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Abstract

We present a comparative investigation of
word representations for part-of-speech (POS)
and morphological tagging, focusing on sce-
narios with considerable differences between
training and test data where a robust approach
is necessary. Instead of adapting the model
towards a specific domain we aim to build a
robust model across domains. We developed
a test suite for robust tagging consisting of six
languages and different domains. We find that
representations similar to Brown clusters per-
form best for POS tagging and that word rep-
resentations based on linguistic morphological
analyzers perform best for morphological tag-

ging.

1 Introduction

Most natural language processing (NLP) tasks can
be better solved if a preprocessor tags each word in
the natural language input with a label like “noun,
singular” or “verb, past tense” that gives some in-
dication of the syntactic role that the word plays in
its context. The most common form of such pre-
processing is POS tagging. However, for morpho-
logically rich languages, a large subset of the lan-
guages of the world, POS tagging in its original form
— where labels are syntactic categories with little
or no morphological information — does not make
much sense. The reason is that POS and morpho-
logical properties are mutually dependent, so solv-
ing only one task or solving the tasks sequentially is
inadequate. The most important dependence of this
type is that POS can be read off morphology in many
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cases; e.g., the morphological suffix “-iste” is a reli-
able indicator of the informal second person singu-
lar preterite indicative form of a verb in Spanish. In
what follows, we use the term “morphological tag-
ging” to refer to “morphological and POS tagging”
since morphological tags generally include POS in-
formation.

The importance of morphological tagging as part
of the computational linguistics processing pipeline
motivated us to conduct the research reported in this
paper. The specific setting that we address is in-
creasingly recognized as the setting in which most
practical NLP takes place: We look at scenarios with
considerable differences between the training data
and the application data, i.e., between the data that
the tagger is trained on and the data that it is ap-
plied to. This type of scenario is frequent because of
the great diversity and variability of natural language
and because of the high cost of annotation — which
makes it impossible to create large training sets for
each new domain. For this reason, we address mor-
phological tagging in a setting in which training and
application data differ.

The most common approach to this setting is
domain adaptation. Domain adaptation has been
demonstrated to have good performance in scenarios
with differently distributed training/test data. How-
ever, it has two disadvantages. First, it requires the
availability of data from the target domain. Second,
we need to do some extra work in domain adaptation
— consisting of taking target domain data and using it
to adapt our NLP system to the target domain — and
we end up with a number of different versions of our
NLP system. The extra work required and the pro-

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 526-536,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



liferation of different versions increase the possibil-
ity of errors and increase the complexity of deploy-
ing NLP technology. Similar to other recent work
(Zhang and Wang, 2009), we therefore take an ap-
proach that is different from domain adaptation. We
build a system that is robust across domains without
any modification. As a result, no extra work is re-
quired when the system is applied to a new domain:
there is only one system and we can use it for all
domains.

The key to making NLP components robust across
domains is the use of powerful domain-independent
representations for words. One of the main contri-
butions of this paper is that we compare the perfor-
mance of the most important representations that can
be used for this purpose. We find that two of these
are best suited for robust tagging. MarLiN (Mar-
tin et al., 1998) clusters — a derivative of Brown
clusters — perform best for POS tagging. MarLiN
clusters are also an order of magnitude more effi-
cient to induce than the original Brown clusters. We
provide an open source implementation of MarLiN
clustering as part of this publication (Section 8). We
compare the word representations to Morphological
Analyzers (MAs), which are finite-state transducers
that find the stems of a form and use them to de-
rive all its possible morphological readings. MAs
produce the best results in our experiments on mor-
phological tagging. Our initial expectation was that
domain differences and lack of coverage would put
manually created MAs at a disadvantage when com-
pared to learning algorithms that are run on very
large text corpora. However, our results clearly show
that MA-based representations are the best represen-
tations to use for robust morphological tagging.

The motivation for our work is that both mor-
phological tagging and the “robust” application set-
ting are important areas of research in NLP. To sup-
port this research, we created an extensive evalua-
tion set for six languages. This involved identify-
ing morphologically rich languages in which usable
data sets with different distributional properties were
available, designing mappings between different tag
sets, organizing a manual annotation effort for one of
the six languages and preparing large “general” (not
domain-specific) data sets for unsupervised learning
of word representations. The preparation and publi-
cation (Section 8) of this test suite is in itself a sig-
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nificant contribution.

The remainder of this paper is structured as fol-
lows. Section 2 discusses related work. Section 3
presents the representations we tested. Section 4 de-
scribes the data sets and the annotation and conver-
sion efforts required to create the in-domain (ID) and
out-of-domain (OOD) data sets. In Section 5, we de-
scribe the experiments and discuss our findings. In
Section 6, we provide an analysis of our results. Sec-
tion 7 summarizes our findings and contributions.

2 Related Work

Morphological tagging (Oflazer and Kuruéz, 1994;
Haji¢ and Hladk4a, 1998) is the task of assigning a
morphological reading to a token in context. The
morphological reading consists of features such as
case, gender, person and tense and is represented as
a single tag. This allows for the application of stan-
dard sequence labeling algorithms such as Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001),
but also puts an upper bound on the accuracy as only
readings occurring in the training set can be pro-
duced. It is still the standard approach to morpho-
logical disambiguation as the number of readings
that cannot be produced is usually small.

The related work can be divided in systems
that try to exploit certain properties of a language
(Habash and Rambow, 2005; Yuret and Tiire, 2006)
and language-independent systems (Haji¢, 2000;
Smith et al., 2005). In this paper, we adopt a
language-independent approach.

Semi-supervised learning attempts to increase the
accuracy of a machine learning system by using ad-
ditional unlabeled data. Word representations, es-
pecially Brown clusters, have been extensively used
for named entity recognition (NER) (Miller et al.,
2004), parsing (Koo et al., 2008) and POS tagging
(Collobert and Weston, 2008; Huang et al., 2009).
In these papers, word representations were shown to
yield consistent improvements and to often outper-
form traditional semi-supervised methods such as
self-training. Prior work on semi-supervised train-
ing for morphological tagging includes Spoustova et
al. (2009) and Chrupala (2011). In contrast to this
earlier work on morphological tagging, we study a
number of morphologically more complex and di-
verse languages. We also compare learned represen-



tations to representations obtained from MAs.

Domain adaptation (DA) attempts to adapt a model
trained on a source domain to a target domain. DA
can be broadly divided into supervised and unsuper-
vised approaches depending on whether labeled tar-
get domain data is available or not. Among unsu-
pervised approaches to DA, representation learning
(Ando and Zhang, 2005; Blitzer et al., 2006) uses the
unlabeled target domain data to induce a structure
that is suitable for transferring information from the
labeled source domain to the target domain. Simi-
lar to representation learning for DA, we attempt to
include word representations into the model. How-
ever, we induce the representation from a general
domain in an attempt to obtain a model that has ro-
bust high accuracy across domains, for the source
domain as well as for the target domains, for which
neither labeled nor unlabeled training data is avail-
able.

3 Representations

We survey the following distributional represen-
tations: (i) count vectors reduced by a Singular
Value Decomposition (SVD), (ii) word clusters in-
duced using the likelihood of a class-based language
model, (iii) distributed embeddings trained using a
neural network and (iv) accumulated tag counts, a
task-specific representation obtained from an auto-
matically tagged corpus.

Singular value decomposition of word-feature
cooccurrence matrices (Schiitze, 1995) has been
found to be a fast and efficient way to obtain dis-
tributed embeddings. The approach selects a subset
of the vocabulary as so-called feature words, usually
by including words up to a certain frequency rank.
Every word form can then be represented by the ac-
cumulated counts of feature words occurring to its
left and right. Then an SVD is applied to the cooc-
currence matrix as a form of dimension reduction
and to reduce sparsity.

We also experimented with unreduced count vec-
tors, but they did not give better results than SVD
reduced count vectors. SVD-based representations
have been used in English POS induction (Lamar et
al., 2010) as well as as features in English POS tag-
ging and syntactic chunking (Huang et al., 2009);
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they have a similar level of accuracy as unsupervised
Hidden Markov Models (HMMs) in these studies.

Language model-based (LM-based) word clus-
ters were introduced by Brown et al. (1992) and
later found to be helpful in a range of NLP tasks.
The basic idea is to find the optimal clustering with
respect to the likelihood of a class-based language
model:
|D|
= argmax | [ plg(@i)lg(wi-1)) - plwilg(x:))
i=1

where g(z) is the cluster assignment function that
maps a word form z to a cluster and |D| denotes
the length of the training set. Brown et al. (1992)
propose a greedy bottom-up algorithm for the opti-
mization that merges the pair of clusters that yields
the smallest loss in likelihood; as well as a more
efficient approximation of that algorithm that limits
the number of clusters under consideration and still
works well in practice. It is used by most work in
the literature (Liang, 2005; Turian et al., 2010; Koo
et al., 2008).

We, however, found the algorithm proposed by
Martin et al. (1998) to be faster and to give slightly
better results. The algorithm is similar to K-means
in that it starts with an initial clustering and greed-
ily improves the objective function by moving sin-
gle words to their optimal cluster. In contrast to
K-means, it updates the objective function immedi-
ately. The algorithm has also been shown to work
well in unsupervised POS induction (Clark, 2003;
Blunsom and Cohn, 2011). Our implementation
of this algorithm is called MarLiN and has been
made available as open-source software (Section 8).
Miller et al. (2004) use tags of different granular-
ity induced from unlabeled text to improve the per-
formance of an averaged perceptron tagger (Collins,
2002) on an English NER task.

The Brown algorithm induces a tree where leaves
represent a single word form and the root node
the entire vocabulary. Intermediate nodes represent
clusters of different sizes and can be addressed by
a binary string specifying the path from the root
node to the cluster. Brown clusters are also used
by Koo et al. (2008) to improve dependency pars-
ing for English and Czech. Chrupala (2011) com-
pare Brown clusters to a Latent Dirichlet Allocation



(LDA) model on Spanish and French morphological
tagging and find them to yield similar performance.’

Neural networks have been used by Collobert and
Weston (2008) to train embeddings for POS tag-
ging as well as other NLP tasks. These embed-
dings — henceforth CW embeddings — are trained
by building a neural network that given contexts
of a word as input is trained to discriminate be-
tween the correct center word and a random word.
The proposed training algorithm is reported to need
several days or even weeks, but has been reimple-
mented by Al-Rfou et al. (2013), who induced em-
beddings for the Wikipedias of more than 100 lan-
guages. Turian et al. (2010) find that the perfor-
mance of Brown clusters is competitive with more
training intensive embeddings like CW. In our exper-
iments, we find that MarLiN clusters slightly outper-
form CW. We do not evaluate bag-of-words models
such as WORD2VEC (Mikolov et al., 2013), because
the ordering of words is essential for finding mor-
phological properties.

Accumulated tag counts (ACT) are a form of task-
specific sparse representation. The unlabeled cor-
pus is first annotated by a tagger; for each occurring
word form, the number of times a specific tag was
assigned can then be used as a representation. Gold-
berg and Elhadad (2013) and (Szant6 and Farkas,
2014) show that using such information in the word-
preterminal emission probabilities of PCFGs can
improve parsing accuracy. Specifically, Szanté and
Farkas (2014) show that this approach performs as
well as an MA in some cases. We find MAs to be
more effective than the accumulated count embed-
dings; this is not a contradiction as we try to improve
the performance of the tagger itself.

4 Data Preparation

Our test suite consists of data sets for six differ-
ent languages: Czech (cs), English (en), German
(de), Hungarian (hu), Spanish (es) and Latin (la).
Czech, German, Hungarian and Latin are morpho-
logically rich. We chose these languages because

'The authors claim that LDA Gibbs sampling is faster than
the induction of Brown clusters because it only depends linearly
on the number of clusters. We, however, could not train their
models on our bigger data sets as the sampling depends linearly
on the number of tokens.
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they represent different families: Germanic (En-
glish, German), Romance (Latin, Spanish), Slavic
(Czech) and Finno-Ugric (Hungarian) and differ-
ent degrees of morphological complexity and syn-
cretism. For example, English and Spanish rarely
mark case while the other languages do; and as an
agglutinative language, Hungarian features a low
number of possible readings for a word form while
languages like German can have more than 40 dif-
ferent readings for a word form. An additional crite-
rion was to have a sufficient amount of labeled OOD
data. The data sets also feature an interesting selec-
tion of domain differences. For example, for Latin
we have texts from different epochs while the En-
glish data contains canonical and non-canonical text.

Labeled Data. This section describes the annotation
and conversion we performed to create consistent ID
and OOD data sets.> No conversion was required for
Hungarian, English and Latin as the data is already
annotated in a consistent way.

For Hungarian we use the (multi-domain) Szeged
Dependency Treebank (Vincze et al., 2010). We use
the part that was used in the SPMRL 2013 shared
task (Seddah et al., 2013) as ID data (news-wire) and
an excerpt from the novel /984 and a Windows 2000
manual as OOD data.

For Latin we use the PROIEL treebank (Haug and
Jghndal, 2008). It consists of data from the Vulgate
(bible text, ~ 380 AD), Commentarii de Bello Gal-
lico (= 50 BC), Letters from Cicero to his friend At-
ticus (= 50 BC) and The Pilgrimage of Aetheria (=
380 AD). We use the biggest text source (Vulgate)
as ID data and the remainder as OOD data.

For English we use the SANCL shared task data
(Petrov and McDonald, 2012), which consists of
Ontonotes 4.0 as ID data and five OOD domains
from the Google Web treebank: Yahoo! Answers,
weblogs, news groups, business reviews and emails.
For Czech we use the part of the Prague Depen-
dency Treebank (PDT) (Bohmova et al., 2003) that
was used in the CoNLL 2009 shared tasks (Haji¢
et al., 2009) as ID data. We use the Czech part
of the Multext East (MTE) corpus (Erjavec, 2010)
as OOD data. MTE consists of translations of the

Table 5 of the appendix provides a structured overview over
the domains and resources used for each language. The ap-
pendix can be found at http://cistern.cis.lmu.de/
marmot/naacl2015/appendix.pdf.



novel 7984 that have been annotated morphologi-
cally. PDT and MTE have been annotated using
two different guidelines that without further anno-
tation effort could only be merged by reducing them
to a common subset. Specifically, we removed fea-
tures such as sub POS tags as well as markers for
(in)animacy. The PDT features a number of tags that
are ambiguous and could not always be resolved.
The gender feature Q for example can mean femi-
nine or neuter. If we could not disambiguate such
a tag, we removed it; this results in morphological
tags that are not present in the MTE corpus and a
relatively high number of unseen tags. Instead of
describing the conversion process in greater detail
we refer to our conversion scripts (Section 8).

For Spanish we use the part of the AnCora corpus
(Taulé et al., 2008) of CoNLL 2009 and the IULA
treebank (Marimon et al., 2012), which consists of
five domains: law, economics, medicine, computer
science and environment. We use the AnCora cor-
pus as ID data set and IULA as OOD data set. The
two treebanks have been annotated using the same
annotation scheme, but slightly different guidelines.
Similar to Czech we merged the data sets by delet-
ing features that could not be merged or were not
present in one of the treebanks. Again we refer to
the conversion script for further details (Section 8).

For German we use the Tiger treebank (Brants et
al., 2002) in the same split as Miiller et al. (2013) as
ID data and the Smultron corpus (Volk et al., 2010)
as OOD data. Smultron consists of four parts: a
description of Alpine hiking routes, a DVD man-
ual, an excerpt of Sophie’s World and economics
texts. It has been annotated with POS and syntax,
but not with morphological features. We annotated
Smultron following the Tiger guidelines. The anno-
tation process was similar to Marimon et al. (2012)
in that the data sets were automatically tagged with
the MORPH tagger MarMoT (Miiller et al., 2013)
and then manually corrected by two annotators. This
tagger is a strong baseline as we could include fea-
tures based on gold lemma, POS and syntax (Seeker
and Kuhn, 2013). The agreement of the annotators
was .9628 and the x agreement .64.3 As most of the

3 For calculating , we assume that random agreement oc-
curs when both annotators agree with the reading proposed by
the tagger. We then estimate the probability of random agree-
ment by multiplying the individual estimated probabilities of
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differences between the annotators were cases where
only one of the annotators had corrected an obvious
error that the other had overlooked, the differences
were resolved by the annotators themselves.

We used the provided segmentation if available
and otherwise split ID data 8/1/1 into training, devel-
opment and test sets and OOD data 1/1 into devel-
opment and test sets if not mentioned otherwise. We
thus have a classical setup of in-domain news paper
text vs. prose, medical, law, economic or technical
texts for Czech, German, Spanish and Hungarian.
For English we have canonical vs. non-canonical
data and for Latin data of different epochs (ca. 400
AD vs 50 BC). Additionally, for German one of the
test domains is written in Swiss German.

Looking at some statistics of the labeled data
sets,* we find that: Hungarian and Latin are the lan-
guages with the highest OOV rates (27% and 37%,
which for reasons of consistency we will henceforth
write as follows: .27 and .37); Hungarian has a
very productive agglutinative morphology while the
high number of Latin OOVs can be explained by
the small training set (<60,000); Czech features the
highest unknown tag rate (.05) as well as the highest
unseen word-tag rate (.16). This can be explained by
the limits of the conversion procedure we discussed
above, e.g., ambiguous features like Q.

Unlabeled Data. As unlabeled data we use
Wikipedia dumps from 2014 for all languages ex-
cept for Latin for which we use the Patrologia
Latina, a collection of clerical texts from ca. 100
AD to 1200 AD from Corpus Corporum (Roelli,
2014). We do not use the Latin version of Wikipedia
because it is written by enthusiasts, not by native
speakers, and contains many errors.

We preprocessed the Wikipedia dumps with
WIKIPEDIAEXTRACTOR (Attardi and Fuschetto,
2013) and NLTK’s (Bird et al., 2009) implemen-
tation of PUNKT (Kiss and Strunk, 2006) to de-
tect sentence boundaries. Tokenization was per-
formed using MAGYARLANC (Hungarian, Zsibrita et
al. (2013)), STANFORD TOKENIZER (English, Man-
ning et al. (2014)), FREELING (Spanish, Padré and
Stanilovsky (2012)) and CZECHTOK> (Czech). For

changing the proposed tagging. This yields a random agree-
ment probability of .8965.
“Complete tables are in the appendix: Tables 1 and 2.
Shttp://sourceforge.net/projects/



Latin, we removed punctuation because PROIEL
does not contain punctuation. We also split off the
clitics ne, que and ve if the resulting token was ac-
cepted by LATMOR (Springmann et al. (2014)). Fol-
lowing common practice, we normalized the text by
replacing digits with 0s.°

In our experiments, we extract representations for
the 250,000 most frequent word types. This vo-
cabulary size is comparable to other work; e.g.,
Turian et al. (2010) use 269,000 types. This thresh-
old yields low fractions of uncovered tokens’ for
English and Latin (.009 and .02). For the other
languages, this fraction rises to .04. We also ex-
tract the morphological readings of the words in this
vocabulary using MAGYARLANC (Hungarian, Zsib-
rita et al. (2013)), FREELING (English and Spanish,
Padré and Stanilovsky (2012)), SMOR (German,
Schmid et al. (2004)), an MA from Charles Uni-
versity (Czech, Haji¢ (2001)) and LATMOR (Latin,
Springmann et al. (2014)). Throughout this paper
we extract one feature for each cluster id or MA
reading of the current word form. For example,
SMOR produces two readings for the German word
form erhielt ‘received’: <1><SG><PAST><IND>
and <2><SG><PasT><IND>, we thus fire two
features representing the respective tags whenever
erhielt is seen in the data. We also experimented
with cluster indexes of neighboring uni/bigrams, but
obtained no consistent improvement. For the dense
embeddings we analogously extract the vector of the
current word form.

S Experiments

For all our experiments we use MarMoT (Miiller
et al.,, 2013) a joint POS and morphological tag-
ger.® The CRF tagger employs a pruning strategy on
forward-backward lattices to efficiently handle big
tag sets and higher orders. Its feature set is similar
to Ratnaparkhi (1996) and Toutanova et al. (2003)
and includes prefixes, suffixes, immediate lexical
context and shape features based on capitalization,
special characters and digits. MarMoT was shown
to be a competitive POS and morphological tagger

czechtok/

®For statistics of the unlabeled data sets cf. Table 3 of the
appendix.

"Cf. Table 4 in the appendix.

8http://cistern.cis.1mu.de/marmot/
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across six languages (Miiller et al., 2013). In order
to make sure that it is also robust in an OOD setup
we compare it to the two popular taggers SVM-
Tool (Giménez and Marquez, 2004) and Morfette
(Chrupata et al., 2008). The results are summarized
in Table 1.

MarMoT uses stochastic gradient descent and
produces different results in each training run. We
therefore always report the average of five runs. The
OOD numbers are macro-averages over the different
OOD data sets of a language. ° The tables in this
paper are based on the development sets; the only
exception to this is Table 5, which is based on the
test set. MarMoT outperforms SVMTool and Mor-
fette on every language and setup (ID / OOD) ex-
cept for the Spanish OOD data set. For Czech, Ger-
man and Latin the improvements over the best base-
line are >1. Different orders of MarMoT behave
as expected: higher-order models (order>1) outper-
form first-order models. The only exception to this
is Latin. This suggests a drastic difference of the
tag transition probabilities between the Latin ID and
OOD data sets. Given the results in Table 1 and for
simplicity we use an second-order MarMoT model
in all subsequent experiments.

LM-based clustering. We first compare different
implementations of LM-based clustering. The im-
plementation of Brown clustering by Liang (2005) is
most commonly used. Its hierarchical binary struc-
ture can be used to extract clusterings of varying
granularity by selecting different prefixes of the path
from the root to a specific word form. Follow-
ing other work (Ratinov and Roth, 2009; Turian et
al., 2010), we induce 1000 clusters and select path
lengths 4, 6, 10 and 20. We call this representa-
tion Brown_path. We compare Brown_path to mk-
cls'® (Och, 1999) and MarLiN. These implementa-
tions just induce flat clusterings of a certain size; we
thus run them for cluster sizes 100, 200, 500 and
1000 to also obtain cluster ids of different sizes. The
cluster sizes roughly resemble the granularity ob-
tained in Browny,,. We call the corresponding mod-

“Throughout this paper we use the approximate randomiza-
tion test (Yeh, 2000) to establish significance. To this end, we
compare the output of the medians of the five independent mod-
els. We regard p-values <.05 as significant.

¥mkcls implements a similar training algorithm as MarLiN,
but uses simulated annealing, not greedy maximization.



MarMoT (1) MarMoT (2) MarMoT (3) Morfette SVMTool
ID OOD ID OOD ID OOD ID O0OOD ID OOD

cs  93.27 77.83 93.89 78.52 93.86 78.55 91.48 76.56 91.06 75.41
= de 8890 8274 90.26 84.19 90.54* 84.30 85.89 80.28 85.98 78.08
? es 9821 93.24 98.22 93.62 98.16 93.42 97.95 93.97* 97.96 91.36
£ hu 9611 89.78 96.07 89.83 95.92 89.70 95.47 89.18 94.72 88.44
la 86.09 67.90* 86.44 67.47 86.47 67.40 83.68 65.06 84.09 65.65

Table 1: Baseline experiments comparing MarMoT models of different orders with Morfette and SVMTool. Num-
bers denote average accuracies on ID and OOD development sets on the full morphological tagging task. A result
significantly better than the other four ID (resp. OOD) results in its row is marked with *.

mkcls
OOD

Browngy Brownpam MarLiN
ID 0OOD ID OOD ID OOD 1D

cs 99.19 97.25 99.18 97.21 99.19 97.26 99.21
de 98.08 9342 98.07 93.47 98.10 9344 98.11
en 9699 91.67 97.02 91.71 97.01 91.71 97.03
es 98.84 9791 98.84 97.97 98.87 97.97 98.84
hu 97.95 93.40 97.89 9339 97.98 93.36 97.99
la 96.78 86.49 96.62 86.60 9691 87.24 96.95

97.26
93.64*
91.86*
97.90
93.42
87.19

pos

cs 9420 7895 94.23 79.01 9435 79.14 94.32
de 90.71 8539 90.75 8544 90.78 85.58 90.68
es 98.47 95.08 98.47 95.12 9848 95.15 98.48
hu 96.60 90.57 96.52 90.54 96.60 90.64 96.61
la 87.53 71.69 87.44 71.60 87.87 72.08 87.67

79.11
85.47
95.13
90.66
71.88

morph

Table 2: Tagging results for LM-based models

els Browng,e, mkels and MarLiN. The runtime of the
Brown algorithm depends quadratically on the num-
ber of clusters while mkcls and MarLiN have linear
complexity. This is reflected in the training times:
For German the Brown algorithm takes ~ 5000 min,
mkcls ~ 2000 min and MarLiN ~ 500 min.

Table 2 shows that the absolute differences be-
tween systems are small, but overall MarLiN and
mkels are better.!! We conclude that systems based
on the algorithm of Martin et al. (1998) are slightly
more accurate for tagging and are several times
faster than the more frequently used version of
Brown et al. (1992). We thus use MarLiN for the
remainder of this paper.

Neural Network Representations. We compare
MarLiN with the implementation of CW by Al-Rfou
et al. (2013). They extracted 64-dimensional repre-
sentations for only the most frequent 100,000 word
forms. To make the comparison fair, we use the in-
tersection of our and their representation vocabular-
ies.!? The results in Table 3 show that MarLiN is

""Brown.n reaches the same performance as MarLiN in one
case: pos/es/OOD.

2We also use representations from Wikipedia (instead of
Corpus Corporum) for Latin to increase the similarity of the
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Baseline MarLiN CwW
ID OOD ID OOD ID OOD
cs  99.00 96.80 99.16* 97.06 99.12 97.00
de 97.87 92.21 98.03 93.35* 98.03 93.02
2 en 96.92 91.12 97.05 91.72 97.00 91.86*
ol es 98.62 96.70 98.79 97.82* 98.80 97.31
hu 97.49 92.79 97.94 93.30 97.88 93.40
la  95.80 81.92 96.35* 85.52*  95.88 84.50
cs  93.89 78.52 94.23* 78.91 94.10 78.80
<= de 9026 84.19 90.54 85.08 90.59 85.21
g es 98.22 93.62 98.44 94.97* 98.44 94.32
g hu 9607 89.83 96.47 90.60 96.48 90.95*
la 86.44 6747 86.95 70.30* 86.76 69.32

Table 3: Tagging results for CW

best in 15 out of 22 cases and significantly better in
eight. CW is best in 9 out of 22 cases and signif-
icantly better in two. We conclude that LM-based
representations are more suited for tagging as they
can be induced faster, are smaller and give better re-
sults.

SVD and ACT Representations. For the SVD-
based representation we use feature ranks out of
{500, 1000} and dimensions out of {50, 100, 200,
500}. We found that 11-normalizing the vectors be-
fore and after the SVD improved results slightly.
For the accumulated tag counts (ACT) we annotate
the data with our baseline model and extract word-
tag probabilities. The probabilities are then used as
sparse real-valued features. Table 4 shows that all
representations outperform the baseline. Improve-
ments are biggest for Latin. Overall, SVD outper-
forms ACT and is outperformed by MarLiN and
MA. MarLiN gives the best representations for POS
tagging while MA outperforms MarLiN in MORPH
tagging. Table 5 shows that the findings for the base-
line, MarLiN and MA also hold for the test set.

training data.



Baseline ACT MarLiN MA SVD
ID 00D ID 00D ID 00D ID 00D ID 00D
cs  99.00 9680  99.11 97.03  99.19 97.26  99.18 9725  99.11 97.09
de  97.87 9221  98.00 9292  98.10 93.44* 9800 92.87  98.09 92.88
2z en 9692 9112 9697 9147 9701 9171 9699 9157  97.00 91.75
S es 9862 9670 9879 97.09  98.87 97.97  98.87 97.89  98.80 97.16
hu 9749 9279  97.84 93.15  97.98 9336  98.12* 93.77*  97.86 93.30
la. 9580 8192  96.17 83.40 9691 87.24* 9681 8631  96.36 85.01
cs 9389 7852 9416 7875 9435 79.14  94.48 79.41* 0414 73.94
= de 9026 84.19  90.56 8478 9078 8558  90.75 8575  90.69 85.15
§ es 9822 9362 9838 9392 9848 9515  98.56* 95.43* 98.40 94.18
g hu 9607 89.83 9625 90.07 9660 90.64  96.83* 91.14*  96.46 90.50
la 8644 6747 8696 68.61  87.87 72.08  88.40* 73.23* 8745 70.81
Table 4: Tagging results for the baseline and four different representations
Igasegfcl)eD Ié"li‘ﬂéigD D Mgon cs MarLiN gen0.70 cas 0.41 pos 0.35
s 9888 9643  99.11°9694  99.06 96.95 MA gen0.85 cas 0.51 pos 0.31
de 9732 91.10  97.73*92.00*  97.60 91.49 de MarLiN genl1.23 posl.14 num0.62
2z en 9736 89.81  97.58*90.65*  97.47 90.51
S o5 9866 97.94  98.94"9833  98.87 98.38 = MA  genl37 pos0.63 num0.59
hu  96.84 9211  97.08 9295  97.46* 93.25* g es MarLiN sub1.49 genl.21 pos 1.07
]
la  93.02 81.35 95.20 87.58* 95.11 86.45 = MA sub 1.34 genl24 pos 1.10
cs 9393 7750 9433 78.12  94.50 78.37" i
= de 8841 8278  89.18 8391  89.32* 84.09 hu MarLiN cas 0.71 sub0.66 pos 0.52
g €s 98.30 95.65 98.53 95.92 98.54 96.33* MA cas 088 Sub 084 pOS 076
hu 9482 88.82 9546 89.98  95.85* 90.46* .
la 8209 6559  84.67 7125  85.91*72.42* la. MarLiN  pos5.19 cas 3.46 gen 3.25
MA pos4.68 gen3.85 cas 3.01

Table 5: Test set results for: baseline, MarLiN, MA

f=0 0<f<10 f>=10

cs  MarLiN 0.29 0.22 0.11

MA 0.37 0.35 0.16

de MarLiN 1.02 0.17 0.19

= MA 0.85 0.29 0.42
g es MarLiN 1.36 0.15 0.02
g MA 1.50 0.27 0.04
hu MarLiN 0.62 0.18 0.00

MA 1.07 0.20 0.03

la  MarLiN 3.76 0.80 0.06

MA 4.98 0.69 0.09

Table 6: Improvement compared to the baseline for dif-
ferent frequency ranges of words on OOD

6 Analysis

We now analyze why MarLiN and MA perform bet-
ter than the baseline. First we compare the improve-
ments in absolute error rate over the baseline by
grouping word forms by their training set frequency
f. The number are shown in Table 6. We find that
most of the improvement comes from OOV words.
Rare words (frequency <10) show a smaller, but still
important contribution while the contribution of fre-
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Table 7: Improvement compared to the baseline for dif-
ferent features

quent words can be almost neglected for four lan-
guages. The exception is German where frequent
words contribute more to the error reduction than
rare words. This could be caused by syncretisms
such as in plural noun phrases where the gender is
not marked in determiner and adjective and can only
be derived from the head noun; e.g., the adjectives
in schwere Schulfiicher ‘difficult school subjects’
and verddchtige Personen ‘suspect persons’ are un-
marked for gender and the correct genders (neuter
vs. feminine) cannot be inferred from distributional
information or suffixes for the nouns (although gen-
der is easy to infer distributionally for singular forms
of nouns).

Looking at the morphological features with the
highest improvement in absolute error rate (Table 7)
we find, that the features with the highest improve-
ment are POS, SUB-POS (a finer division of POS,
e.g., nouns are split into proper / common nouns),
gender, case and number. For all languages POS and
— if part of the annotation — SUB-POS are among the



three features with the highest improvements. Gen-
der is also always among the three features with the
highest improvements for the four languages that
have gender (es, de, la, cs). We just discussed an
example for German where gender could not be de-
rived from context or inflectional suffixes. Other
languages also have word forms that do not mark
gender, e.g., Spanish masculine ave ‘bird’ vs. femi-
nine llave ‘key’. The gender can, however, easily be
derived if the word representation encodes whether a
word form has been seen with a specific determiner
or adjective on its right or left.

Lastly, we use Jaccard similarity'? to compare the
sets of gold and predicted morphological features.
Jaccard can be interpreted as a soft variant of ac-
curacy: If the two tags are identical it yields 1 and
otherwise it corresponds to the number of correctly
predicted features divided by the size of the union of
gold and predicted features.

= | cs de es hu la
% accuracy | 79.41 85.72 9543 91.14 73.23
Jaccard 89.89 90.71 96.77 93.52 83.68

This table demonstrates that the evaluation measure
we have used throughout this paper — a tag counts as
completely wrong if a single feature was misidenti-
fied even though all others are correct — is conserva-
tive. On a feature-by-feature basis accuracy would
be much higher. The difference is largest for Czech
and Latin.

7 Conclusion

We have presented a test suite for morphological
tagging consisting of in-domain (ID) and out-of-
domain (OOD) data sets for six languages: Czech,
English, German, Hungarian, Latin and Spanish.
We converted some of the data sets to obtain a rea-
sonably consistent annotation and manually anno-
tated the German part of the Smultron treebank. We
surveyed four different word representations: SVD-
reduced count vectors, LM-based clusters, accumu-
lated tag counts and CW embeddings. We found that
the LM-based clusters outperformed the other rep-
resentations for POS and MORPH tagging, ID and
OOD data sets and all languages. We also showed
that our implementation of MarLiN (Martin et al.,
1998) is an order-of-magnitude more efficient and

BJaccard(U,V) = |UNV|/|[UUV|
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performs slightly better than the implementation by
Liang (2005). We also compared the learned repre-
sentations to manually created Morphological Ana-
lyzers (MAs). We found that MarLiN outperforms
MAs in POS tagging, but that it is substantially
worse in morphological tagging. In our analysis of
the results, we showed that both MarLiN and MAs
decrease the error most for out-of-vocabulary words
and for the features POS and gender.

8 Resources

As part of this publication we also release the fol-
lowing resources at http://cistern.cis.lmu.
de/marmot/: (i) our implementation of MarLiN
as open-source (ii) the morphological layer of the
German part of the SMULTRON corpus. For eas-
ier reproducibility, we also made (iii) the prepro-
cessed Wikipedia dumps and the induced represen-
tation dictionaries available. (iv) Morphological dic-
tionaries were released to the extent this was com-
patible with the usage agreement. (v) We also pub-
lished the conversion code for unifying the Spanish
and Czech annotations.
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