Penalized Expectation Propagation for Graphical Models over Strings*

Ryan Cotterell and Jason Eisner
Department of Computer Science, Johns Hopkins University
{ryan.cotterell, jason}@cs. jhu.edu

Abstract

We present penalized expectation propaga-
tion (PEP), a novel algorithm for approximate
inference in graphical models. Expectation
propagation is a variant of loopy belief prop-
agation that keeps messages tractable by pro-
jecting them back into a given family of func-
tions. Our extension, PEP, uses a structured-
sparsity penalty to encourage simple mes-
sages, thus balancing speed and accuracy. We
specifically show how to instantiate PEP in the
case of string-valued random variables, where
we adaptively approximate finite-state distri-
butions by variable-order n-gram models. On
phonological inference problems, we obtain
substantial speedup over previous related al-
gorithms with no significant loss in accuracy.

1 Introduction

Graphical models are well-suited to reasoning about
linguistic structure in the presence of uncertainty.
Such models typically use discrete random vari-
ables, where each variable ranges over a finite set
of values such as words or tags. But a variable can
also be allowed to range over an infinite space of dis-
crete structures—in particular, the set of all strings,
a case first explored by Bouchard-Coté et al. (2007).
This setting arises because human languages
make use of many word forms. These strings are
systematically related in their spellings due to lin-
guistic processes such as morphology, phonology,
abbreviation, copying error and historical change.
To analyze or predict novel strings, we can model
the joint distribution of many related strings at once.
Under a graphical model, the joint probability of an
assignment tuple is modeled as a product of poten-
tials on sub-tuples, each of which is usually modeled
in turn by a weighted finite-state machine.
In general, we wish to infer the values of un-
known strings in the graphical model. Deterministic
*This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1423276, and by a
Fulbright Research Scholarship to the first author.

932

approaches to this problem have focused on belief
propagation (BP), a message-passing algorithm that
is exact on acyclic graphical models and approxi-
mate on cyclic (“loopy”) ones (Murphy et al., 1999).
But in both cases, further heuristic approximations
of the BP messages are generally used for speed.

In this paper, we develop a more principled and
flexible way to approximate the messages, using
variable-order n-gram models.

We first develop a version of expectation propa-
gation (EP) for string-valued variables. EP offers a
principled way to approximate BP messages by dis-
tributions from a fixed family—e.g., by trigram mod-
els. Each message update is found by minimizing a
certain KL-divergence (Minka, 2001a).

Second, we generalize to variable-order models.
To do this, we augment EP’s minimization prob-
lem with a novel penalty term that keeps the num-
ber of n-grams finite. In general, we advocate pe-
nalizing more “complex” messages (in our setting,
large finite-state acceptors). Complex messages are
slower to construct, and slower to use in later steps.

Our penalty term is formally similar to regulariz-
ers that encourage structured sparsity (Bach et al.,
2011; Martins et al., 2011). Like a regularizer, it
lets us use a more expressive family of distribu-
tions, secure in the knowledge that we will use only
as many of the parameters as we really need for a
“pretty good” fit. But why avoid using more param-
eters? Regularization seeks better generalization by
not overfitting the model to the data. By contrast,
we already have a model and are merely doing in-
ference. We seek better runtime by not over-fussing
about capturing the model’s marginal distributions.

Our “penalized EP” (PEP) inference strategy is
applicable to any graphical model with complex
messages. In this paper, we focus on strings, and
show how PEP speeds up inference on the computa-
tional phonology model of Cotterell et al. (2015).

We provide further details, tutorial material, and
results in the appendices (supplementary material).

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 932-942,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics

2 Background

Graphical models over strings are in fairly broad use.
Linear-chain graphical models are equivalent to cas-
cades of finite-state transducers, which have long
been used to model stepwise derivational processes
such as speech production (Pereira and Riley, 1997)
and transliteration (Knight and Graehl, 1998). Tree-
shaped graphical models have been used to model
the evolution and speciation of word forms, in order
to reconstruct ancient languages (Bouchard-Coté et
al., 2007; Bouchard-Co6té et al., 2008) and discover
cognates in related languages (Hall and Klein, 2010;
Hall and Klein, 2011). Cyclic graphical models
have been used to model morphological paradigms
(Dreyer and Eisner, 2009; Dreyer and Eisner, 2011)
and to reconstruct phonological underlying forms
(Cotterell et al., 2015). All of these graphical mod-
els, except Dreyer’s, happen to be directed ones.
And all of these papers, except Bouchard-Coté’s, use
deterministic inference methods—based on BP.

2.1 Graphical models over strings

A directed or undirected graphical model describes
a joint probability distribution over a set of random
variables. To perform inference given a setting of
the model parameters and observations of some vari-
ables, it is convenient to construct a factor graph
(Kschischang et al., 2001). A factor graph is a fi-
nite bipartite graph whose vertices are the random
variables {V1, V5, ...} and the factors {F, I, .. .}.
Each factor F'is a function of the variables that it is
connected to; it returns a non-negative real number
that depends on the values of those variables. We de-
fine our factor graph so that the posterior probability
p(Vi = v1,Va = vy,... | observations), as defined
by the original graphical model, can be computed as
proportional to the product of the numbers returned
by all the factors when V; = vy, Vo = v,

In a graphical model over strings, each random
variable V' is permitted to range over the strings >*
where Y is a fixed alphabet. As in previous work, we
will assume that each factor F' connected to d vari-
ables is a d-way rational relation, i.e., a function that
can be computed by a d-tape weighted finite-state
acceptor (Elgot and Mezei, 1965; Mohri et al., 2002;
Kempe et al., 2004). The weights fall in the semir-
ing (R, +, x): F’s return value is the fotal weight of

933

all paths that accept the d-tuple of strings, where a
path’s weight is the product of its arcs’ weights. So
our model marginalizes over possible paths in F'.

2.2 Inference by (loopy) belief propagation

Inference seeks the posterior marginal probabilities
p(V; = v | observations), for each i. BP is an it-
erative procedure whose “normalized beliefs” con-
verge to exactly these marginals if the factor graph is
acyclic (Pearl, 1988). In the cyclic case, the normal-
ized beliefs still typically converge and can be used
as approximate marginals (Murphy et al., 1999).

A full presentation of BP for graphical models
over strings can be found in Dreyer and Eisner
(2009). We largely follow their notation. N'(X) rep-
resents the set of neighbors of X in the factor graph.

For each edge in the factor graph, between a fac-
tor F' and a variable V', BP maintains two messages,
py—r and pp_y. Each of these is a function over
the possible values v of variable V', mapping each v
to a non-negative score. BP also maintains another
such function, the belief by, for each variable V.

In general, each message or belief should be re-
garded as giving only relative scores for the differ-
ent v. Rescaling it by a positive constant would only
result in rescaling other messages and beliefs, which
would not change the final normalized beliefs. The
normalized belief is the probability distribution by
such that each by (v) is proportional to by (v).

The basic BP algorithm is just to repeatedly select
and update a function until convergence. The rules
for updating puy ., pr—yv, and by, given the set of
“neighboring” messages in each case, can be found
as equations (2)—(4) of Dreyer and Eisner (2009).
(We will give the EP variants in section 4.)

Importantly, that paper shows that for graphical
models over strings, each BP update can be imple-
mented via standard finite-state operations of com-
position, projection, and intersection. Each message
or belief is represented as a weighted finite-state ac-
ceptor (WESA) that scores all strings v € %,

2.3 The need for approximation

BP is generally only used directly for short cascades
of finite-state transducers (Pereira and Riley, 1997;
Knight and Graehl, 1998). Alas, in other graphi-
cal models over strings, the BP messages—which
are acceptors—become too large to be practical.

In cyclic factor graphs, where exact inference for
strings can be undecidable, the WES As can become
unboundedly large as they are iteratively updated
around a cycle (Dreyer and Eisner, 2009). Even in
an acyclic graph (where BP is exact), the finite-state
operations quickly lead to large WFSAs. Each inter-
section or composition is a Cartesian product con-
struction, whose output’s size (number of automaton
states) may be as large as the product of its inputs’
sizes. Combining many of these operations leads to
exponential blowup.

3 Variational Approximation of WFSAs

To address this difficulty through EP (section 4), we
will need the ability to approximate any probability
distribution p that is given by a WFSA, by choosing
a “simple” distribution from a family Q.

Take Q to be a family of log-linear distributions

q0(v) = exp(0 - f(v)) / Zo

where 0 is a weight vector, f(v) is a feature vector
def

that describes v, and Zg = Y 5. exp(6 - f(v))
so that) gg(v) = 1. Notice that the featurization
function f specifies the family Q, while the varia-
tional parameters @ specify a particular ¢ € Q.

We project p into Q via inclusive KL divergence:

2

Now gg approximates p, and has support everywhere
that p does. We can get finer-grained approxima-
tions by expanding f to extract more features: how-
ever, 0 is then larger to store and slower to find.

(Voex*) (1)

0 = argming D(p || qo)

3.1 Finding 0

Solving (2) reduces to maximizing —H (p,qg) =
Ey~pllog ge(v)], the log-likelihood of gg on an “in-
finite sample” from p. This is similar to fitting a
log-linear model to data (without any regularization:
we want gg to fit p as well as possible). This objec-
tive is concave and can be maximized by following
its gradient E,,p,[f(v)] — Eygy[f(v)]. Often it is
also possible to optimize 6 in closed form, as we will

To be precise, we take Q = {qo : Zo is finite}. For exam-
ple, & = 0 is excluded because then Zg = 3 .. exp0 =
oo. Aside from this restriction, & may be any vector over
RU{—o0}. We allow —oo since it is a feature’s optimal weight
if p(v) = 0 for all v with that feature: then go(v) = 0 for such
strings as well. (Provided that f(v) > 0, as we will ensure.)

934

see later. Either way, the optimal gg matches p’s ex-
pected feature vector: E,q, [f(v)] = Epp[f(v)].
This inspired the name “expectation propagation.”

3.2 Working with 6

Although p is defined by an arbitrary WFSA, we can
represent qg quite simply by just storing the parame-
ter vector 6. We will later take sums of such vectors
to construct product distributions: observe that un-
der (1), gg, +6,(v) is proportional to gg, (v) - gg, (V).

We will also need to construct WFSA versions of
these distributions g9 € Q, and of other log-linear
functions (messages) that may not be normalizable
into distributions. Let ENCODE(€) denote a WFSA
that accepts each v € ¥* with weight exp(0 - f(v)).

3.3 Substring features

To obtain our family O, we must design f. Our
strategy is to choose a set of “interesting” substrings
W. For each w € WV, define a feature function
“How many times does w appear as a substring of
v?” Thus, f(v) is simply a vector of counts (non-
negative integers), indexed by the substrings in W.

A natural choice of W is the set of all n-grams for
fixed n. In this case, Q turns out to be equivalent to
the family of n-gram language models.? Already in
previous work (“variational decoding”), we used (2)
with this family to approximate WFSAs or weighted
hypergraphs that arose at runtime (Li et al., 2009).

Yet a fixed n is not ideal. If W is the set of bi-
grams, one might do well to add the trigram the—
perhaps because the is “really” a bigram (counting
the digraph th as a single consonant), or because the
bigram model fails to capture how common the is
under p. Adding the to WV ensures that gy will now
match p’s expected count for this trigram. Doing this
should not require adding all ||? trigrams.

By including strings of mixed lengths in VV we get
variable-order Markov models (Ron et al., 1996).

3.4 Arbitrary FSA-based features

More generally, let A be any unambiguous and com-
plete finite-state acceptor: that is, any v € X* has
exactly one accepting path in 4. For each arc or final
state a in A, we can define a feature function “How

?Provided that we include special n-grams that match at the
boundaries of v. See Appendix B.2 for details.

many times is a used when A accepts v?” Thus,
f(v) is again a vector of non-negative counts.
Section 6 gives algorithms for this general set-
ting. We implement the previous section as a spe-
cial case, constructing A so that its arcs essentially
correspond to the substrings in WW. This encodes a
variable-order Markov model as an FSA similarly to
(Allauzen et al., 2003); see Appendix B.4 for details.
In this general setting, ENCODE(®) just returns a
weighted version of A where each arc or final state a
has weight exp 6, in the (4, x) semiring. Thus, this
WFSA accepts each v with weight exp(0 - f(v)).

3.5 Adaptive featurization

How do we choose W (or .A)? Expanding WV will al-
low better approximations to p—but at greater com-
putational cost. We would like WV to include just
the substrings needed to approximate a given p well.
For instance, if p is concentrated on a few high-
probability strings, then a good VW might contain
those full strings (with positive weights), plus some
shorter substrings that help model the rest of p.

To select W at runtime in a way that adapts to p,
let us say that @ is actually an infinite vector with
weights for all possible substrings, and define W =
{w € ¥* : 6,, # 0}. Provided that WV stays finite,
we can store 0 as a map from substrings to nonzero
weights. We keep WV small by replacing (2) with

6 = argming D(p | go) +A-Q(60) (3)

where 2(6) measures the complexity of this W or
the corresponding A. Small WFSAs ensure fast
finite-state operations, so ideally, (@) should mea-
sure the size of ENCODE(#). Choosing A > 0 to be
large will then emphasize speed over accuracy.
Section 6.1 will extend section 6’s algorithms
to approximately minimize the new objective (3).
Formally this objective resembles regularized log-
likelihood. However, €2(€) is not a regularizer—
as section 1 noted, we have no statistical reason to
avoid “overfitting” p, only a computational one.

4 Expectation Propagation

Recall from section 2.2 that for each variable V', the
BP algorithm maintains several nonnegative func-
tions that score V’s possible values v: the messages
wy—p and pp_y (VF € N(V)), and the belief by .

935

Feature = Weight

c 1.04
a .83
t .86
ca .89
at 91
ct -.96

Figure 1: Information flowing toward V5 in EP (reverse
flow not shown). The factors work with purple p mes-
sages represented by WFSAs, while the variables work
with green 6 messages represented by log-linear weight
vectors. The green table shows a @ message: a sparse
weight vector that puts high weight on the string cat.

EP is a variant in which all of these are forced
to be log-linear functions from the same family,
namely exp(0- fy,(v)). Here fy, is the featurization
function we’ve chosen for variable V.3 We can rep-
resent these functions by their parameter vectors—
let us call those 8y, , O _,y, and Oy respectively.

4.1 Passing messages through variables

What happens to BP’s update equations in this set-
ting? According to BP, the belief by is the pointwise
product of all “incoming” messages to V. But as we
saw in section 3.2, pointwise products are far eas-
ier in EP’s restricted setting! Instead of intersecting
several WFSAs, we can simply add several vectors:

Oy= > Op_y)
F'eN(V)
Similarly, the “outgoing” message from V' to factor
F' is the pointwise product of all “incoming” mes-
sages except the one from F'. This message Oy _.
can be computed as 8y — 0 _y,, which adjusts (4).*
We never store this but just compute it on demand.

3A single graphical model might mix categorical variables,
continuous variables, orthographic strings over (say) the Roman
alphabet, and phonological strings over the International Pho-
netic Alphabet. These different data types certainly require dif-
ferent featurization functions. Moreover, even when two vari-
ables have the same type, we could choose to approximate their
marginals differently, e.g., with bigram vs. trigram features.

*If features can have —oo weight (footnote 1), this trick
might need to subtract —oo from —oo (the log-space version
of 0/0). That gives an undefined result, but it turns out that any
result will do—it makes no difference to the subsequent beliefs.

4.2 Passing messages through factors

Our factors are weighted finite-state machines, so
their messages still require finite-state computations,
as shown by the purple material in Figure 1. These
computations are just as in BP. Concretely, let F' be
a factor of degree d, given as a d-tape machine. We
can compute a belief at this factor by joining F’ with
d WFSAs that represent its d incoming messages,
namely ENCODE(@y_,) for V' € N(F). This
gives a new d-tape machine, br. We then obtain
each outgoing message (. by projecting by onto
its V tape, but removing (dividing out) the weights
that were contributed (multiplied in) by 8y _. 7o

4.3 Getting from factors back to variables

Finally, we reach the only tricky step. Each resulting
wr—y is a possibly large WFSA, so we must force it
back into our log-linear family to get an updated ap-
proximation @ r_,y. One cannot directly employ the
methods of section 3, because KL divergence is only
defined between probability distributions. (pp_y
might not be normalizable into a distribution, nor is
its best approximation necessarily normalizable.)

The EP trick is to use section 3 to instead approx-
imate the belief at V', which is a distribution, and
then reconstruct the approximate message to V' that
would have produced this approximated belief. The
“unapproximated belief” py resembles (4): it multi-
plies the unapproximated message r—,1 by the cur-
rent values of all other messages 0/ _,y,. We know
the product of those other messages, 0y, SO

)
where the pointwise product © is carried out by
WEFESA intersection and py . g « ENCODE(Oy).

We now apply section 3 to choose @y, such that

e, 1s a good approximation of the WFSA py . Fi-
nally, to preserve (4) as an invariant, we reconstruct

(6)

3This is equivalent to computing each pr_v by “general-
ized composition” of F' with the d — 1 messages to F' from
its other neighbors V’. The operations of join and generalized
composition were defined by Kempe et al. (2004).

In the simple case d = 2, F' is just a weighted finite-state
transducer mapping V' to V, and computing pr_.v reduces to
composing ENCODE(Oy_, r) with F' and projecting the result
onto the output tape. In fact, one can assume WLOG that d < 2,
enabling the use of popular finite-state toolkits that handle at
most 2-tape machines. See Appendix B.10 for the construction.

PV = pUr—v O gy

Op v =0y —0y_p

936

In short, EP combines pp_,yy with 8y _,p, then
approximates the result py, by @y before removing
0y _ r again. Thus EP is approximating pp_,y by

Or_v :=argmin D(pup_v O pv_r || g9 © pv—r)
’ = v =ov (7)

in a way that updates not only 8 z_,y but also 0y,.

Wisely, this objective focuses on approximating
the message’s scores for the plausible values wv.
Some values v may have py(v) = 0, perhaps be-
cause another incoming message 0 g,y rules them
out. It does not much harm the objective (7) if these
pr—y(v) are poorly approximated by gg, ., (v),
since the overall belief is still roughly correct.

Our penalized EP simply adds \ - () into (7).

4.4 The EP algorithm: Putting it all together

To run EP (or PEP), initialize all 8y and @ _,y to O,
and then loop repeatedly over the nodes of the factor
graph. When visiting a factor /', ENCODE its incom-
ing messages 0y _, (computed on demand) as WF-
SAs, construct a belief by, and update the outgoing
WESA messages pr—.yy. When visiting a variable
V, iterate K > 1 times over its incoming WFSA
messages: for each incoming pp_,y, compute the
unapproximated belief py- via (5), then update 8y to
approximate py/, then update 8 _,y via (6).

For possibly faster convergence, one can alternate
“forward” and “backward” sweeps. Visit the factor
graph’s nodes in a fixed order (given by an approx-
imate topological sort). At a factor, update the out-
going WFSA messages to later variables only. At
a variable, approximate only those incoming WFSA
messages from earlier factors (all the outgoing mes-
sages @y, will be recomputed on demand). Note
that both cases examine all incoming messages. Af-
ter each sweep, reverse the node ordering and repeat.

If gradient ascent is used to find the Oy, that ap-
proximates py, it is wasteful to optimize to conver-
gence. After all, the optimization problem will keep
changing as the messages change. Our implementa-
tion improves @y by only a single gradient step on
each visit to V, since V' will be visited repeatedly.

See Appendix A for an alternative view of EP.

S Related Approximation Methods

We have presented EP as a method for simplifying a
variable’s incoming messages during BP. The vari-

able’s outgoing messages are pointwise products of
the incoming ones, so they become simple too. Past
work has used approximations with a similar flavor.

Hall and Klein (2011) heuristically predetermine
a short, fixed list of plausible values for V' that were
observed elsewhere in their dataset. This list is anal-
ogous to our 8y . After updating ur_,v, they force
ur—vy(v) to 0 for all v outside the list, yielding a
finite message that is analogous to our O p_,y .

Our own past papers are similar, except they
adaptively set the “plausible values” list to
Uprenv) k-BEST(p—v). These strings are fa-
vored by at least one of the current messages to V
(Dreyer and Eisner, 2009; Dreyer and Eisner, 2011;
Cotterell et al., 2015). Thus, simplifying one of Vs
incoming messages considers all of them, as in EP.

The above methods prune each message, so may
prune correct values. Hall and Klein (2010) avoid
this: they fit a full bigram model by inclusive KL
divergence, which refuses to prune any values (see
section 3). Specifically, they minimized D(pup—y ©
T || go ® T), where T was a simple fixed function (a
0-gram model) included so that they were working
with distributions (see section 4.3). This is very sim-
ilar to our (7). Indeed, Hall and Klein (2010) found
their procedure “reminiscent of EP,” hinting that 7
was a surrogate for a real puy_ p term. Dreyer and
Eisner (2009) had also suggested EP as future work.

EP has been applied only twice before in the NLP
community. Daumé III and Marcu (2006) used EP
for query summarization (following Minka and Laf-
ferty (2003)’s application to an LDA model with
fixed topics) and Hall and Klein (2012) used EP for
rich parsing. However, these papers inferred a single
structured variable connected to all factors (as in the
traditional presentation of EP—see Appendix A),
rather than inferring many structured variables con-
nected in a sparse graphical model.

We regard EP as a generalization of loopy BP for
just this setting: graphical models with large or un-
bounded variable domains. Of course, we are not
the first to use such a scheme; e.g., Qi (2005, chap-
ter 2) applies EP to linear-chain models with both
continuous and discrete hidden states. We believe
that EP should also be broadly useful in NLP, since
it naturally handles joint distributions over the kinds
of structured variables that arise in NLP.

937

6 Two Methods for Optimizing 0

We now fill in details. If the feature set is defined by
an unambiguous FSA A (section 3.4), two methods
exist to max E,,[log gg(v)] as section 3.1 requires.

Closed-form. Determine how often .4 would tra-
verse each of its arcs, in expectation, when reading
a random string drawn from p. We would obtain an
optimal ENCODE(0) by, at each state of A, setting
the weights of the arcs from that state to be propor-
tional to these counts while summing to 1.° Thus,
the logs of these arc weights give an optimal 6.

For example, in a trigram model, the probability
of the c arc from the ab state is the expected count of
abc (according to p) divided by the expected count
of ab. Such expected substring counts can be found
by the method of Allauzen et al. (2003). For gen-
eral A, we can use the method sketched by Li et al.
(2009, footnote 9): intersect the WFSA for p with
the unweighted FSA A, and then run the forward-
backward algorithm to determine the posterior count
of each arc in the result. This tells us the expected to-
tal number of traversals of each arc in A4, if we have
kept track of which arcs in the intersection of p with
A were derived from which arcs in .A. That book-
keeping can be handled with an expectation semir-
ing (Eisner, 2002), or simply with backpointers.

Gradient ascent. For any given 8, we can use
the WFSAs p and ENCODE(0) to exactly compute
Ey~pllogge(v)] = —H (p, ge) (Cortes et al., 2006).
We can tune 0 to globally maximize this objective.

The technique is to intersect p with ENCODE(8),
after lifting their weights into the expectation semir-
ing via the mappings k — (k,0) and k — (0, log k)
respectively. Summing over all paths of this in-
tersection via the forward algorithm yields (Z,r)
where Z is the normalizing constant for p. We also
sum over paths of ENCODE(0) to get the normal-
izing constant Zg. Now the desired objective is
r/Z — log Zg. Its gradient with respect to @ can be
found by back-propagation, or equivalently by the
forward-backward algorithm (Li and Eisner, 2009).

An overlarge gradient step can leave the feasible
space (footnote 1) by driving Zg,, to oo and thus
driving (2) to oo (Dreyer, 2011, section 2.8.2). In
this case, we try again with reduced stepsize.

This method always yields a probabilistic FSA, i.e., the arc

weights are locally normalized probabilities. This does not sac-
rifice any expressiveness; see Appendix B.7 for discussion.

6.1 Optimizing 0 with a penalty

Now consider the penalized objective (3). Ideally,
(0) would count the number of nonzero weights in
6—or better, the number of arcs in ENCODE(). But
it is not known how to efficiently minimize the re-
sulting discontinuous function. We give two approx-
imate methods, based on the two methods above.
Proximal gradient. Leaning on recent advances
in sparse estimation, we replace this (@) with a
convex surrogate whose partial derivative with re-
spect to each 6,, is undefined at 6,, = 0 (Bach et al.,
2011). Such a penalty tends to create sparse optima.
A popular surrogate is an ¢, penalty, Q(0) £
> w |0w|. However, ¢; would not recognize that
0 is simpler with the features {ab, abc,abd} than
with the features {ab, pqr, xyz}. The former leads
to a smaller WFSA encoding. In other words, it is
cheaper to add abd once abc is already present, as
a state already exists that represents the context ab.
We would thus like the penalty to be the number
of distinct prefixes in the set of nonzero features,
H{u e X*: (Fz € %) Oy, # 0}, (8)
as this is the number of ordinary arcs in ENCODE(8)
(see Appendix B.4). Its convex surrogate is

Qe) =y > 6

uedr* reXy*

®

This tree-structured group lasso (Nelakanti et al.,
2013) is an instance of group lasso (Yuan and Lin,
2006) where the string w = abd belongs to four
groups, corresponding to its prefixes u = €,u =
a,u = ab,u = abd. Under group lasso, moving 6.,
away from 0 increases €2(0) by \|6,,| (just as in ¢1)
for each group in which w is the only nonzero fea-
ture. This penalizes for the new WFSA arcs needed
for these groups. There are also increases due to
w’s other groups, but these are smaller, especially
for groups with many strongly weighted features.
Our objective (3) is now the sum of a differ-
entiable convex function (2) and a particular non-
differentiable convex function (9). We minimize it
by proximal gradient (Parikh and Boyd, 2013). At
each step, this algorithm first takes a gradient step
as in section 6 to improve the differentiable term,
and then applies a “proximal operator” to jump to

938

®®9

Figure 2: Active set method, showing the infinite tree of
all features for the alphabet > = {a, b}. The green nodes
currently have non-zero weights. The yellow nodes are
on the frontier and are allowed to become non-zero, but
the penalty function is still keeping them at 0. The red
nodes are not yet considered, forcing them to remain at 0.

a nearby point that improves the non-differentiable
term. The proximal operator for tree-structured
group lasso (9) can be implemented with an efficient
recursive procedure (Jenatton et al., 2011).

What if 0 is co-dimensional because we allow all
n-grams as features? Paul and Eisner (2012) used
just this feature set in a dual decomposition algo-
rithm. Like them, we rely on an active set method
(Schmidt and Murphy, 2010). We fix abcd’s weight
at 0 until abc’s weight becomes nonzero (if ever);’
only then does feature abc become “active.” Thus,
at a given step, we only have to compute the gradient
with respect to the currently nonzero features (green
nodes in Figure 2) and their immediate children (yel-
low nodes). This hierarchical inclusion technique
ensures that we only consider a small, finite subset
of all n-grams at any given iteration of optimization.

Closed-form with greedy growing. There are
existing methods for estimating variable-order n-
gram language models from data, based on either
“shrinking” a high-order model (Stolcke, 1998) or
“growing” a low-order one (Siivola et al., 2007).

We have designed a simple “growing” algorithm
to estimate such a model from a WFSA p. It approx-
imately minimizes the objective (3) where §2(0) is
given by (8). We enumerate all n-grams w € >* in
decreasing order of expected count (this can be done
efficiently using a priority queue). We add w to W if
we estimate that it will decrease the objective. Every
so often, we measure the actual objective (just as in
the gradient-based methods), and we stop if it is no
longer improving. Algorithmic details are given in
Appendices B.8-B.9.

"Paul and Eisner (2012) also required bcd to have nonzero
weight, observing that abbcd is a conjunction abcAbcd (Mc-
Callum, 2003). This added test would be wise for us too.

Trigram EP (Gradient)
N Baseline
BB Penalized EP (Gradient)

,_.
e

\T
|

10°

Cross-Entropy (bits) Time (seconds, log-scale)
S

0 200 00 00 500 100 200 00 00 500 100 200 00 00 500
5 5 5
0 0 0
2.5 2.5 2.5 W
2.0 2.0 \/\/ 20 ~ _
L5 L5 L5 S
1.0 1.0 1.0 s~ _
0.5 0.5 (_/ 0.5 -~
00 ==———————————————— 0.0 mmm——== 00 T — :
100 200 00 00 500 100 200 00 00 500 100 200 00 00 500
German English Dutch

Figure 3: Inference on 15 factor graphs (3 languages x 5 datasets of different sizes). The first row shows the to-
tal runtime (logscale) of each inference method. The second row shows the accuracy, as measured by the negated
log-probability that the inferred belief at a variable assigns to its gold-standard value, averaged over “underlying mor-
pheme” variables. At this penalty level (A = 0.01), PEP [thick line] is faster than the pruning baseline of Cotterell et
al. (2015) [dashed line] and much faster than trigram EP, yet is about as accurate. (For Dutch with sparse observations,
it is considerably more accurate than baseline.) Indeed, PEP is nearly as fast as bigram EP, which has terrible accuracy.
An ideal implementation of PEP would be faster yet (see Appendix B.5). Further graphs are in Appendix C.

7 Experiments and Results

Our experimental design aims to answer three ques-
tions. (1) Is our algorithm able to beat a strong base-
line (adaptive pruning) in a non-trivial model? (2)
Is PEP actually better than ordinary EP, given that
the structured sparsity penalty makes it more algo-
rithmically complex? (3) Does the A parameter suc-
cessfully trade off between speed and accuracy?

All experiments took place using the graphical
model over strings for the discovery of underly-
ing phonological forms introduced in Cotterell et
al. (2015). They write: “Comparing cats ([kets]),
dogs ([dogz]), and quizzes ([kwiziz]), we see the
English plural morpheme evidently has at least three
pronunciations.” Cotterell et al. (2015) sought a uni-
fying account of such variation in terms of phono-
logical underlying forms for the morphemes.

In their Bayes net, morpheme underlying forms
are latent variables, while word surface forms are
observed variables. The factors model underlying-
to-surface phonological changes. They learn the fac-
tors by Expectation Maximization (EM). Their first
E step presents the hardest inference problem be-
cause the factors initially contribute no knowledge
of the language; so that is the setting we test on here.

939

Their data are surface phonological forms from
the CELEX database (Baayen et al., 1995). For each
of 3 languages, we run 5 experiments, by observ-
ing the surface forms of 100 to 500 words and run-
ning EP to infer the underlying forms of their mor-
phemes. Each of the 15 factor graphs has ~ 150-700
latent variables, joined by 500-2200 edges to 200—
1200 factors of degree 1-3. Variables representing
suffixes can have extremely high degree (> 100).

We compare PEP with other approximate infer-
ence methods. As our main baseline, we take the
approximation scheme actually used by Cotterell et
al. (2015), which restricts the domain of a belief to
that of the union of 20-best strings of its incoming
messages (section 5).We also compare to unpenal-
ized EP with unigram, bigram, and trigram features.

We report both speed and accuracy for all meth-
ods. Speed is reported in seconds. Judging accuracy
is a bit trickier. The best metric would to be to mea-
sure our beliefs’ distance from the true marginals or
even from the beliefs computed by vanilla loopy BP.
Obtaining these quantities, however, would be ex-
tremely expensive—even Gibbs sampling is infeasi-
ble in our setting, let alone 100-way WFSA intersec-
tions. Luckily, Cotterell et al. (2015) provide gold-
standard values for the latent variables (underlying

forms). Figure 3 shows the negated log-probabilities
of these gold strings according to our beliefs, aver-
aged over variables in a given factor graph. Our ac-
curacy is weaker than Cotterell et al. (2015) because
we are doing inference with their initial (untrained)
parameters, a more challenging problem.

Each update to 8y consisted of a single step of
(proximal) gradient descent: starting at the current
value, improve (2) with a gradient step of size n =
0.05, then (in the adaptive case) apply the proximal
operator of (9) with A = 0.01. We chose these
values by preliminary exploration, taking 7 small
enough to avoid backtracking (section 6.1).

We repeatedly visit variables and factors (sec-
tion 4.4) in the forward-backward order used by Cot-
terell et al. (2015). For the first few iterations, when
we visit a variable we make K = 20 passes over its
incoming messages, updating them iteratively to en-
sure that the high probability strings in the initial ap-
proximations are “in the ballpark”. For subsequent
iterations of message passing we take K = 1. For
similar reasons, we constrained PEP to use only un-
igram features on the first iteration, when there are
still many viable candidates for each morph.

7.1 Results

The results show that PEP is much faster than the
baseline pruning method, as described in Figure 3
and its caption. It mainly achieves better cross-
entropy on English and Dutch, and even though it
loses on German, it still places almost all of its prob-
ability mass on the gold forms. While EP with un-
igram and bigram approximations are both faster
than PEP, their accuracy is poor. Trigram EP is
nearly as accurate but even slower than the base-
line. The results support the claim that PEP has
achieved a “Goldilocks number” of n-grams in its
approximation—just enough n-grams to approxi-
mate the message well while retaining speed.

Figure 4 shows the effect of A on the speed-
accuracy tradeoff. To compare apples to apples, this
experiment fixed the set of pr_,1- messages for each
variable. Thus, we held the set of beliefs fixed, but
measured the size and accuracy of different approx-
imations to these beliefs by varying .

These figures show only the results from gradient-
based approximation. Closed-form approximation is
faster and comparably accurate: see Appendix C.

940

Ut

>
Il
-

o

o
>
I
o
. o
’lj

S e i
at Ut
o

*e
>
I
=
()
=

Entropy of Gold Standard (bits)

o
Ut

() * . .o
0.0 A=0012%80d. .
10°

se
solanded *

Cross

10

Number of Features (log-scale)

Figure 4: Increasing A will greatly reduce the number
of selected features in a belief—initially without harming
accuracy, and then accuracy degrades gracefully. (Num-
ber of features has 0.72 correlation with runtime, and is
shown on a log scale on the z axis.)

Each point shows the result of using PEP to approxi-
mate the belief at some latent variable V', using pp_,v
messages from running the baseline method on German.
Lighter points use larger A. Orange points are affixes
(shorter strings), blue are stems (longer strings). Large
circles are averages over all points for a given .

8 Conclusion and Future Work

We have presented penalized expectation propaga-
tion (PEP), a novel approximate inference algo-
rithm for graphical models, and developed specific
techniques for string-valued random variables. Our
method integrates structured sparsity directly into
inference. Our experiments show large speedups
over the strong baseline of Cotterell et al. (2015).

In future, instead of choosing A\, we plan to re-
duce A as PEP runs. This serves to gradually refine
the approximations, yielding an anytime algorithm
whose beliefs approach the BP beliefs. Thanks to
(7), the coarse messages from early iterations guide
the choice of finer-grained messages at later itera-
tions. In this regard, “Anytime PEP” resembles other
coarse-to-fine architectures such as generalized A*
search (Felzenszwalb and McAllester, 2007).

As NLP turns its attention to lower-resource lan-
guages and social media, it is important to model the
rich phonological, morphological, and orthographic
processes that interrelate words. We hope that the
introduction of faster inference algorithms will in-
crease the use of graphical models over strings. We
are releasing our code package (see Appendix D).

References

Cyril Allauzen, Mehryar Mohri, and Brian Roark. 2003.
Generalized algorithms for constructing statistical lan-
guage models. In Proceedings of ACL, pages 40-47.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Proceedings of the 12th International Con-
ference on Implementation and Application of Au-
tomata, volume 4783 of Lecture Notes in Computer
Science, pages 11-23. Springer.

R. Harald Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX lexical database on CD-
ROM.

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guil-
laume Obozinski, et al. 2011. Convex optimization
with sparsity-inducing norms. In S. Sra, S. Nowozin,
and S. J. Wright, editors, Optimization for Machine
Learning. MIT Press.

Alexandre Bouchard-Cété, Percy Liang, Thomas L Grif-
fiths, and Dan Klein. 2007. A probabilistic approach
to diachronic phonology. In Proceedings of EMNLP-
CoNLL, pages 887-896.

Alexandre Bouchard-Co6té, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2008. A probabilistic approach
to language change. In Proceedings of NIPS.

Victor Chahuneau. 2013. PyFST. https://
github.com/vchahun/pyfst.

Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and
Michael D Riley. 2006. Efficient computation of
the relative entropy of probabilistic automata. In
LATIN 2006: Theoretical Informatics, pages 323-336.
Springer.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In Proceedings of ACL, pages 625-630.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2015.
Modeling word forms using latent underlying morphs
and phonology. Transactions of the Association for
Computational Linguistics. To appear.

Hal Daumé III and Daniel Marcu. 2006. Bayesian query-
focused summarization. In Proceedings of ACL, pages
305-312.

Markus Dreyer and Jason Eisner. 2009. Graphical mod-
els over multiple strings. In Proceedings of EMNLP,
pages 101-110, Singapore, August.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using a
Dirichlet process mixture model. In Proceedings of
EMNLP, pages 616-627, Edinburgh, July.

Markus Dreyer. 2011. A Non-Parametric Model for the
Discovery of Inflectional Paradigms from Plain Text

941

Using Graphical Models over Strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD, April.

Jason Eisner. 2002. Parameter estimation for probabilis-
tic finite-state transducers. In Proceedings of ACL,
pages 1-8.

C.C. Elgot and J.E. Mezei. 1965. On relations defined by
generalized finite automata. IBM Journal of Research
and Development, 9(1):47-68.

Gal Elidan, Ian Mcgraw, and Daphne Koller. 2006.
Residual belief propagation: Informed scheduling for
asynchronous message passing. In Proceedings of
UAIL

P. F. Felzenszwalb and D. McAllester. 2007. The gen-
eralized A* architecture. Journal of Artificial Intelli-
gence Research, 29:153-190.

David Hall and Dan Klein. 2010. Finding cognate
groups using phylogenies. In Proceedings of ACL.
David Hall and Dan Klein. 2011. Large-scale cognate

recovery. In Proceedings of EMNLP.

David Hall and Dan Klein. 2012. Training factored
PCFGs with expectation propagation. In Proceedings
of EMNLP.

Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski,
and Francis Bach. 2011. Proximal methods for hierar-
chical sparse coding. The Journal of Machine Learn-
ing Research, 12:2297-2334.

André Kempe, Jean-Marc Champarnaud, and Jason Eis-
ner. 2004. A note on join and auto-intersection
of n-ary rational relations. In Loek Cleophas and
Bruce Watson, editors, Proceedings of the Eindhoven
FASTAR Days (Computer Science Technical Report
04-40), pages 64-78. Department of Mathematics
and Computer Science, Technische Universiteit Eind-
hoven, Netherlands, December.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4).

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. 2001.
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498-519,
February.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
EMNLP, pages 40-51.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009.
Variational decoding for statistical machine transla-
tion. In Proceedings of ACL, pages 593-601.

André F. T. Martins, Noah A. Smith, Pedro M. Q. Aguiar,
and Mario A. T. Figueiredo. 2011. Structured sparsity
in structured prediction. In Proceedings of EMNLP,
pages 1500-1511.

Andrew McCallum. 2003. Efficiently inducing features
of conditional random fields. In Proceedings of UAL

Thomas Minka and John Lafferty. 2003. Expectation-
propagation for the generative aspect model. In Pro-
ceedings of UAIL

Thomas P Minka. 2001a. Expectation propagation for
approximate Bayesian inference. In Proceedings of
UAI pages 362-3609.

Thomas P. Minka. 2001b. A Family of Algorithms for
Approximate Bayesian Inference. Ph.D. thesis, Mas-
sachusetts Institute of Technology, January.

Thomas Minka. 2005. Divergence measures and mes-
sage passing. Technical Report MSR-TR-2005-173,
Microsoft Research, January.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69-88.

Mehryar Mohri. 2000. Minimization algorithms for se-
quential transducers. Theoretical Computer Science,
324:177-201, March.

Mehryar Mohri. 2005. Local grammar algorithms. In
Antti Arppe, Lauri Carlson, Krister Linden, Jussi Pi-
itulainen, Mickael Suominen, Martti Vainio, Hanna
Westerlund, and Anssi Yli-Jyrd, editors, Inquiries into
Words, Constraints, and Contexts: Festschrift in Hon-
our of Kimmo Koskenniemi on his 60th Birthday, chap-
ter 9, pages 84-93. CSLI Publications, Stanford Uni-
versity.

Kevin P. Murphy, Yair Weiss, and Michael 1. Jordan.
1999. Loopy belief propagation for approximate in-
ference: An empirical study. In Proceedings of UAI,
pages 467-475.

Anil Nelakanti, Cédric Archambeau, Julien Mairal, Fran-
cis Bach, Guillaume Bouchard, et al. 2013. Structured
penalties for log-linear language models. In Proceed-
ings of EMNLP, pages 233-243.

Neal Parikh and Stephen Boyd. 2013. Proximal al-
gorithms. Foundations and Trends in Optimization,
1(3):123-231.

Michael Paul and Jason Eisner. 2012. Implicitly inter-
secting weighted automata using dual decomposition.
In Proceedings of NAACL-HLT, pages 232-242, Mon-
treal, June.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, California.

Fernando C. N. Pereira and Michael Riley. 1997. Speech
recognition by composition of weighted finite au-
tomata. In Emmanuel Roche and Yves Schabes, ed-
itors, Finite-State Language Processing. MIT Press,
Cambridge, MA.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of COLING-
ACL, pages 433-440, July.

942

Yuan Qi. 2005. Extending Expectation Propagation for
Graphical Models. Ph.D. thesis, Massachusetts Insti-
tute of Technology, February.

Dana Ron, Yoram Singer, and Naftali Tishby. 1996. The
power of amnesia: Learning probabilistic automata
with variable memory length. Machine Learning,
25(2-3):117-149.

Mark W Schmidt and Kevin P Murphy. 2010. Convex
structure learning in log-linear models: Beyond pair-
wise potentials. In Proceedings of AISTATS, pages
709-716.

Vesa Siivola, Teemu Hirsiméki, and Sami Virpioja. 2007.
On growing and pruning Kneser-Ney smoothed n-
gram models. IEEE Transactions on Audio, Speech,
and Language Processsing, 15(5):1617-1624.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proceedings of the
DARPA Broadcast News Transcription and Under-
standing Workshop, pages 270-274.

Ming Yuan and Yi Lin. 2006. Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49-67.

