
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 662–671,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

A Linear-Time Transition System for Crossing Interval Trees

Emily Pitler Ryan McDonald
Google, Inc.

{epitler,ryanmcd}@google.com

Abstract

We define a restricted class of non-projective
trees that 1) covers many natural language
sentences; and 2) can be parsed exactly with
a generalization of the popular arc-eager sys-
tem for projective trees (Nivre, 2003). Cru-
cially, this generalization only adds constant
overhead in run-time and space keeping the
parser’s total run-time linear in the worst
case. In empirical experiments, our proposed
transition-based parser is more accurate on
average than both the arc-eager system or
the swap-based system, an unconstrained non-
projective transition system with a worst-case
quadratic runtime (Nivre, 2009).

1 Introduction

Linear-time transition-based parsers that use either
greedy inference or beam search are widely used to-
day due to their speed and accuracy (Nivre, 2008;
Zhang and Clark, 2008; Zhang and Nivre, 2011). Of
the many proposed transition systems (Nivre, 2008),
the arc-eager transition system of Nivre (2003) is
one of the most popular for a variety of reasons. The
arc-eager system has a well-defined output space:
it can produce all projective trees and only projec-
tive trees. For an input sentence with n words,
the arc-eager system always performs 2n operations
and each operation takes constant time. Another
attractive property of the arc-eager system is the
close connection between the parameterization of
the parsing problem and the final predicted output
structure. In the arc-eager model, each operation has
a clear interpretation in terms of constraints on the

final output tree (Goldberg and Nivre, 2012), which
allows for more robust learning procedures (Gold-
berg and Nivre, 2012).

The arc-eager system, however, cannot produce
trees with crossing arcs. Alternative systems can
produce crossing dependencies, but at the cost of
taking O(n2) transitions in the worst case (Nivre,
2008; Nivre, 2009; Choi and McCallum, 2013), re-
quiring more transitions than arc-eager to produce
projective trees (Nivre, 2008; Gómez-Rodrı́guez and
Nivre, 2010), or producing trees in an unknown out-
put class1 (Attardi, 2006).

Graph-based non-projective parsing algorithms,
on the other hand, have been able to preserve many
of the attractive properties of their corresponding
projective parsing algorithms by restricting search
to classes of mildly non-projective trees (Kuhlmann
and Nivre, 2006). Mildly non-projective classes of
trees are characterizable subsets of directed trees.
Classes of particular interest are those that both
have high empirical coverage and that can be parsed
efficiently. With appropriate definitions of fea-
ture functions and output spaces, exact higher-order
graph-based non-projective parsers can match the
asymptotic time and space of higher-order projec-
tive parsers (Pitler, 2014).

In this paper, we propose a class of mildly non-
projective trees (§3) and a transition system (§4) that
is sound and complete with respect to this class (§5)
while preserving desirable properties of arc-eager:
it runs in O(n) time in the worst case (§6), and each
operation can be interpreted as a prediction about

1A characterization independent of the transition system is
unknown.

662

the final tree structure. At the same time, it can
produce trees with crossing dependencies. Across
ten languages, on average 96.7% of sentences have
dependency trees in the proposed class (Table 1),
compared with 79.4% for projective trees. The
implemented mildly non-projective transition-based
parser is more accurate than a fully projective parser
(arc-eager, (Nivre, 2003)) and a fully non-projective
parser (swap-based, (Nivre, 2009)) (§7.1).

2 Preliminaries

Given an input sentence w1w2 . . . wn, a dependency
tree for that sentence is a set of vertices V =
{0, 1, . . . , n} and arcs A ⊂ V × V . Each vertex
i corresponds to a word in the sentence and vertex 0
corresponds to an artificial root word, which is stan-
dard in the literature. An arc (i, j) ∈ A represents
a dependency between a modifier wj and a head wi.
Critically, the arc setA is constrained to form a valid
dependency tree: its root is at the leftmost vertex 0;
each vertex i has exactly one incoming arc (except
0, which has no incoming arcs); and there are no cy-
cles. A common extension is to add labels of syntac-
tic relations to each arc. For ease of exposition, we
will focus on the unlabeled variant during the discus-
sion but use a labeled variant during experiments.

A dependency tree is projective if and only if the
nodes in the yield of each subtree form a contigu-
ous interval with respect to the words and their order
in the sentence. For instance, the tree in Figure 1a
is non-projective since the subtrees rooted at came
and parade do not cover a contiguous set of words.
Equivalently, a dependency tree is non-projective if
and only if the tree cannot be drawn in the plane
above the sentence without crossing arcs. As we
will see, these crossing arcs are a useful measure
when defining sub-classes of non-projectivity. We
will often reason about the set of vertices incident to
a particular arc. The incident vertices of an arc are
its endpoints: for an arc (u, v), u and v are the two
vertices incident to it.

3 k-Crossing Interval Trees

We begin by defining a class of trees based on re-
strictions on crossing dependencies. The class def-
inition is independent of any transition system; it is
easy to check whether a particular tree is within the

root Who do you think came to DC where a parade was held for Sam

(a) A dependency tree with two disjoint sets (blue
and dashed/red and dotted) of crossing arcs (bold).

(root, think) (came, Who)

(DC, held) (held, where)

(parade, for)

(b) The auxiliary graph for the sentence above.
There are two connected components of crossed arcs,
one of which corresponds to the crossing interval
[root, came] and the other [DC, for].

Figure 1: A sentence with two crossing intervals.

class or not. We compare the coverage of this class
on various natural language datasets with the cover-
age of the class of projective trees.

Definition 1. Let A be a set of unlabeled arcs. The
Interval of A, Interval(A), is the interval from the
leftmost vertex inA to the rightmost vertex inA, i.e.,
Interval(A) = [min(VA),max(VA)], where VA =
{v : ∃u[(u, v) ∈ A ∨ (v, u) ∈ A]}.
Definition 2. For any dependency tree T , the
below procedure partitions the crossed arcs in
T into disjoint sets A1, A2,, Al such that
Interval(A1), Interval(A2), . . . , Interval(Al) are all
vertex-disjoint. These intervals are the crossing in-
tervals of the tree T .

Procedure: Construct an auxiliary graph with a
vertex for each crossed arc in the original tree. Two
such vertices are connected by an arc if the inter-
vals defined by the arcs they correspond to have a
non-empty intersection. Figure 1b shows the aux-
iliary graph for the sentence in Figure 1a. The
connected components of this graph form a parti-
tion of the graph’s vertices, and so also partition the
crossed arcs in the original sentence. The intervals
defined by these groups cannot overlap, since then
the crossed arcs that span the overlapping portion
would have been connected by an arc in the aux-
iliary graph and hence been part of the same con-
nected component.

Definition 3. A tree is a k-Crossing Interval tree if
for each crossing interval, there exists at most k ver-

663

2-Crossing 1-Endpoint-
Language Interval Crossing Projective
Basque 93.5 94.7 74.8
Czech 97.4 98.9 77.9
Dutch 91.4 95.8 63.6
English 99.2 99.3 93.4
German 94.7 96.4 72.3
Greek 99.1 99.7 84.4
Hungarian 95.3 96.3 74.7
Portuguese 99.0 99.6 83.3
Slovene 98.2 99.5 79.6
Turkish 99.1 99.3 89.9
Average 96.7 98.0 79.4

Table 1: Proportion of trees (excluding punctuation) in
each tree class for the CoNLL shared tasks training sets:
Dutch, German, Portuguese, and Slovene are from Buch-
holz and Marsi (2006); Basque, Czech, English, Greek,
Hungarian, and Turkish data are from Nivre et al. (2007).

tices such that a) all crossed arcs within the interval
are incident to at least one of these vertices and b)
any vertex in the interval that has a child on the far
side of its parent is one of these k vertices.

Figure 1a shows a 2-Crossing Interval tree. For
the first crossing interval, think and came satisfy
the conditions; for the second, parade and held
do. The coverage of 2-Crossing Interval trees is
shown in Table 1. Across datasets from ten lan-
guages with a non-negligible proportion of cross-
ing dependencies, on average 96.7% of dependency
trees are 2-Crossing Interval, within 1.3% of the
larger 1-Endpoint-Crossing class (Pitler et al., 2013)
and substantially larger than the 79.4% coverage of
projective trees. Coverage increases as k increases;
for 3-Crossing Interval trees, the average coverage
reaches 98.6%. Punctuation tokens are excluded
when computing coverage to better reflect language
specific properties rather than treebank artifacts; for
example, the Turkish CoNLL data attaches punctua-
tion tokens to the artificial root, causing a 15% abso-
lute drop in coverage for projective trees when punc-
tuation tokens are included (89.9% vs. 74.7%).

3.1 Connections to Other Tree Classes

k = 0 or k = 1 gives exactly the class of projec-
tive trees (even a single crossing implies two vertex-
disjoint crossed edges). 2-Crossing Interval trees are
a subset of the linguistically motivated 1-Endpoint-
Crossing trees (Pitler et al., 2013) (each crossed
edge is incident to one of the two vertices for the

root b a1 b1 a2 b2 . . . an−1 bn−1 an bn a

Figure 2: A 2-Crossing Interval tree that is not well-
nested and has unbounded block degree.

interval, so all edges that cross it are incident to
the other vertex for the interval); all of the exam-
ples from the linguistics literature provided in Pitler
(2013, p.132-136) for 1-Endpoint-Crossing trees are
2-Crossing Interval trees as well. 2-Crossing In-
terval trees are not necessarily well-nested and can
have unbounded block degree (Kuhlmann, 2013).
Figure 2 shows an example of a 2-Crossing Inter-
val tree (all crossed edges are incident to either a or
b; no children are on the far side of their parent) in
which the subtrees rooted at a and b are ill-nested
and each has a block degree of n+ 1.

4 Two-Registers Transition System

A transition system for dependency parsing com-
prises: 1) an initial configuration for an input sen-
tence; 2) a set of final configurations after which the
parsing derivation terminates; and 3) a set of deter-
ministic transitions for transitioning from one con-
figuration to another (Nivre, 2008).

Our transition system builds on one of the most
commonly used transition systems for parsing pro-
jective trees, the arc-eager system (Nivre, 2003).
An arc-eager configuration, c, is a tuple, (σ, β,A),
where 1) σ is a stack consisting of a subset of pro-
cessed tokens; 2) β is a buffer consisting of unpro-
cessed tokens; and 3)A is the set of dependency arcs
already added to the tree.

We define a new transition system called two-
registers. Configurations are updated to include two
registers R1 and R2, i.e., c = (σ, β,R1, R2, A). A
register contains one vertex or is empty: R1, R2 ∈
V ∪ {null}. Table 2 defines both the arc-eager and
two-registers transition systems. The two-registers
system includes the arc-eager transitions (top half of
Table 2) and three new transitions that make use of
the registers (bottom half of Table 2):
• Store: Moves the token at the front of the

buffer into the first available register, optionally

664

Arc-Eager• Initial configuration: ({0}, {1, . . . , n}, {})
• Terminal configurations (σ, {}, A)

Two-Registers• Initial configuration: ({}, {0, . . . , n}, null, null, {})
• Terminal configurations: (σ, {}, null, null, A)

Transition σ β R1 R2 A

A
rc

-E
ag

er Left-Arc σm..2 β1..n R1 R2 A ∪ {(β1, σ1)}
Right-Arc σm..1|β1 β2..n R1 R2 A ∪ {(σ1, β1)}
Shift σm..1|β1 β2..n R1 R2 A
Reduce σm..2 β1..n R1 R2 A

+
Tw

o-
R

eg
is

te
rs

Store(arc) σm..1 β2..n R1′ R2′ A ∪ B
Where: arc ∈ {left, right, no-arc}

B := {(β1, R1)} if arc=left, {(R1, β1)} if arc=right, and ∅ otherwise.
R1′ := (R1 = null) ? β1 : R1; R2′ := (R1 = null) ? R2 : β1.

Clear σm..2|ψ γ|β1..n null null A
Where: γ := (σ1 = β1 − 1) ? σ1 : (R2 = β1 − 1) ? R2 : null

ψ := {σ1} ∪NotCovered(R1) ∪NotCovered(R2)− {γ} in left-to-right order,
where NotCovered(x) := x if no edges in A cover x and ∅ otherwise.

Register-Stack(k, dir) σm..2|ψ β1..n R1 R2 A ∪ B
Where: k ∈ {1, 2} and dir ∈ {to-register, to-stack}

B := (dir = to-register) ? {(σ1, Rk)} : {(Rk, σ1)}
ψ := (dir = to-stack ∧ σ1 < Rk) ? null : σ1

Table 2: Transitions and the resulting state after each is applied to the configuration (σm..2|σ1, β1|β2..n, R1, R2, A).

Transition σ β R1 R2 A
. . . [that we Hans house] [helped paint] null null {(house, the)}
Store(no-arc) [that we Hans house] [paint] helped null
Store(right) [that we Hans house] [] helped paint ∪ {(helped, paint)}
Register-Stack(2, to-stack) [that we Hans] [] helped paint ∪ {(paint, house)}
Register-Stack(1, to-stack) [that we] [] helped paint ∪ {(helped, Hans)}
Register-Stack(1, to-stack) [that] [] helped paint ∪ {(helped, we)}
Register-Stack(1, to-register) [that] [] helped paint ∪ {(that, helped)}
Clear [that] [paint] null null

Table 3: An excerpt from a gold standard derivation of the sentence in Figure 3. The two words paint and house are
added to the registers and then crossed arcs are added between them and the top of the stack.

Transition Precondition Type
Left-Arc, Right-Arc R1 /∈ (σ1, β1) ∧R2 /∈ (σ1, β1) (2)
Store(·) (R1 = null ∨R2 = null) ∧ (β1 > last) (1)
Clear (R1 6= null) ∧ (R2 6= null ∨ β1 = null) ∧ (σ2 < R1) ∧ (σ1 /∈ (R1, R2)) (1)
Register-Stack(k, ·) (σ1 > last) ∨ (k = 1 ∧ ¬IsCovered(R1)) (1)

σ2 < Rright (2)
Register-Stack(k, to-register) (Rclose, σ1) /∈ A (3)
Register-Stack(k, to-stack) (σ1, Rfar) /∈ A (3)

Table 4: Preconditions that ensure the 2-Crossing Interval property for trees output by the two-registers transition
system, applied to a configuration (σm..1, β1..n, R1, R2, A). If σ1 < R1, Rclose := R1 and Rfar := R2; otherwise,
Rclose := R2 and Rfar := R1. Rright := (R2 = null) ? R1 : R2. Preconditions of type (1) ensure each pair of
registers defines a disjoint crossing interval; type (2) that only edges incident to registers are crossed; and type (3) that
only registers can have children on the far side of their parent.

665

das mer em Hans es huus halfed aastriiche
that we Hans the house helped paint

Figure 3: A clause with crossing edges (Shieber, 1985).

adding an arc between this token and the token
in the first register.
• Clear: Removes tokens from the registers, re-

ducing them completely if they are covered by
an edge inA or otherwise placing them back on
the stack in order. If either R2 or the top of the
stack is the token immediately to the left of the
front of the buffer, that token is placed back on
the buffer instead.
• Register-Stack: Adds an arc between the top

of the stack and one of the registers.
A derivation excerpt for the clause in Figure 3 is
shown in Table 3. The two tokens incident to all
crossed arcs helped and paint are stored in the reg-
isters. The crossed arcs are then added through
Register-Stack transitions, working outward from
the registers through the previous words in the sen-
tence: (paint, house), then (helped, Hans), etc. After
all the crossed arcs incident to these two tokens have
been added, the registers are cleared.

Preconditions related to rootedness, single-
headedness, and acyclicity follow the arc-eager sys-
tem straightforwardly: each transition that adds an
arc (h,m) checks that m is not the root, m does not
already have a head, and that h is not a descendant of
m. Preconditions used to guarantee that trees output
by the system are within the desired class are listed
in Table 4. In particular, they ensure that all crossed
arcs are incident to registers, and that each pair of
registers entails an interval corresponding to a self-
contained set of crossed edges. To avoid travers-
ingAwhile checking preconditions, two helper con-
stants are used: IsCovered(Rk)2 and last3.

2IsCovered(R1) is true if there exists an arc in A with
endpoints on either side of R1. Rather than enumerating arcs,
this boolean can be updated in constant time by setting it to true
only after a Register-Stack(2, dir) transition with σ1 < R1;
likewise R2 can only be covered with a Register-Stack(1, dir)
transition with σ1 > R2.

3last is used to indicate the rightmost partially processed
unreduced vertex after the last pair of registers were cleared (set
to the rightmost in γ, ψ after each Clear transition).

Lemma 1. In the two-registers system, all crossed
arcs are added through register-stack operations.

Proof. Suppose for the sake of contradiction that a
right arc (s, b) added when σ1 = s and β1 = b is
crossed in the final output tree (the argument for left-
arcs is identical). Let (l, r) with l < r be an arc that
crosses (s, b). One of {l, r} must be within the open
interval (s, b) and one of {l, r} /∈ [s, b]. When the
arc (s, b) is added, no tokens in the open interval
(s, b) remain. They cannot be in the stack or buffer
since the stack and buffer always remain in order;
they cannot be in registers by the precondition R1 /∈
(σ1, β1) ∧ R2 /∈ (σ1, β1) for Right-Arc transitions.
Thus, (l, r) must already have been added. It cannot
be that l ∈ (s, b) and r > b, since the rest of the
buffer has never been accessible to tokens left of b.
The ordering must then be l < s < r < b. Figure 4
shows that for each way (l, r) could have been added
(Right-Arc, 4a; Store(right), 4b; Register-Stack(k,
to-stack), 4c; Register-Stack(k, to-register), 4d), it
is impossible to keep s unreduced without violating
one of the preconditions.

The only other type of arc-adding operation is
Store. Similar logic holds: arcs added through Left-
Arc and Right-Arc transitions cannot cross these
arcs, since they would violate the preconditions
R1 /∈ (σ1, β1) ∧ R2 /∈ (σ1, β1); later arcs involv-
ing other registers would imply Clear operations that
violate σ2 < R1 ∧ σ1 /∈ (R1, R2).

5 Parsing 2-Crossing Interval Trees with
the Two-Registers Transition System

In this section we show the correspondence between
the two-registers transition system and 2-Crossing
Interval trees: each forest output by the transition
system is a 2-Crossing Interval tree (soundness) and
every 2-Crossing Interval tree can be produced by
the two-registers system (completeness).

5.1 Soundness: Two-Registers System→
2-Crossing Interval trees

Proof. Every crossed arc is incident to a token that
was in a register (Lemma 1). There cannot be any
overlap between register arcs where the correspond-
ing tokens were not in the registers simultaneously:
the Clear transition updates the book-keeping con-
stant last to be the rightmost vertex associated with

666

s

r . . . b l

(a) Right-Arc: s would have been in a register, and the Right-Arc
would have violated R1 /∈ (σ1, β1) ∧R2 /∈ (σ1, β1).

l r

. . . b s . . .

(b) Store(right): s would be on the stack when the registers were
cleared, so Clear would have violated σ2 < R1∧σ1 /∈ (R1, R2).

l

. . . b s . . . r

(c) Register-Stack(k, to-stack): If s was on the stack, then if s >
R2, Register-Stack(k, t-stack) would have violated σ2 < R2; if
s < R2, then s ∈ (R1, R2), and Clear would have violated
σ2 < R1 ∧ σ1 /∈ (R1, R2). If s instead was in R2 (not shown),
then it would get covered by (l, r) and reduced by Clear.

s r

. . . b l

(d) Register-Stack(k, to-register): s must have been in R2. s
would get covered by (l, r) and reduced by Clear.

Figure 4: If a stack-buffer arc (s, b) is added in the two-registers system, there cannot have been an earlier arc (l, r)
with l < s < r < b, since it would then be impossible to keep s unreduced without violating the preconditions.

the registers being cleared, and subsequent actions
cannot introduce crossed arcs to the last token or
to its left (by the β1 > last and σ1 > last pre-
conditions on storing and register-stack arcs, re-
spectively). Thus, each set of tokens that were in
registers simultaneously defines a crossing interval.
Condition (a) of Definition 3 is satisfied, since all
crossed arcs are incident to registers and at most two
vertices are in registers at the same time.

Assume that a vertex h, h /∈ {R1, R2}, has a
child m on the far side of its parent g (i.e., ei-
ther h < g < m or m < g < h). The edge
(h,m) is guaranteed to be crossed and so was added
through a register-stack arc (Lemma 1). The order-
ing h < g < m is not possible, since if (g, h) had
been added through a left-arc, then h would have
been reduced, and if (g, h) and (h,m) were both
added through register-stack arcs, then one of them
would have violated the (Rclose, σ1) /∈ A or the
(σ1, Rfar) /∈ A precondition. Similar reasoning can
rule out m < g < h. Thus Condition (b) of Defini-
tion 3 is also satisfied.

5.2 Completeness: 2-Crossing Interval trees→
Two-Registers System

Proof. The portions of a 2-Crossing Interval tree in-
between the crossing intervals can be constructed
using the transitions from arc-eager. For a partic-
ular crossing interval [l, r] and a particular choice of
two vertices a and b incident to all all crossed arcs in
the interval (l ≤ a < b ≤ r), a and b divide the in-
terval into: L = [l, a), a, M = (a, b), b, R = (b, r].

All arcs incident to neither a nor b must lie entirely
within L, M , or R.4

The parser begins by adding all arcs with
both endpoints in L, using the standard arc-eager
Shift/Reduce/Left-Arc/Right-Arc. It then shifts until
a is at the front of the buffer and stores a. It then re-
peats the same process to add the arcs lying entirely
in M until b reaches the front of the buffer, adding
the parent of a with a Register-Stack(1, to-register)
transition if the parent is in M and the arc is un-
crossed. b is then stored, adding the arc between a
and b if necessary. Throughout this process, the pre-
condition R1 /∈ (σ1, β1) ∧ R2 /∈ (σ1, β1) for left
and right arcs is satisfied.

Next, the parser will repeatedly take Register-
Stack transitions, interspersed with Reduce transi-
tions, to add all the arcs with one endpoint in {a, b}
and the other in L or M , working right-to-left from
b (i.e., from the top of the stack downwards). No
shifts are done at this stage, so the σ2 < R2 pre-
condition on Register-Stack arcs is always satisfied.
The σ1 > last precondition is also always satisfied
since all vertices in the crossing interval will be to
the right of the previous crossing interval boundary
point. After all these arcs are done, if there are any
uncrossed arcs incident to a to the left that go outside
of the crossing interval, they are added now with a
Register-Stack transition.5

4E.g., if there were an arc not incident to a or b with one
endpoint left of a and one endpoint right of a, then this arc
must be crossed or lie outside of the crossing interval.

5Only possible in the case l = a, in which case
¬ISCOVERED(a) and the transition is allowed.

667

Finally, the arcs with at least one endpoint in R
are added, using Register-Stack arcs for those with
the other endpoint in {a, b} and Left-Arc/Right-Arc
for those with both endpoints in R. Before any ver-
tex incident to a or b is shifted onto the stack, all
tokens on the stack to the right of b are reduced.

After all these arcs are added, the crossing interval
is complete. The boundary points of the interval that
can still participate in uncrossed arcs with the exte-
rior are left on the stack and buffer after the clear
operation, so the rest of the tree is still parsable.

6 Worst-case Runtime

The two-registers system runs in O(n) time: it com-
pletes after at most O(n) transitions and each tran-
sition takes constant time.

The total number of arc-adding actions (Left-Arc,
Right-Arc, Register-Stack, or a Store that includes
an arc) is bounded by n, as there are at most n arcs
in the final output. The net result of {Store, Store,
Clear} triples of transitions decreases the number
of tokens on the buffer by at least one, so these
triples, plus the number of Shifts and Right-Arcs, are
bounded by n. Finally, each token can be removed
completely at most once, so the number of Left-Arcs
and Reduces is bounded by n. Every transition fell
into one of these categories, so the total number of
transitions is bounded by 5n = O(n).

Each operation can be performed in constant time,
as all operations involve moving vertices and/or
adding arcs, and at most three vertices are ever
moved (Clear) and at most one arc is ever added.
Most preconditions can be trivially checked in con-
stant time, such as checking whether a vertex al-
ready has a parent or not. The non-trivial pre-
condition to check is acyclicity, and this can also
be checked by adding some book-keeping variables
that can be updated in constant time (full proof
omitted due to space constraints). For example,
in the derivation in Table 3, prior to the Register-
Stack(2, to-stack) transition, R1 →A R2 (helped
→A paint). After the arc (R2, σ1) (paint, house)
is added, R2→A σ1 and by transitivity, R1→A σ1.
The top of the stack is then reduced, and since σ2

does not have a parent to its right, it is not a descen-
dant of σ1, and so after Hans becomes the new σ1,
the system makes the update that R1, R2 9A σ1.

7 Experiments

The experiments compare the two-registers transi-
tion system for mildly non-projective trees proposed
here with two other transition systems: the arc-
eager system for projective trees (Nivre, 2003) and
the swap-based system for all non-projective trees
(Nivre, 2009). We choose the swap-based system
as our non-projective baseline as it currently repre-
sents the state-of-the-art in transition-based parsing
(Bohnet et al., 2013), with higher empirical perfor-
mance than the Attardi system or pseudo-projective
parsing (Kuhlmann and Nivre, 2010).

The arc-eager system is a reimplementation of
Zhang and Nivre (2011), using their rich feature set
and beam search. The features for the two other tran-
sition systems are based on the same set, but with
slight modifications to account for the different rel-
evant domains of locality. In particular, for the swap
transition system, we updated the features to account
for the fact that this transition system is based on the
arc-standard model and so the most relevant posi-
tions are the top two tokens on the stack. For the
two-register system, we added features over proper-
ties of the tokens stored in each of the registers. All
experiments use beam search with a beam of size
32 and are trained with ten iterations of averaged
structured perceptron training. Training set trees
that are outside of the reachable class (projective
for arc-eager, 2-Crossing Intervals for two-registers)
are transformed by lifting arcs (Nivre and Nilsson,
2005) until the tree is within the class. The test sets
are left unchanged. We use the standard technique
of parameterizing arc creating actions with depen-
dency labels to produce labeled dependency trees.

Experiments use the ten datasets in Table 1 from
the CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007). We
report numbers using both gold and automatically
predicted part-of-speech tags and morphological
attribute-values as features. For the latter, the part
of speech tagger is a first-order CRF model and
the morphological tagger uses a greedy SVM per-
attribute classifier. Evaluation uses CoNLL-X scor-
ing conventions (Buchholz and Marsi, 2006) and we
report both labeled and unlabeled attachment scores.

668

LAS (UAS)
Language eager swap two-registers
Basque 70.50 (78.06) 69.66 (77.44) 71.10 (78.57)
Czech 79.60 (85.55) 80.74 (86.82) 79.75 (85.93)
Dutch 78.69 (81.41) 79.65 (82.69) 80.77 (83.91)
English 90.00 (91.18) 90.16 (91.29) 90.36 (91.54)
German 88.34 (91.01) 86.76 (89.56) 89.08 (91.95)
Greek 77.34 (84.79) 76.90 (84.72) 77.59 (84.77)
Hungarian 80.00 (84.20) 79.93 (84.40) 80.21 (84.91)
Portuguese 88.30 (91.64) 87.92 (91.79) 87.40 (91.20)
Slovene 75.68 (83.97) 76.34 (84.47) 76.08 (84.33)
Turkish 68.83 (77.34) 70.71 (79.74) 70.94 (80.39)
Average 79.73 (84.92) 79.88 (85.29) 80.33 (85.75)

Table 5: Labeled and Unlabeled Attachment Scores (LAS
and UAS) on the CoNLL 2006/2007 Shared Task datasets
(gold part-of-speech tags and morphology).

LAS (UAS)
Language eager swap two-registers
Basque 64.36 (73.03) 63.23 (72.10) 64.27 (72.32)
Czech 75.92 (83.79) 76.92 (84.54) 76.37 (83.79)
Dutch 78.59 (81.07) 79.69 (83.03) 80.77 (83.71)
English 88.19 (89.77) 88.68 (90.32) 88.93 (90.50)
German 87.74 (90.62) 85.66 (88.40) 87.60 (90.48)
Greek 77.46 (85.14) 76.29 (84.65) 77.22 (84.82)
Hungarian 75.88 (81.61) 75.83 (81.89) 75.71 (82.43)
Portuguese 86.07 (90.16) 85.65 (89.86) 85.91 (90.16)
Slovene 71.72 (81.69) 71.36 (81.63) 71.58 (81.43)
Turkish 62.18 (74.22) 63.12 (75.26) 64.06 (76.82)
Average 76.81 (83.11) 76.64 (83.17) 77.24 (83.65)

Table 6: Labeled and Unlabeled Attachment Scores (LAS
and UAS) on the CoNLL 2006/2007 Shared Task datasets
(predicted part-of-speech tags and morphology).

7.1 Results

Table 5 shows the results using gold tags as fea-
tures, which is the most common set-up in the lit-
erature. The two-registers transition system has on
average 0.8% absolute higher unlabeled attachment
accuracy than arc-eager across the ten datasets in-
vestigated. Its UAS is higher than arc-eager for eight
out of the ten languages and is up to 2.5% (Dutch)
or 3.0% (Turkish) absolute higher, while never more
than 0.4% worse (Portuguese). The two-registers
transition system is also more accurate than the al-
ternate non-projective swap system on seven out of
the ten languages, with more than 1% absolute im-
provements in UAS for Basque, Dutch, and German.
The two-registers transition-system is still on aver-
age more accurate than either the arc-eager or swap
systems using predicted tags as features (Table 6).

Crossed / Uncrossed
Language eager swap two-registers
Basque 33.10 / 83.32 39.37 / 82.52 34.49 / 83.58
Czech 43.98 / 87.37 68.76 / 87.63 55.42 / 87.24
Dutch 40.08 / 87.66 71.08 / 85.70 69.19 / 87.08
English 27.66 / 91.98 42.55 / 92.00 42.55 / 92.09
German 55.29 / 91.60 72.35 / 89.46 75.29 / 91.85
Greek 29.94 / 84.79 33.12 / 84.76 30.57 / 84.94
Hungarian 44.40 / 84.98 55.40 / 84.07 55.60 / 84.77
Portuguese 48.17 / 90.98 58.64 / 90.79 57.07 / 89.96
Slovene 41.83 / 83.60 47.91 / 84.05 44.11 / 83.65
Turkish 45.07 / 86.20 70.39 / 86.15 56.25 / 87.31
Average 32.51 / 87.25 55.96 / 86.72 52.05 / 87.25

Table 7: UAS from Table 5 for tokens in which the in-
coming arc in the gold tree is crossed or uncrossed (recall
of both crossed and uncrossed arcs).

Finally, we analyzed the performance of each of
these parsers on both crossed and uncrossed arcs.
Even on languages with many non-projective sen-
tences, the majority of arcs are not crossed. Ta-
ble 7 partitions all scoring tokens into those whose
incoming arc in the gold tree is crossed and those
whose incoming arc is not crossed, and presents the
UAS scores from Table 5 for each of these groups.
On the crossed arcs, the swap system does the best,
followed by the two-registers system, with the arc-
eager system about 20% absolute less accurate. On
the uncrossed arcs, the arc-eager and two-registers
systems are tied, with the swap system less accurate.

8 Discussion and Related Work

There has been a significant amount of recent
work on non-projective dependency parsing. In
the transition-based parsing paradigm, the pseudo-
projective parser of Nivre and Nilsson (2005) was
an early attempt and modeled the problem by trans-
forming non-projective trees into projective trees via
transformations encoded in arc labels. While im-
proving parsing accuracies for many languages, this
method was both approximate and inefficient as the
increase in the cardinality of the label set affected
run time.

Attardi (2006) directly augmented the transition
system to permit limited non-projectivity by allow-
ing transitions between words not directly at the top
of the stack or buffer. While this transition system
had significant coverage, it is unclear how to pre-
cisely characterize the set of dependency trees that it

669

covers. Nivre (2009) introduced a transition system
that covered all non-projective trees via a new swap
transition that locally re-ordered words in the sen-
tence. The downside of the swap transition is that it
made worst-case run time quadratic. Also, as shown
in Table 7, the attachment scores of uncrossed arcs
decreases compared with arc-eager.

Two other transition systems that can be seen as
generalizations of arc-eager are the 2-Planar tran-
sition system (Gómez-Rodrı́guez and Nivre, 2010;
Gómez-Rodrı́guez and Nivre, 2013), which adds
a second stack, and the transition system of Choi
(Choi and McCallum, 2013), which adds a deque.
The arc-eager, 2-registers, 2-planar, and the Choi
transition systems can be seen as along a continuum
for trading off various properties. In terms of cover-
age, projective trees (arc-eager) ⊂ 2-Crossing Inter-
val trees (this paper) ⊂ 2-planar trees ⊂ all directed
trees (Choi). The Choi system uses a quadratic num-
ber of transitions in the worst case, while arc-eager,
2-registers, and 2-planar all use at most O(n) transi-
tions. Checking for cycles does not need to be done
at all in the arc-eager system, can be with a few con-
stant operations in the 2-registers system, and can be
done in amortized constant time for the other sys-
tems (Gómez-Rodrı́guez and Nivre, 2013).

In the graph-based parsing literature, there has
also been a plethora of work on non-projective pars-
ing (McDonald et al., 2005; Martins et al., 2009;
Koo et al., 2010). Recent work by Pitler and col-
leagues is the most relevant to the work described
here (Pitler et al., 2012, 2013, 2014). Like this work,
Pitler et al. define a restricted class of non-projective
trees and then a graph-based parsing algorithm that
parses exactly that set.

The register mechanism in two-registers transi-
tion parsing bears a resemblance to registers in Aug-
mented Transition Networks (ATNs) (Woods, 1970).
In ATNs, global registers are introduced to account
for a wide range of natural language phenomena.
This includes long-distance dependencies, which is
a common source of non-projective trees. While
transition-based parsing and ATNs use quite differ-
ent control and data structures, this observation does
raise an interesting question about the relationship
between these two parsing paradigms.

There are many additional points of interest to
explore based on this study. A first step would

be to generalize the two-registers transition system
to a k-registers system that can parse exactly k-
Crossing Interval trees. This will necessarily lead to
an asymptotic increase in run-time as k approaches
n. With larger values of k, the system would need
additional transitions to add arcs between the reg-
isters (extending the Store transition to consider all
subsets of arcs with the existing registers would be-
come exponential in k). If k were to increase all the
way to n, such a system would probably look very
similar to list-based systems that consider all pairs
of arcs (Covington, 2001; Nivre, 2008).

Another direction would be to define dynamic
oracles around the two-registers transition system
(Goldberg and Nivre, 2012; Goldberg and Nivre,
2013). The additional transitions here have inter-
pretations in terms of which trees are still reachable
(Register-Stack(·) adds an arc; Store and Clear in-
dicate that particular vertices should be incident to
crossed arcs or are finished with crossed arcs, re-
spectively). The two-registers system is not quite
arc-decomposable (Goldberg and Nivre, 2013): if
the wrong vertex is stored in a register then a
later pair of crossed arcs might both be individu-
ally reachable but not jointly reachable. However,
there may be a “crossing-sensitive” variant of arc-
decomposability that takes into account the vertices
crossed arcs are incident to that would apply here.

9 Conclusion

In this paper we presented k-Crossing Interval trees,
a class of mildly non-projective trees with high em-
pirical coverage. For the case of k = 2, we also
presented a transition system that is sound and com-
plete with respect to this class that is a generaliza-
tion of the arc-eager transition system and main-
tains many of its desirable properties, most notably
a linear worst-case run-time. Empirically, this tran-
sition system outperforms its projective counterpart
as well as a quadratic swap-based transition system
with larger coverage.

Acknowledgments

We’d like to thank Mike Collins, Terry Koo, Joakim
Nivre, Fernando Pereira, and Slav Petrov for helpful
discussions and comments.

670

References

G. Attardi. 2006. Experiments with a multilanguage
non-projective dependency parser. In Proceedings of
CoNLL, pages 166–170.

B. Bohnet, J. Nivre, I. Boguslavsky, R. Farkas, F. Ginter,
and J. Hajic. 2013. Joint morphological and syntactic
analysis for richly inflected languages. TACL, 1:415–
428.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In Proceedings
of CoNLL, pages 149–164.

J. D. Choi and A. McCallum. 2013. Transition-based de-
pendency parsing with selectional branching. In ACL,
pages 1052–1062.

M. A. Covington. 2001. A fundamental algorithm for
dependency parsing. Proceedings of the 39th Annual
ACM Southeast Conference, pages 95–102.

Y. Goldberg and J. Nivre. 2012. A dynamic oracle for
arc-eager dependency parsing. In COLING.

Y. Goldberg and J. Nivre. 2013. Training deterministic
parsers with non-deterministic oracles. TACL, 1:403–
414.

C. Gómez-Rodrı́guez and J. Nivre. 2010. A transition-
based parser for 2-planar dependency structures. In
Proceedings of ACL, pages 1492–1501.

C. Gómez-Rodrı́guez and J. Nivre. 2013. Divisible tran-
sition systems and multiplanar dependency parsing.
Computational Linguistics, 39(4):799–845.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Son-
tag. 2010. Dual decomposition for parsing with non-
projective head automata. In Proceedings of EMNLP,
pages 1288–1298.

M. Kuhlmann and J. Nivre. 2006. Mildly non-
projective dependency structures. In Proceedings of
COLING/ACL, pages 507–514.

M. Kuhlmann and J. Nivre. 2010. Transition-based
techniques for non-projective dependency parsing.
Northern European Journal of Language Technology,
2(1):1–19.

M. Kuhlmann. 2013. Mildly non-projective dependency
grammar. Computational Linguistics, 39(2).

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2009.
Concise integer linear programming formulations for
dependency parsing. In Proceedings of ACL, pages
342–350.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
2005. Non-projective dependency parsing using span-
ning tree algorithms. In Proceedings of HLT/EMNLP,
pages 523–530.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proceedings of ACL, pages 99–106.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL,
pages 915–932.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies, pages 149–
160.

J. Nivre. 2008. Algorithms for deterministic incremen-
tal dependency parsing. Computational Linguistics,
34(4):513–553.

J. Nivre. 2009. Non-projective dependency parsing in
expected linear time. In Proceedings of ACL, pages
351–359.

E. Pitler, S. Kannan, and M. Marcus. 2012. Dynamic
programming for higher order parsing of gap-minding
trees. In Proceedings of EMNLP, pages 478–488.

E. Pitler, S. Kannan, and M. Marcus. 2013. Finding opti-
mal 1-Endpoint-Crossing trees. TACL, 1(Mar):13–24.

E. Pitler. 2013. Models for improved tractability and
accuracy in dependency parsing. University of Penn-
sylvania.

E. Pitler. 2014. A crossing-sensitive third-order factor-
ization for dependency parsing. TACL, 2(Feb):41–54.

S. M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Philoso-
phy, 8(3):333–343.

W. A. Woods. 1970. Transition network grammars
for natural language analysis. Communications of the
ACM, 13(10):591–606.

Y. Zhang and S. Clark. 2008. A tale of two parsers: in-
vestigating and combining graph-based and transition-
based dependency parsing using beam-search. In Pro-
ceedings of EMNLP, pages 562–571.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. In Pro-
ceedings of ACL (Short Papers), pages 188–193.

671

