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Abstract

Discourse relation classification is an im-
portant component for automatic discourse
parsing and natural language understanding.
The performance bottleneck of a discourse
parser comes from implicit discourse rela-
tions, whose discourse connectives are not
overtly present. Explicit discourse connec-
tives can potentially be exploited to collect
more training data to collect more data and
boost the performance. However, using them
indiscriminately has been shown to hurt the
performance because not all discourse con-
nectives can be dropped arbitrarily. Based on
this insight, we investigate the interaction be-
tween discourse connectives and the discourse
relations and propose the criteria for selecting
the discourse connectives that can be dropped
independently of the context without chang-
ing the interpretation of the discourse. Extra
training data collected only by the freely omis-
sible connectives improve the performance of
the system without additional features.

1 Introduction

The analysis of discourse-level structure has re-
ceived increasing attention from the field in recent
years (Feng and Hirst, 2012; Patterson and Kehler,
2013; Li et al., 2014). Discourse-level analysis is
typically concerned with relations between clauses
and sentences, linguistic units that go beyond sen-
tence boundaries. There are a few conceptions of
the discourse structure representation of a text such
as a tree (Mann and Thompson, 1988), or a graph
(Wolf et al., 2005). In the work we describe here,
we adopt the view of the Penn Discourse Treebank
(PDTB) (Prasad et al., 2008), which views a text as

a series of local discourse relations, each of which
consists of a discourse connective as a predicate tak-
ing two arguments. Syntactically, these two argu-
ments are typically realized as clauses or sentences.
The discourse connective (underlined) can either be
explicit, as in (1), or implicit, as in (2):

(1) [The city’s Campaign Finance Board has re-
fused to pay Mr Dinkins $95,142 in matching
funds]Arg1 because [his campaign records are
incomplete]Arg2.

(2) [So much of the stuff poured into its Austin,
Texas, offices that its mail rooms there simply
stopped delivering it]Arg1. Implicit=so [Now,
thousands of mailers, catalogs and sales pitches
go straight into the trash]Arg2.

Determining the sense of an explicit discourse re-
lation such as (1) is straightforward since “because”
is a strong indicator that the relation between the
two arguments is CONTINGENCY.CAUSE. This task
effectively amounts to disambiguating the sense of
discourse connective, which can be done with high
accuracy (Pitler et al., 2008).

However, in the absence of an explicit discourse
connective, inferring the sense of a discourse rela-
tion has proved to a very challenging task (Park and
Cardie, 2012; Rutherford and Xue, 2014). The sense
is no longer localized on one or two discourse con-
nectives and must now be inferred solely based on
its two textual arguments. Given the limited amount
of annotated data in comparison to the number of
features needed, the process of building a classi-
fier is plagued by the data sparsity problem (Li and
Nenkova, 2014). As a result, the classification ac-
curacy of implicit discourse relations remains much
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lower than that of explicit discourse relations (Pitler
et al., 2008).

One potential method for reducing the data spar-
sity problem is through a distantly supervised learn-
ing paradigm, which is the direction we take in
this work. Distant supervision approaches make
use of prior knowledge or heuristics to cheaply ob-
tain weakly labeled data, which potentially contain
a small number of false labels. Weakly labeled data
can be collected from unannotated data and incor-
porated in the model training process to supplement
manually labeled data. For our task, we can collect
instances of explicit discourse relations from unan-
notated data by some simple heuristics. After drop-
ping the discourse connectives, we should be able to
treat them as additional implicit discourse relations.

The approach assumes that when the discourse
connective is omitted, the discourse relation remains
the same, which is a popular assumption in discourse
analysis (Fraser, 2006; Schourup, 1999). This as-
sumption turns out to be too strong in many cases as
illustrated in (3):

(3) [I want to go home for the holiday]Arg1.
Nonetheless, [I will book a flight to
Hawaii]Arg2.

If “Nonetheless” is dropped in (3), one can no
longer infer the COMPARISON relation. Instead,
one would naturally infer a CONTINGENCY relation.
Dropping the connective and adding the relation as a
training sample adds noise to the training set and can
only hurt the performance. In addition, certain types
of explicit discourse relations have no corresponding
implicit discourse relations. For example, discourse
relations of the type CONTINGENY.CONDITION are
almost always expressed with an explicit discourse
connective and do not exist in implicit relations. We
believe this also explains the lack of success in pre-
vious attempts to boost the performance of implicit
discourse relation detection with this approach. (Bi-
ran and McKeown, 2013; Pitler et al., 2009). This
suggests that in order for this approach to work, we
need to identify instances of explicit discourse re-
lations that closely match the characteristics of im-
plicit discourse relations.

In this paper, we propose two criteria for selecting
such explicit discourse relation instances: omission
rate and context differential. Our selection criteria

first classify discourse connectives by their distribu-
tional properties and suggest that not all discourse
connectives are truly optional and not all implicit
and explicit discourse relations are equivalent, con-
trary to commonly held beliefs in previous studies
of discourse connectives. We show that only the
freely omissible discourse connectives gather addi-
tional training instances that lead to significant per-
formance gain against a strong baseline. Our ap-
proach improves the performance of implicit dis-
course relations without additional feature engineer-
ing in many settings and opens doors to more so-
phisticated models that require more training data.

The rest of the paper is structured as follows. In
Section 2, we describe the discourse connective se-
lection criteria. In Section 3, we present our dis-
course connective classification method and experi-
mental results that demonstrate its impact on infer-
ring implicit discourse relations. We discuss related
work and conclude our findings in Section 4 and 5
respectively.

2 Discourse Connective Classification and
Discourse Relation Extraction

2.1 Datasets used for selection

We use two datasets for the purposes of extracting
and selecting weakly labeled explicit discourse re-
lation instances: the Penn Discourse Treebank 2.0
(Prasad et al., 2008) and the English Gigaword cor-
pus version 3 (Graff et al., 2007).

The Penn Discourse Treebank (PDTB) is the
largest manually annotated corpus of discourse re-
lations on top of one million word tokens from the
Wall Street Journal (Prasad et al., 2008; Prasad et
al., 2007). Each discourse relation in the PDTB is
annotated with a semantic sense in the PDTB sense
hierarchy, which has three levels: CLASS, TYPE and
SUBTYPE. In this work, we are primarily concerned
with the four top-level CLASS senses: EXPANSION,
COMPARISON, CONTINGENCY, and TEMPORAL.
The distribution of top-level senses of implicit dis-
course relations is shown in Table 2. The spans
of text that participate in the discourse relation are
also explicitly annotated. These are called ARG1 or
ARG2, depending on its relationship with the dis-
course connective.

The PDTB is our corpus of choice for its lexical
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groundedness. The existence of a discourse relation
must be linked or grounded to a discourse connec-
tive. More importantly, this applies to not only ex-
plicit discourse connectives that occur naturally as
part of the text but also to implicit discourse rela-
tions where a discourse connective is added by an-
notators during the annotation process. This is cru-
cial to the work reported here in that it allows us to
compare the distribution of the same connective in
explicit and implicit discourse relations. In the next
subsection, we will explain in detail how we com-
pute the comparison measures and apply them to the
selection of explicit discourse connectives that can
be used for collecting good weakly labeled data.

We use the Gigaword corpus, a large unannotated
newswire corpus, to extract and select instances of
explicit discourse discourse relations to supplement
the manually annotated instances from the PDTB.
The Gigaword corpus is used for its large size of
2.9 billion words and its similarity to the Wall Street
Journal data from the PDTB. The source of the cor-
pus is drawn from six distinct international sources
of English newswire dating from 1994 - 2006. We
use this corpus to extract weakly labeled data for the
experiment.

2.2 Discourse relation extraction pattern
We extract instances of explicit discourse relations
from the Gigaword Corpus that have the same pat-
terns as the implicit discourse relations in the PDTB,
using simple regular expressions. We first sentence-
segment the Gigaword Corpus using the NLTK sen-
tence segmenter (Bird, 2006). We then write a set of
rules to prevent some common erroneous cases such
as because vs because of from being included.

If a discourse connective is a subordinating con-
junction, then we use the following pattern:

(Clause 1) (connective) (clause 2).

Clause 1 and capitalized clause 2 are then used as Arg1
and Arg2 respectively.

If a discourse connective is a coordinating conjunction
or discourse adverbial, we use the following pattern:

(Sentence 1). (Connective),(clause 2).

Sentence 1 and Clause 2 with the first word capitalized
are used as Arg1 and Arg2 respectively.

Although there are obviously many other syntactic pat-
terns associated with explicit discourse connectives, we
use these two patterns because these are the only patterns

that are also observed in the implicit discourse relations.
We want to select instances of explicit discourse relations
that match the argument patterns of implicit discourse re-
lations as much as possible. As restrictive as this may
seem, these two patterns along with the set of rules allow
us to extract more than 200,000 relation instances from
the Gigaword corpus, so the coverage is not an issue.

2.3 Discourse connective selection and
classification criteria

We hypothesize that connectives that are omitted often
and in a way that is insensitive to the semantic context
are our ideal candidates for extracting good weakly la-
beled data. We call this type of connectives freely omissi-
ble discourse connectives. To search for this class of con-
nectives, we need to characterize connectives by the rate
at which they are omitted and by the similarity between
their context, in this case their arguments, in explicit and
implicit discourse relations. This is possible because im-
plicit discourse connectives are inserted during annota-
tion in the PDTB. For each discourse connective, we can
compute omission rate and context differential from an-
notated explicit and implicit discourse relation instances
in the PDTB and use those measures to classify and select
discourse connectives.

2.3.1 Omission rate (OR)
We use omission rates (OR) to measure the level of

optionality of a discourse connective. The omission rate
of a type of discourse connective (DC) is defined as:

# occurrences of DC in implicit relations
# total occurrences of DC

Our intuition is that the discourse connectives that have
a high level of omission rate are more suitable as sup-
plemental training data to infer the sense of implicit dis-
course relations.

2.3.2 Context differential
The omission of a freely omissible discourse connec-

tive should also be context-independent. If the omission
of a discourse connective leads to a different interpreta-
tion of the discourse relation, this means that the explicit
and implicit discourse relations bound by this discourse
connective are not equivalent, and the explicit discourse
relation instance cannot be used to help infer the sense
of the implicit discourse relation. Conversely, if the con-
texts for the discourse connective in explicit and implicit
discourse relations do not significantly differ, then the ex-
plicit discourse relation instance can be used as weakly
labeled data.

To capture this intuition, we must quantify the con-
text differential of explicit and implicit discourse rela-
tions for each discourse connective. We represent the
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semantic context of a discourse connective through a un-
igram distribution over words in its two arguments, with
Arg1 and Arg2 combined. We use Jensen-Shannon Di-
vergence (JSD) as a metric for measuring the difference
between the contexts of a discourse connective in implicit
and explicit discourse relations. Computing a context dif-
ferential of the discourse connective therefore involves
fitting a unigram distribution from all implicit discourse
relations bound by that discourse connective and fitting
another from all explicit discourse relations bound by the
same discourse connective. We choose this method be-
cause it has been shown to be exceptionally effective in
capturing similarities of discourse connectives (Hutchin-
son, 2005) and statistical language analysis in general
(Lee, 2001; Ljubesic et al., 2008).

The Jensen-Shannon Divergence (JSD) metric for dif-
ference between Po, the semantic environments (unigram
distribution of words in Arg1 and Arg2 combined) in im-
plicit discourse relations, and Pr, the semantic environ-
ments in explicit discourse relations, is defined as:

JSD(Po||Pr) =
1
2
D(Po||M) +

1
2
D(Pr||M)

where M = 1
2 (Po + Pr) is a mixture of the two distribu-

tions and D(.||.) is Kullback-Leibler divergence function
for discrete probability distributions:

D(P ||Q) =
∑

i

ln(
P (i)
Q(i)

)P (i)

2.4 Discourse Connective Classification
Using the two metrics, we can classify discourse connec-
tives into the following classes:

1. Freely omissible: High OR and low JSD
2. Omissible: Low non-zero OR and low JSD.
3. Alternating I: High OR and high JSD.
4. Alternating II: Low non-zero OR and high JSD.
5. Non-omissible: Zero OR. JSD cannot be computed

because the connectives are never found in any im-
plicit discourse relations.

Classifying the connectives into these classes allow us
to empirically investigate which explicit discourse rela-
tions are useful as supplemental training data for deter-
mining the sense of implicit discourse relations. We dis-
cuss each type of connectives below.

2.4.1 Freely omissible discourse connectives
These are connectives whose usage in implicit and ex-

plicit discourse relations is indistinguishable and there-
fore suitable as a source of supplemental training data.
These connectives are defined as having high omission
rate and low context differential. This definition implies

that the omission is frequent and insensitive to the con-
text. “Because” and “in particular” in (4) and (5) are such
connectives. Dropping them has minimal impact on the
understanding the discourse relation between their two
arguments and one might argue they even make the sen-
tences sound more natural.

(4) We cleared up questions and inconsistencies very
quickly because the people who had the skills and
perspective required to resolve them were part of
the task team. (WSJ0562)

(5) Both companies are conservative marketers that rely
on extensive market research. P&G, in particular,
rarely rolls out a product nationally before extensive
test-marketing. (WSJ0589)

2.4.2 Omissible discourse connectives
They are connectives whose usage in implicit and ex-

plicit discourse relations is indistinguishable, yet they are
not often omitted because the discourse relation might be
hard to interpret without them. These connectives are de-
fined as having low omission rate and low context differ-
ential. For example,

(6) Such problems will require considerable skill to re-
solve. However, neither Mr. Baum nor Mr. Harper
has much international experience. (WSJ0109)

One can infer from the discourse that the problems re-
quire international experience, but Mr. Baum and Mr.
Harper don’t have that experience even without the dis-
course connective “however”. In other words, the truth
value of this proposition is not affected by the presence or
absence of this discourse connective. The sentence might
sound a bit less natural, and the discourse relation seems
a bit more difficult to infer if “however” is omitted.

2.4.3 Alternating discourse connectives
They are connectives whose usage in implicit and ex-

plicit discourse relations is substantially different and
they are defined as having high context differential. Hav-
ing high context differential means that the two argu-
ments of an explicit discourse connective differ substan-
tially from those of an implicit discourse. An example of
such discourse connectives is “nevertheless” in (7). If the
discourse connective is dropped, one might infer EXPAN-
SION or CONTINGENCY relation instead of COMPARI-
SON indicated by the connective.

(7) Plant Genetic’s success in creating genetically en-
gineered male steriles doesn’t automatically mean
it would be simple to create hybrids in all crops.
Nevertheless, he said, he is negotiating with Plant
Genetic to acquire the technology to try breeding
hybrid cotton. (WSJ0209)
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We hypothesize that this type of explicit discourse re-
lations would not be useful as extra training instances for
inferring implicit discourse relations because they will
only add noise to the training set.

2.4.4 Non-omissible discourse connectives
They are defined as discourse connectives whose omis-

sion rate is close to zero as they are never found in im-
plicit discourse relations. For example, conditionals can
not be easily expressed without the use of an explicit
discourse connective like “if”. We hypothesize that in-
stances of explicit discourse relations with such discourse
connectives would not be useful as additional training
data for inferring implicit discourse relations because
they represent discourse relation senses that do not exist
in the implicit discourse relations.

3 Experiments

3.1 Partitioning the discourse connectives
We only include the discourse connectives that appear
in both explicit and implicit discourse connectives in the
PDTB to make the comparison and classification possi-
ble. As a result, we only analyze 69 out of 134 connec-
tives for the purpose of classification. We also leave out
15 connectives whose most frequent sense acccounts for
less than 90% of their instances. For example, since can
indicate a TEMPORAL sense or a CONTINGENCY sense
of almost equal chance, so it is not readily useful for gath-
ering weakly labeled data. Ultimately, we have 54 con-
nectives as our candidates for freely omissible discourse
connectives.

We first classify the discourse connectives based on
their omission rates and context differentials as discussed
in the previous section and partition all of the explicit dis-
course connective instances based on this classification.
The distributions of omission rates and context differen-
tials show substantial amount of variation among differ-
ent connectives. Many connectives are rarely omitted and
naturally form its own class of non-omissible discourse
connectives (Figure 1). We run the agglomerative hier-
chical clustering algorithm using Euclidean distance on
the rest of the connectives to divide them into two groups:
high omission and low omission rates. The boundary be-
tween the two groups is around 0.65.

The distribution of discourse connectives with respect
to the context differential suggests two distinct groups
across the two corpora (Figure 2). The analysis only in-
cludes connectives that are omitted at least twenty times
in the PDTB corpus, so that JSD can be computed. The
hierarchical clustering algorithm divides the connectives
into two groups with the boundary at around 0.32, as
should be apparent from the histogram. The JSD’s com-
puted from the explicit discourse relations from the two
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Figure 1: Omission rates of the discourse connective
types vary drastically, suggesting that connectives vary
in their optionality. Some connectives are never omitted.
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Figure 2: The distributions of Jensen-Shannon Diver-
gence from both corpora shows two potential distinct
clusters of discourse connectives.

corpora are highly correlated (ρ = 0.80, p < 0.05), so we
can safely use the Gigaword corpus for the analysis and
evaluation.

The omission rate boundary and context differential
boundary together classify the discourse connectives into
four classes in addition to the non-omissible connectives.
When plotted against each other, omission rates and con-
text differential together group the discourse connectives
nicely into clusters (Figure 3). For the purpose of eval-
uation, we combine Alternating I and II into one class
because each individual class is too sparse on its own.
The complete discourse connective classification result is
displayed in Table 1.

Sense Train Dev Test
Comparison 1855 189 145
Contingency 3235 281 273
Expansion 6673 638 538
Temporal 582 48 55
Total 12345 1156 1011

Table 2: The distribution of senses of implicit discourse
relations in the PDTB
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Class Name OR JSD Connectives
Alternating I High High further, in sum, in the end, overall, similarly, whereas
Alternating II Low High earlier, in turn, nevertheless, on the other hand, ultimately
Freely Omissible High Low accordingly, as a result, because, by comparison, by contrast, consequently, for exam-

ple, for instance, furthermore, in fact, in other words, in particular, in short, indeed,
previously, rather, so, specifically, therefore,

Omissible Low Low also, although, and, as, but, however, in addition, instead, meanwhile, moreover, rather,
since, then, thus, while

Non-omissible zero NA as long as, if, nor, now that, once, otherwise, unless, until

Table 1: Classification of discourse connectives based on omission rate (OR) and Jensen-Shannon Divergence context
differential (JSD).
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Figure 3: The scattergram of the discourse connectives
suggest three distinct classes. Each dot represents a dis-
course connective.

3.2 Evaluation results
We formulate the implicit relation classification task as
a 4-way classification task in a departure from previ-
ous practice where the task is usually set up as four one
vs other binary classification tasks so that the effect of
adding the distant supervision from the weakly labeled
data can be more easily studied. We also believe this
setup is more natural in realistic settings. Each classifica-
tion instance consists of the two arguments of an implicit
discourse relation, typically adjacent pairs of sentences in
a text. The distribution of the sense labels is shown in Ta-
ble 2. We follow the data split used in previous work for a
consistent comparison (Rutherford and Xue, 2014). The
PDTB corpus is split into a training set, development set,
and test set. Sections 2 to 20 are used to train classifiers.
Sections 0 and 1 are used for developing feature sets and
tuning models. Section 21 and 22 are used for testing the
systems.

To evaluate our method for selecting explicit discourse
relation instances, we extract weakly labeled discourse
relations from the Gigaword corpus for each class of dis-
course connective such that the discourse connectives are
equally represented within the class. We train and test
Maximum Entropy classifiers by adding varying num-

ber (1000, 2000, . . . , 20000) of randomly selected ex-
plicit discourse discourse relation instances to the man-
ually annotated implicit discourse relations in the PDTB
as training data. We do this for each class of discourse
connectives as presented in Table 1. We perform 30 trials
of this experiment and compute average accuracy rates
to smooth out the variation from random shuffling of the
weakly labeled data.

The statistical models used in this study are from the
MALLET implementation with its default setting (Mc-
Callum, 2002). Features used in all experiments are taken
from the state-of-the-art implicit discourse relation classi-
fication system (Rutherford and Xue, 2014). The feature
set consists of combinations of various lexical features,
production rules, and Brown cluster pairs. These features
are described in greater detail by Pitler et al. (2009) and
Rutherford and Xue (2014).

Instance reweighting is required when using weakly
labeled data because the training set no longer represents
the natural distribution of the labels. We reweight each
instance such that the sums of the weights of all the in-
stances of the same label are equal. More precisely, if an
instance i is from class j, then the weight for the instance
wij is equal to the inverse proportion of class j:

wij =
Number of total instances

Size of class j · Number of classes

=

∑k
j′ cj′

cj · k =
n

cj · k
where cj is the total number of instances from class j and
k is the number of classes in the dataset of size n. It is
trivial to show that the sum of the weights for all instances
from class j is exactly n

k for all classes.
The impact of different classes of weakly labeled ex-

plicit discourse connective relations is illustrated in Fig-
ure 4. The results show that expicit discourse relations
with freely omissible discourse connectives (high OR and
low JSD) improve the performance on the standard test
set and outperform the other classes of discourse connec-
tives and the naive approach where all of the discourse
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Figure 4: Discourse connectives with high omission rates
and low context differentials lead to highest performance
boost over the state-of-the-art baseline (dotted line). Each
point is an average over multiple trials. The solid lines are
LOESS smoothing curves.

connectives are used. In addition, it shows that on av-
erage, the system with weakly labeled data from freely
omissible discourse connectives continues to rise as we
increase the number of samples unlike the other classes
of discourse connectives, which show the opposite trend.
This suggests that discourse connectives must have both
high omission rates and low context differential between
implicit and explicit use of the connectives in order to be
helpful to the inference of implicit discourse relations.

Table 3 presents results that show, overall, our best per-
forming system, the one using distant supervision from
freely omissible discourse connectives, raises the accu-
racy rate from 0.550 to 0.571 (p < 0.05; bootstrap test)
and the macro-average F1 score from 0.384 to 0.405.
We achieve such performance after we tune the subset of
weakly labeled data to maximize the performance on the
development set. Our distant supervision approach im-
proves the performance by adding more weakly labeled
data and no additional features.

For a more direct comparison with previous results,
we also replicated the state-of-the-art system described
in Rutherford and Xue (2014), who follows the practice
of the first work on this topic (Pitler et al., 2009) in setting
up the task as four binary one vs. other classifiers. The
results are presented in Table 4. The results show that the
extra data extracted from the Gigaword Corpus is particu-
larly helpful for minority classes such as Comparison vs.
Others and Temporal vs Others, where our current sys-
tem significantly outperforms that of Rutherford and Xue
(2014). Interestingly, the Expansion vs. Others classifier

Baseline Baseline
features + extra data

Expansion Precision 0.608 0.614
Recall 0.751 0.788
F1 0.672 0.691

Comparison Precision 0.398 0.449
Recall 0.228 0.276
F1 0.290 0.342

Contingency Precision 0.465 0.493
Recall 0.418 0.396
F1 0.440 0.439

Temporal Precision 0.263 0.385
Recall 0.091 0.091
F1 0.135 0.147

Accuracy 0.550 0.571
Macro-Average F1 0.384 0.405

Table 3: Our current 4-way classification system outper-
forms the baseline overall. The difference in accuracy is
statistically significant (p < 0.05; bootstrap test).

R&X Baseline Baseline
(2014) + extra data

Comparison vs Others 0.397 0.410 0.380
Contingency vs Others 0.544 0.538 0.539
Expansion vs Others 0.702 0.694 0.679
Temporal vs Others 0.287 0.333 0.246

Table 4: The performance of our approach on the binary
classification task formulation.

did not improve as the Expansion class in the four-way
classification (Table 3).

3.3 Just how good is the weakly labeled data?
We performed additional experiments to get a sense of
just how good the weakly labeled data extracted from an
unlabeled corpus are. Table 5 presents four-way classifi-
cation results using just the weakly labeled data from the
Gigaword Corpus. The results show that the same trend
holds when the implicit relations from the PDTB are not
included in the training process. The freely omissible dis-
course connectives achieves the accuracy rate of 0.505,
which is significantly higher than the other classes, but
they are weaker than the manually labeled data, which
achieves the accuracy rate of 0.550 for the same number
of training instances.

Weakly labeled data are not perfectly equivalent to
the true implicit discourse relations, but they do provide
strong enough additional signal. Figure 5 presents experi-
mental results that compare the impact of weakly labeled
data from Gigaword Corpus vs gold standard data from
the PDTB for the freely omissible class. The mean ac-
curacy rates from the PDTB data are significantly higher
than those from the Gigaword Corpus (p <0.05; t-test
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Gigaword Gigaword
Class only + Implicit PDTB

Freely omissible 0.505 0.571
Omissible 0.313 0.527

Alternating I + II 0.399 0.546
Non-Omissible 0.449 0.554

All of above 0.490 0.547

Table 5: The accuracy rates for the freely omissible class
are higher than the ones for the other classes both when
using the Gigaword data alone and when using it in con-
junction with the implicit relations in the PDTB.
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Figure 5: The PDTB corpus leads to more improvement
for the same amount of the data. However, Gigaword cor-
pus achieves significantly better performance (p < 0.05;
bootstrap test) when both models are tuned on the devel-
opement set.

and bootstrap test) for the same number of training in-
stances combined with the implicit discourse relations.
However, when the number of introduced weakly labeled
data exceeds a certain threshold of around 12,000 in-
stances, the performance of the Gigaword corpus rises
significantly above the baseline and the explicit PDTB
(Figure 4).

The relative superiority of our approach derives pre-
cisely from the two selection criteria that we propose.
The performance gain does not come from the fact that
freely omissible discourse connectives have better cov-
erage of all four senses (Table 6). When all classes are
combined equally, the system performs worse as we add
more samples although all four senses are covered. The
coverage of all four senses is not sufficient for a class of
discourse connectives to boost the performance. The two
selection criteria are both necessary for the success of this
paradigm.

4 Related work

Previous work on implicit discourse relation classifica-
tion have focused on supervised learning approaches (Lin
et al., 2010; Rutherford and Xue, 2014), and the distantly
supervised approach using explicit discourse relations

Sense
Class Comp. Cont. Exp. Temp.
Freely omissible 2 6 10 1
Omissible 4 2 5 3
Alternating I 1 0 5 0
Alternating II 2 0 0 3
Non-omissible 0 3 3 2

Table 6: The sense distribution by connective class.

has not shown satisfactory results (Pitler et al., 2009; Park
and Cardie, 2012; Wang et al., 2012; Sporleder and Las-
carides, 2008) Explicit discourse relations have been used
to remedy the sparsity problem or gain extra features with
limited success (Biran and McKeown, 2013; Pitler et al.,
2009). Our heuristics for extracting discourse relations
has been explored in the unsupervised setting (Marcu and
Echihabi, 2002), but it has never been evaluated on the
gold standard data to show its true efficacy. Our distant
supervision approach chooses only certain types of dis-
course connectives to extract weakly labeled data and is
the first of its kind to improve the performance in this task
tested on the manually annotated data.

Distant supervision approaches have recently been ex-
plored in the context of natural language processing due
to the recent capability to process large amount of data.
These approaches are known to be particularly useful
for relation extraction tasks because training data pro-
vided do not suffice for the task and are difficult to ob-
tain (Riloff et al., 1999; Yao et al., 2010). For example,
Mintz et al. (2009) acquire a large amount of weakly la-
beled data based on the Freebase knowledge base and im-
proves the performance of relation extraction. Distantly
supervised learning has also recently been demonstrated
to be useful for text classification problems (Speriosu et
al., 2011; Marchetti-Bowick and Chambers, 2012). For
example, Thamrongrattanarit et al. (2013) use simple
heuristics to gather weakly labeled data to perform text
classification with no manually annotated training data.

Discourse connectives have been studied and classi-
fied based on their syntactic properties such subordinat-
ing conjunction, adverbials, etc. (Fraser, 2006; Fraser,
1996). While providing a useful insight into how dis-
course connectives fit into utterances, the syntactic clas-
sification does not seem suitable for selecting useful dis-
course connectives for our purposes of distant supervi-
sion for our task.

5 Conclusion and Future Directions
We propose two selection criteria for discourse connec-
tives that can be used to gather weakly labeled data for
implicit discourse relation classifiers and improve the
performance of the state-of-the-art system without further
feature engineering. As part of this goal, we classify dis-
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course connectives based on their distributional semantic
properties and found that certain classes of discourse con-
nectives cannot be omitted in every context, which plague
the weakly labeled data used in previous studies. Our dis-
course connective classification allows for the better se-
lection of data points for distant supervision.

More importantly, this work presents a new direction
in distantly supervised learning paradigm for implicit dis-
course relation classification. This virtual dramatic in-
crease in the training set size allows for more feature en-
gineering and more sophisticated models. Implicit dis-
course relation classification is now no longer limited to
strictly supervised learning approaches.
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