perfor-
mance increase that the prosodic information could
bring, it is not large enough to give state-of-the-art
results using AG. For this, we have taken a large
corpus of spontaneous interactions, the LUCID cor-
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pus, and used it in connection to automatically de-
tected prosodic boundaries. Due to the more spon-
taneous nature of these materials, we have defined
utterances as being stretches of speech bounded by
pauses at least 500 ms long. Since durational infor-
mation is needed for the detection of the prosodic
boundaries, the corpus was force aligned using the
UPenn aligner (Yuan and Liberman, 2008). From
the utterances obtained we have excluded all utter-
ances containing hesitations or words not present in
the dictionary of the aligner. Thus, a total of 21,649
utterances were eventually used in the experiments,
corresponding to 118,640 tokens.

For Japanese, a subpart of the core of the Corpus
of Spontaneous Japanese (CSJ) was used (Maekawa,
2003). It contains more than 18 hours of academic
recordings from 70 speakers and it was annotated
for prosodic boundaries using the X-JToBI standard
(Maekawa et al., 2002). Oracle level 2 and level 3
prosodic breaks (accentual and intonational phrases)
were used in this study as well as automatically ob-
tained boundaries. The data set aside for the setting
of parameters belongs to 5 speakers, with the record-
ings of the rest of the speakers used for the evalua-
tion. We used the utterance markings provided with
the corpus, the evaluation set containing 21,974 ut-
terances and 195,744 tokens.

While previous studies on word segmentation
have focused on infant-directed speech (IDS), we
employ here corpora of adult-directed speech. The
reason behind this choice is the fact that IDS corpora



Model F-score Precision Recall
maxFscore .608 705 535
maxPrecision 391 986 244
maxRecall 496 377 724

Table 1: Automatic prosodic boundary annotation perfor-
mance on the BU corpus.

are not, generally, annotated for prosody. We would
expect that experiments on ADS would improve less
over the baseline, when compared to those run on
IDS, due to its less exaggerated prosody and its re-
duced number of prosodic boundaries. Thus, any
improvement found on ADS, would be found also
on IDS.

The corpora used have all been transcribed pho-
netically, but, for the purpose of this paper, we have
transformed this phonetic annotation into a phone-
mic one. For the English databases the mappings
proposed by Lee and Hon (1989) were employed,
with two notable exceptions: vowels /er/ and /axr/
were mapped to the phonemes /ah/ and /r/, while the
syllabic consonants /el/, /em/ and /en/ were mapped
to the label /ah/ and their corresponding consonant
(/1/, /m/ or /n/). For Japanese, we employed the same
mappings used by Boruta (2011).

5 Results

The prosodic boundary procedure on the BU and the
CSJ used oracle segmental (phonetic) information,
while phonemes were force-aligned from word-level
annotation for the LUCID. The prosodic boundaries
were evaluated with the classic measurements: pre-
cision, recall and F-score. The word segmentation
token F-scores were obtained every 10 epochs (for
less correlation due to the sampler) during the 100
epochs (BU corpus), or the 200 epochs (LUCID and
CSJ corpora) centered around the point of conver-
gence, and their mean and standard deviation com-
puted. The convergence point was determined by
smoothing the prior probability of the grammar with
a sliding window and choosing the epoch where the
negative log probability was the lowest.

5.1 English

The best parameters of the prosodic boundary detec-
tion system were searched for on the development
set left aside for this purpose. The F-score of the
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Figure 3: Colloc3-Syll based grammars scores on the
BU dataset, comparing results without prosodic annota-
tion, with those obtained by automatic prosodic bound-
aries that maximize F-score, added at different levels in
the grammar.

system was maximized and the best combination of
cues and conjunction of cues were pause+onset and
pause +nucleus, respectively. For these settings,
we then determined the threshold values which gave
the best F-score, precision and recall for boundary
detection, which were further used to run the algo-
rithm on the evaluation set. The results obtained on
the evaluation set for the systems trying to maximize
F-score (maxF'score), precision (maxPrecision)
or recall (max Recall) are presented in Table 1.

The word segmentation method was then run with
the grammars defined in section 3.2, with and with-
out prosodic boundary information. For the prosody
enhanced cases, both oracle and automatic bound-
aries were employed. The best results obtained on
the BU corpus, for each of the five settings, are il-
lustrated on the left side of Figure 2. It appears that
all cases that employ prosodic information improve
over the baseline, with oracle boundaries giving a
7% absolute performance gain.

Next, we looked in more detail at the behaviour
of the best system that uses automatic boundaries
(maxF'score). We present the token F-score ob-
tained by this system for the different levels of the
grammar where the prosodic information is added.

Although we obtained improvements on the BU
corpus, for all cases when prosodic information was
used, the overall results are far from state-of-the art



0.9

0.88

0.86 T

0.84

0.82

0.8

\

Token F-score

0.76

/"'

0.74

0.7

noProsody  Word Collocl Colloc2 Colloc3

Figure 4: Colloc3-Syll based grammars scores on the
LUCID dataset, comparing results without prosodic an-
notation, with those obtained by automatic prosodic
boundaries that maximize precision, added at different
levels in the grammar.

performance, due to the relatively small size of the
corpus. For this reason, we chose to test on a big-
ger English corpus, LUCID. While this corpus is
indeed larger, it has the disadvantage of not being
prosodically annotated. Thus, we investigated only
the cases when automatically determined prosodic
boundaries are employed. The detection of prosodic
boundaries used the same parameters obtained on
the BU corpus but, since no prosodic annotation ex-
ists, we were not able to perform the same evaluation
of the boundaries, as we did for BU.

The token F-scores for the best prosodic bound-
ary setting (max Precision) are displayed in Figure
4. These results are closer to the state-of-the-art for
English, which stand at 87% token F-score. Con-
trary to the results on the BU corpus, the prosody
enhanced system improves over the baseline only
when the boundary information is added at C'olloc2
or Colloc3 level (best gain: 0.8% absolute value).
While the improvements brought here tend to be
quite small, compared to those obtained for BU, we
are closer to ceiling value on LUCID and also the
quality of the automatic boundaries might be lower,
due to the different type of speech on which the pa-
rameters of the model were found.

With the Adaptor Grammar tending to slightly
over-segment the results, the inclusion of prosody
at Word or Collocl has increased the precision
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Model F-score Precision Recall
maxFscore 469 .533 418
maxPrecision .398 781 267
maxRecall 431 353 552

Table 2: Automatic prosodic boundary annotation perfor-
mance on the CSJ corpus.

slightly, at the expense of a significantly lower re-
call, and thus a lower overall F-score. This over-
segmentation trait was instead much more pro-
nounced for the BU corpus, where the increase in
precision was accompanied only by a slight decrease
in recall, brought the two measures closer together,
and thus has maximized the F-score.

5.2 Japanese

The same procedure for parameter detection as for
the BU corpus was applied and the best cues ob-
tained were pause + onset, while the best combi-
nation of conjunction of cues was pause+ f0Reset.
Table 2 illustrates the prosodic boundary results ob-
tained on the CSJ evaluation set, for the systems
maximizing F-score, precision and recall, respec-
tively.

Since oracle prosodic information was available
for this corpus, we were able to compare the perfor-
mance of the baseline to that of the oracle and au-
tomatic boundaries enhanced system. This compar-
ison is displayed in Figure 2, right hand side. Hav-
ing a sizable corpus, the results are more similar to
the state-of-the-art for Japanese, reported in (Four-
tassi et al., 2013) (55%). Increases in performance
can be observed when hand-labelled prosody is in-
troduced (12.3% absolute value), and also when au-
tomatic boundaries (max Precision) are employed
(10% absolute value).

Similarly to the previous experiments, we display
in Figure 5 the comparison between the baseline and
the best system employing automatic boundaries
(maxPrecision), for the different levels where the
information is added. It shows that prosody helps,
regardless of the level where prosody is used, al-
though it appears to favour the lower collocation lev-
els.



0.65

0.63

0.61

0.59 +

0.57

0.55 T

Token F-score

0.51

—t—

0.49

0.47

0.45

noProsody  Word Collocl Colloc2 Colloc3

Figure 5: Colloc3-Syll based grammars scores on the
CSJ dataset, comparing results without prosodic annota-
tion, with those obtained by automatic prosodic bound-
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6 Discussion and Conclusions

We have investigated the use of prosodic bound-
ary information for unsupervised word discovery in
a multilingual setting. We showed that prosodic
boundaries can improve word segmentation across
both languages even when automatically determined
boundaries are used. We also illustrated that the way
in which to integrate prosody into word segmen-
tation is not homogeneous across corpora, both in
terms of the level of collocation where these bound-
aries are introduced, and in terms of the balance be-
tween precision and recall, when it comes to using
automatic boundaries.

For the first issue, the results on BU suggest that
Word or Collocl would be the best level, those on
LUCID show that either C'olloc2 or C'olloc3 would
give the best performance, while the scores on CSJ
favors Collocl or Colloc2. But, if we were to
discard the results on BU, due to its heavy over-
segmentation and its small size, and use the collo-
cation level giving the most balanced scores on the
other two datasets, it appears that Colloc2 would
be the common denominator. Besides giving the
most balanced token scores it also gives the most
balanced boundary scores, striking a good compro-
mise between the under-segmentation produced by
adding the prosody at lower levels and the over-
segmentation tendency for boundaries introduced at
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higher levels.

To investigate the second issue, a closer look to
the tables presenting the evaluation of the automatic
boundaries (Table 1 and Table 2) is needed. The best
word segmentation scores on BU were obtained for
the max F'score system, but we can observe that the
condition also has a high precision (.705). At the
same time, the best score on CSJ was obtained for
the max Precision system, the maxF'score sys-
tem (with a precision of .533) giving no improve-
ment over the baseline (see Figure 2). Furthermore,
maz Recall, which has very low precisions, seems
to behave similar to, or below the baseline, for both
datasets. Thus, it appears that a relatively high preci-
sion for the prosodic boundaries is needed to obtain
improvements in word segmentation and, once this
condition is fulfilled, any increase in recall would
increase the gain over the baseline.

Further evidence supporting this can be found
when performing a word-based evaluation of the
automatic prosodic boundaries obtained. For the
BU and CSJ corpora, we computed the percentage
of word boundaries found, out of the total word
boundaries in the corpora, and the proportion of
incorrect word boundaries from the total number
of boundaries found (see Table 3). It shows that
the systems that bring improvements over the base-
line (maxF'score and maxPrecision for BU, and
max Precision for CSJ) have a relatively low rate
of false alarms (lower than 6%). At the same
time, the increase in performance can be obtained
even without a high coverage of the corpus, the
max Precision models achieving this with a cov-
erage lower than 10%.

Since all the resuls reported in this paper were
obtained using the state-of-the-art Adaptor Gram-
mar model, C'olloc3 — Syll, we also verified that
our results are generalizable across different mod-
els. We created several AG models, by varying
the following settings in the grammar: using either
one or three collocation levels, and having knowl-
edge or not of the syllabic structure. This gave us,
besides the already tested Colloc3 — Syll model,
three new models: C'olloc3—noSyll, Colloc— Syll
and Colloc —noSyll, which were all tested on the
CSJ. When evaluating the token F-score obtained
using these models, we can see improvements for all
the models, regardless of the nature of the prosodic



Corpus | Model % found % incorr

oracle 100 0

BU maxPrecision 7.0 0.1
maxFscore 20.3 5.7
maxRecall 40.4 34.2
oracle 100 0
maxPrec 9.9 0.04

€S maxFscore 21.0 23.5
maxRecall 32.8 51.3

Table 3: Word boundary-based evaluation of the three
systems used for prosodic boundary detection. We report
the percentage of correct word boundaries found and the
number of incorrect boundaries found, as a percentage of
all boundaries found.

boundaries used.

Before closing, we note that prosody seem to
helps differentially the segmentation of the two lan-
guages we tested. In Japanese we found improve-
ments reaching 10 percentage points in F-score,
whereas the improvements in English were more
modest (5 points for the BU, 1 point for the LU-
CID), when automatic boundaries are used. This
could be due to differences in the segmentation
problem across these two languages. Indeed, words
in Japanese are in their majority composed of several
syllables, and many words contain embedded words,
making the segmentation problem intrinsically more
difficult than in English, for which the large majority
of words are monosyllabic (Fourtassi et al., 2013). It
is possible that prosody particularly helps those lan-
guages with a polysyllabic lexicon, by helping pre-
vent over-segmentation.

While the current work examined the use of
prosodic boundaries for word segmentation in two
languages, we would like to extend the study to more
languages. We would expect a similar behaviour
also for other languages, but it would be interest-
ing to investigate the interaction between boundary
information and collocation level for other typolog-
ically distinct languages. Also, we have employed
here oracle segmental information for the automatic
detection of prosodic boundaries. In the future we
plan to completely automatize the process, by em-
ploying segmental durations obtained with signal-
based methods for speech segmentation. Finally,
prosody was introduced here by way of a discrete
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symbol, forcing us to make a binary decision. A
more integrated model would enable to associate
prosodic break with a probability distribution, over
acoustic features, thereby achieving the joint learn-
ing of segmentation and prosody.
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