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Abstract

Recent years have seen increased interest in
text normalization in social media, as the in-
formal writing styles found in Twitter and
other social media data often cause problems
for NLP applications. Unfortunately, most
current approaches narrowly regard the nor-
malization task as a “one size fits all” task of
replacing non-standard words with their stan-
dard counterparts. In this work we build a
taxonomy of normalization edits and present a
study of normalization to examine its effect on
three different downstream applications (de-
pendency parsing, named entity recognition,
and text-to-speech synthesis). The results sug-
gest that how the normalization task should be
viewed is highly dependent on the targeted ap-
plication. The results also show that normal-
ization must be thought of as more than word
replacement in order to produce results com-
parable to those seen on clean text.

1 Introduction

The informal writing style employed by authors of
social media data is problematic for many natural
language processing (NLP) tools, which are gener-
ally trained on clean, formal text such as newswire
data. One possible solution to this problem is nor-
malization, in which the informal text is converted
into a more standard formal form. Because of this,
the rise of social media data has coincided with a
rise in interest in the normalization problem.

Unfortunately, while many approaches to the
problem exist, there are notable limitations to the

∗ Work was done while at IBM Research - Almaden.

way in which normalization is examined. First,
although social media normalization is universally
motivated by pointing to its role in helping down-
stream applications, most normalization work gives
little to no insight into the effect of the normalization
process on the downstream application of interest.
Further, the normalization process is generally seen
to be agnostic of the downstream application, adopt-
ing a “one size fits all” view of how normalization
should be performed. This view seems intuitively
problematic, as different information is likely to be
of importance for different tasks. For instance, while
capitalization is important for resolving named enti-
ties, it is less important for other tasks, such as de-
pendency parsing.

Some recent work has given credence to the idea
that application-targeted normalization is appropri-
ate (Wang and Ng, 2013; Zhang et al., 2013). How-
ever, how certain normalization actions influence the
overall performance of these applications is not well
understood. To address this, we design a taxonomy
of possible normalization edits based on inspiration
from previous work and an examination of anno-
tated data. We then use this taxonomy to examine
the importance of individual normalization actions
on three different downstream applications: depen-
dency parsing, named entity recognition, and text-
to-speech synthesis. The results suggest that the im-
portance of a given normalization edit is highly de-
pendent on the task, making the “one size fits all”
approach inappropriate. The results also show that a
narrow view of normalization as word replacement
is insufficient, as many often-ignored normalization
actions prove to be important for certain tasks.
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In the next section, we give an overview of previ-
ous work on the normalization problem. We then
introduce our taxonomy of normalization edits in
Section 3. In Section 4, we present our evaluation
methodology and present results over the three ap-
plications, using Twitter data as a representative do-
main. Finally, we discuss our results in Section 5
and conclude in Section 6.

2 Related Work

Twitter and other social media data is littered with
non-standard word forms and other informal usage
patterns, making it difficult for many NLP tools to
produce results comparable to what is seen on for-
mal datasets. There are two approaches proposed
in the literature to handle this problem (Eisenstein,
2013). One approach is to tailor a specific NLP tool
towards the data, by using training data from the do-
main to help the tool learn its specific idiosyncrasies.
This approach has been applied with reasonable suc-
cess on named entity recognition (Liu et al., 2011b;
Ritter et al., 2011) as well as on parsing and part-of-
speech tagging (Foster et al., 2011).

The other approach is normalization. Rather than
tailoring a NLP tool towards the data, normalization
seeks to tailor the data towards the tool. This is
accomplished by transforming the data into a form
more akin to the formal text that NLP tools are gen-
erally trained on. While normalization is often more
straightforward and more easily applied in instances
in which retraining is difficult or impractical, it has
potential disadvantages as well, such as the potential
loss of pragmatic nuance (Baldwin and Chai, 2011).

Prior to the rise of social media, the normalization
process was primarily seen as one of standardizing
non-standard tokens found in otherwise clean text,
such as numbers, dates, and acronyms (Sproat et al.,
2001). However, the current popularity of Twitter
and other informal texts has caused the normaliza-
tion task to take on a broader meaning in these con-
texts, where the goal is to convert informal text into
formal text that downstream applications expect.

Many different approaches to social media nor-
malization have been undertaken. These approaches
often draw inspiration from other tasks such as ma-
chine translation (Pennell and Liu, 2011; Aw et al.,
2006), spell checking (Choudhury et al., 2007) or

speech recognition (Kobus et al., 2008). Other ap-
proaches include creating automatic abbreviations
via a maximum entropy classifier (Pennell and Liu,
2010), creating word association graphs (Sonmez
and Ozgur, 2014), and incorporating both rules and
statistical models (Beaufort et al., 2010). While
most initial approaches used supervised methods,
unsupervised methods have recently become popu-
lar (Cook and Stevenson, 2009; Liu et al., 2011a;
Yang and Eisenstein, 2013; Li and Liu, 2014). Some
work has chosen to focus on specific aspects of the
normalization process, such as providing good cov-
erage (Liu et al., 2012) or building normalization
dictionaries (Han et al., 2012).

In all of the work mentioned above, the normal-
ization task was seen primarily as one of convert-
ing non-standard tokens into an equivalent standard
form. Similarly, many of these works defined the
problem even more narrowly such that punctuation,
capitalization, and multi-word replacements were
ignored. However, two pieces of recent work have
suggested that this understanding of the normaliza-
tion task is too narrow, as it ignores many other
hallmarks of informal writing that are prevalent in
social media data. Wang and Ng (2013) present a
beam search based approach designed to handle ma-
chine translation which incorporates attempts to cor-
rect mistaken punctuation and add missing words,
such as forms of the verb to be. Similarly, Zhang et
al. (2013) attempt to perform all actions necessary
to create a formal text. In both instances the work
was motivated by, and evaluated with respect to, a
specific downstream application (machine transla-
tion and dependency parsing, respectively). How-
ever, not every study that tied the output to an ap-
plication chose a broad interpretation of the normal-
ization problem (Beaufort et al., 2010; Kaji and Kit-
suregawa, 2014).

3 Taxonomy of Normalization Edits

In order to understand the impact of individual nor-
malization edits on downstream applications, we
first need to define the space of possible normaliza-
tion edits. While it is not uncommon for normaliza-
tion work to present some analysis of the data, these
analyses are often quite specific to the domain and
datasets of interest. Because there is no agreed upon
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Figure 1: Taxonomy of normalization edits

taxonomy of normalization token or edit types, dif-
ferent analyses often look at different edit types and
at different levels of granularity. In an attempt to
help future work converge on a common understand-
ing of normalization edits, in this section we present
our taxonomy of normalization edits at several dif-
ferent levels of granularity. While it would be diffi-
cult for a taxonomy of normalization edits to be uni-
versal enough to be appropriate over all datasets and
domains, we attempt to provide a taxonomy general
enough to give future work a meaningful initial point
of reference.

3.1 Methodology

Our taxonomy draws inspiration from both previous
work and an examination of our own dataset (Sec-
tion 3.3). In doing so, it attempts to cover normal-
ization edits broadly, including cases that are uni-
versally understood to be important, such as slang
replacement, as well as cases that are frequently ig-
nored, such as capitalization correction.

One of the guiding principles in the design of our
taxonomy was that categories should not be divided
so narrowly such that the phenomenon they capture
appeared very infrequently in the data. One exam-
ple of this is our decision not to divide punctuation
edits at the lowest level of granularity. While certain
clear categories exist (e.g., emoticons), these cases
appeared in a small enough percentage of tokens that
they would be difficult to examine and likely have a
negligible effect on overall performance.

3.2 Taxonomy

Our taxonomy of normalization edits is shown in
Figure 1. As can be seen, we categorize edits at three
levels of granularity.
Level One. The primary goal of the level one seg-
mentation is to separate token replacements which

are most centrally thought of as part of the normal-
ization task from other instances that may require
additional pragmatic inference. Specifically, we sep-
arate edits coarsely into three categories:

• Token Replacements. Replacing one or more
existing tokens with one or more new tokens
(e.g., replacing wanna with want to).

• Token Additions. Adding a token that does
not replace an existing token (e.g., adding in
missing subjects).

• Token Removals. Removing a token without
replacing it with an equivalent (e.g., removing
laughter words such as lol and hahaha).

Level Two. The next level of granularity separates
normalization edits over word tokens from those
over punctuation:

• Word. Replacing, adding, or removing word
tokens (depending on parent).

• Punctuation. Replacing, adding, or removing
punctuation tokens (depending on parent).

Level Three. At the final level, we subdivide word
edits into groups as appropriate for the edit type.
Rather than attempting to keep consistent groups
across all leaf nodes, we selected the grouping based
on the data distribution. For instance, Twitter-
specific tokens (e.g., retweets) are often removed
during normalization, so examining the removal of
these words as a group is warranted. In contrast,
these tokens are never added, so different segmenta-
tion is appropriate when examining word addition.

At the lowest level of the taxonomy, word replace-
ments were subdivided as follows:
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• Contraction Replacements. Unrolling stan-
dard contractions (don’t), common informal
cases (wanna), and non-standard variations
produced via apostrophe omission (dont).

• Slang Replacements. Replacing slang terms,
such as slang shortenings and word elongation.

• Capitalization Replacements. Correcting the
capitalization of words. The replaced word dif-
fers from its replacement by only capitalization.

• Other Replacements. Correcting uninten-
tional typographic mistakes, such as mis-
spelling and word concatenation.

When segmenting word additions, we note that
words that need to be added in a normalization edit
were often consciously dropped by the user in the
original text. Our categorization reflects this by ex-
amining syntactic categories that are often dropped
in informal writing:

• Subject Addition. Adding in omitted subjects.

• Determiner Addition. Adding in omitted de-
terminers (e.g., “[The] front row is so close”).

• Be-verb Addition. Adding in omitted forms of
the verb to be.

• Other Addition. All word additions not cov-
ered by the other categories.

Finally, word removals are subdivided into just
two categories:

• Dataset-specific Removals. Removing tokens
that do not appear outside of the dataset in
question (e.g., for Twitter: hashtags, @replies,
and retweets).

• Other Removals. Removing interjections,
laughter words, and other expression of emo-
tion (e.g., ugh).

Note that we are not suggesting here that dataset-
specific words should be removed in all cases. While
in many cases they may be removed if they do not
have a formal equivalent, they may also be replaced
or retained as is, depending on the context.

3.3 Dataset

To facilitate our experiments, we collected and an-
notated a dataset of Twitter posts (tweets) from the
TREC Twitter Corpus1. The TREC Twitter corpus
is a collection of 16 million tweets posted in Jan-
uary and February of 2011. The corpus is designed
to be a representative sample of Twitter usage, and
as such includes both regular and spam tweets. To
build our dataset, we sampled 600 posts at random
from the corpus. The tweets were then manually fil-
tered such that tweets that were not in English were
replaced with those in English.

To produce our gold standard, two oDesk2 con-
tractors were asked to manually normalize each
tweet in the dataset to its fully grammatical form, as
would be found in formal text. Annotation guide-
lines stipulated that twitter-specific tokens should
be retained if important to understanding the sen-
tence, but modified or removed otherwise. As
noted, most previous work often stopped short of
requiring full grammaticality. However, Zhang et
al. (2013) argued that grammaticality should be
the ideal end goal of normalization since the mod-
els used in downstream applications are typically
trained on well-formed sentences. We adopt this
methodology here both because we agree with this
assertion and because a fully grammatical form is
appropriate for all of the downstream applications of
interest, allowing for a single unified gold standard
that can aid comparison across applications.

During gold standard creation, each normaliza-
tion edit was labeled with its type, according to the
above taxonomy. The distribution of normalization
edits in the dataset is given in Table 1. As shown,
normalization edits accounted for about 29% of all
tokens. Token replacements accounted for just over
half of all edits (53%), while token addition (29%)
was more common than token removal (18%). One
interesting observation is non-capitalization word
replacement accounted for only 25% of all normal-
ization edits, intuitively indicating potential draw-
backs for the common definition of normalization as
one of simple word replacement which ignores cap-
italization and punctuation.

1http://trec.nist.gov/data/tweets/
2https://www.odesk.com/
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Configuration Count

No edit 8479
All edits 3411

ADDITION 993
PUNCT 437
WORD 556

BEVERB 137
DETERMINER 103
OTHER 141
SUBJECT 175

REPLACEMENT 1797
PUNCT 312
WORD 1485

CAPITALIZATION 634
CONTRACTION 246
OTHER 176
SLANG 429

REMOVAL 621
PUNCT 120
WORD 501

OTHER 172
TWITTER 329

Table 1: Token counts for each type of normalization edit.

4 Evaluation

In this section, we present our examination of the ef-
fect of normalization edits on downstream NLP ap-
plications. To get a broad understanding of these
effects, we examine three very different cases: de-
pendency parsing, named entity recognition (NER),
and text-to-speech (TTS) synthesis. We chose these
tasks because they each require the extraction of
different information from the text. For instance,
named entity recognition requires only a shallow
syntactic analysis, in contrast to the deeper under-
standing required for dependency parsing. Simi-
larly, only speech synthesis requires phoneme pro-
duction, while the other tasks do not. Despite their
differences, each of these tasks is relevant to larger
applications that would benefit from improved per-
formance on Twitter data, and each has garnered at-
tention in the normalization and Twitter-adaptation
literature (Beaufort et al., 2010; Liu et al., 2011b;
Zhang et al., 2013).

Although the differences in these tasks also dic-
tates that they be evaluated somewhat differently, we
examine them within a common evaluation struc-
ture. In all cases, to examine the effects of each nor-

malization edit we model our analyses as ablation
studies. That is, for every category in the taxonomy,
we examine the effect of performing all normaliza-
tion edits except the relevant case. This allows us to
measure the drop in performance solely attributable
to each category; the greater the performance drop
observed when a given normalization edit is not per-
formed, the greater the importance of performing
that edit.

To aid analysis, results are presented in two ways:
1) as raw performance numbers, and 2) as an er-
ror rate per-token. These metrics give two different
views of the relevance of each edit type. The raw
numbers give a sense of the overall impact of a given
category, and as such may be impacted by the size of
the category, with common edits becoming more im-
portant simply by virtue of their frequency. In con-
trast, the per-token error rate highlights the cost of
failing to perform a single instance of a given nor-
malization edit, independent of the frequency of the
edit. Both of these measures are likely to be relevant
when attempting to improve the performance of a
normalization system. Note that since the first mea-
sure is one of overall performance, smaller numbers
reflect larger performance drops when removing a
given type of edit, so that the smaller the number
the more critical the need to perform the given type
of normalization. In contrast, the latter judgment is
one of error rate, and thus interpretation is reversed;
the larger the error rate when it is removed, the more
critical the normalization edit.

Another commonality among the analyses is that
performance is measured relative to the top perfor-
mance of the tool, not the task. That is, following
Zhang et al. (2013), we consider the output pro-
duced by the tool (e.g., the dependency parser) on
the grammatically correct data to be gold standard
performance. This means that some output based
on our gold standard may in fact be incorrect rel-
ative to human judgment, simply because the tool
used does not have perfect performance even if the
text if fully grammatical. Since the goal is to un-
derstand how normalization edits impact the perfor-
mance, this style of evaluation is appropriate; it con-
siders mistakes attributable to normalization edits as
erroneous, but ignores those mistakes attributable to
the limitations of the tool.

Finally, to maximize the relevance of the analyses
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given here, in each case we employ publicly avail-
able and widely used tools.

4.1 Parser Evaluation

To examine the effect of normalization on depen-
dency parsing, we employ the Stanford dependency
parser3 (Marneffe et al., 2006). To produce the gold
standard dependencies for comparison, the manu-
ally grammaticalized tweets (Section 3.3) were run
through the parser. To compare the ablation results
to the gold standard parses, we adopt a variation of
the evaluation method used by Zhang et al. (2013).
Given dependency parses from the gold standard and
a candidate normalization, we define precision and
recall as follows:

precisionsov =
|SOV ∩ SOVgold|

|SOV | (1)

recallsov =
|SOV ∩ SOVgold|
|SOVgold| (2)

Where SOV and SOVgold are the sets of subject,
object, and verb dependencies in the candidate nor-
malization and gold standard, respectively. While
Zhang et al. chose to examine subjects and objects
separately from verbs, we employ a unified metric
to simplify interpretation.

4.1.1 Results
Results of the ablation study are summarized in

Table 2. As shown, the performance of a com-
plex task such as dependency parsing is broadly im-
pacted by a variety of normalization edits. Based
on the raw F-measure, the more common word re-
placements proved to be the most critical, although
failing to handle token addition and removal edits
also resulted in substantial drops in performance. At
the lowest level in the taxonomy, slang replacements
and subject addition were the most critical edits.

Although many replacement tasks were important
in aggregate, on a per-token basis the most important
edits were those that required token removal and ad-
dition. Perhaps unsurprisingly, failing to add sub-
jects and verbs resulted in the largest issues, as the
parser has little chance of identifying these depen-
dencies if the terms simply do not appear in the sen-
tence. However, not all word additions proved crit-

3Version 2.0.5

Per-token
Configuration F-measure Error Rate

-ADDITION 0.790 0.00021
-PUNCT 0.919 0.00019
-WORD 0.842 0.00028

-BEVERB 0.948 0.00038
-DETERMINER 0.980 0.00019
-OTHER 0.959 0.00029
-SUBJECT 0.903 0.00055

-REPLACEMENT 0.710 0.00016
-PUNCT 0.907 0.00030
-WORD 0.754 0.00017

-CAPITALIZATION 0.950 0.00008
-CONTRACTION 0.945 0.00023
-OTHER 0.947 0.00030
-SLANG 0.872 0.00030

-REMOVAL 0.866 0.00022
-PUNCT 0.959 0.00034
-WORD 0.887 0.00023

-OTHER 0.952 0.00028
-TWITTER 0.925 0.00023

Table 2: Dependency Parser Results.

ical, as failing to add in a missing determiner gen-
erally had little impact on the overall performance.
Similarly, failing to correct capitalization did not
cause substantial problems for the parser. Some
word replacements did prove to be important, with
slang and other word replacements showing some of
the largest per-token error rates. Removing mislead-
ing punctuation or changing non-standard punctua-
tion both proved important, but the per-token effect
of punctuation addition was modest.

In general, the results suggest that a complex
task such as dependency parsing suffers substan-
tially when the input data differs from formal text
in any number of ways. With the exception of cap-
italization correction, performing almost every nor-
malization edit is necessary to achieve results com-
mensurate with those seen on formal text.

4.2 NER Evaluation
In this section, we examine the effect of each nor-
malization edit on a somewhat more shallow inter-
pretation task, named entity recognition. Unlike de-
pendency parsing which requires an understanding
of every token in the text, NER must only determine
whether a given token is a named entity, and if so,
discover its associated entity type.
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The setup for evaluation of normalization edits on
named entity recognition closely follows that of de-
pendency parsing. We once again employ a tool
from the suite of Stanford NLP tools, the Stanford
named entity recognizer4 (Finkel et al., 2005). We
also define precision and recall in a similar manner:

precisionner =
|ENT ∩ ENTgold|

|ENT | (3)

recallner =
|ENT ∩ ENTgold|
|ENTgold| (4)

Where ENT and ENTgold are the sets of enti-
ties identified over the candidate normalization and
gold standard sentences, respectively. Entities were
labeled as one of three classes (person, location,
or organization), and two entities were only con-
sidered a match if they both selected the same entity
and the same entity class.

4.2.1 Results
Table 3 shows the results of the NER ablation

study. Unlike dependency parsing, only word re-
placement edits proved to be critically important for
NER tasks, as adding and subtracting words had lit-
tle impact on the overall performance. Capitaliza-
tion, which is generally an important feature for the
identification of named entities, was unsurprisingly
important. Similarly, the replacement of word types
other than slang and contraction was important, be-
cause many of these instances may come from mis-
spelled named entities. Slang and contractions were
less important, as they were generally not used to
reference named entities. As the words dropped
by Twitter users tend to be function words that are
not critical to understanding the sentence they are
rarely named entities and have only a small effect
on named entity recognition. Similarly, terms that
are removed during normalization also tend to not be
named entities, and thus has minor overall impact.

A similar phenomenon is observed in the per-
token evaluation, where unintentionally produced,
non-slang, non-contraction word replacement was
seen to be of paramount importance. Punctuation
removal was also important on a per-token basis, de-
spite having little impact in aggregate.

Overall, the results given in Table 3 indicate that a
focused approach to normalization for named entity

4Version 1.2.8

Per-token
Configuration F-measure Error Rate

-ADDITION 0.955 0.00005
-PUNCT 0.973 0.00006
-WORD 0.974 0.00005

-BEVERB 0.998 0.00001
-DETERMINER 0.989 0.00011
-OTHER 0.989 0.00008
-SUBJECT 0.998 0.00001

-REPLACEMENT 0.827 0.00010
-PUNCT 0.962 0.00012
-WORD 0.849 0.00010

-CAPITALIZATION 0.921 0.00012
-CONTRACTION 0.977 0.00009
-OTHER 0.931 0.00039
-SLANG 0.945 0.00013

-REMOVAL 0.956 0.00007
-PUNCT 0.970 0.00025
-WORD 0.960 0.00008

-OTHER 0.973 0.00015
-TWITTER 0.962 0.00012

Table 3: NER Results.

recognition is warranted. Unlike dependency pars-
ing that required a broad approach involving token
addition and removal, the replacement-centric nor-
malization approach typically employed by previous
work is likely to be sufficient when the goal is to im-
prove entity recognition.

4.3 TTS Evaluation

Unlike the previous two tasks, the TTS problem is
complicated by its need for speech production. Sim-
ilarly, evaluation of speech synthesis is more diffi-
cult, as it requires human judgment about the over-
all quality of the output (Black and Tokuda, 2005).
While speech synthesis evaluations often rate perfor-
mance on a 5 point scale, we adopt a more restricted
method, based on the comparison to gold standard
methodology used in the previous evaluations. For
each tweet and each round of ablation, a synthesized
audio file was produced from both the gold stan-
dard and ablated version of the tweet. These audio
snippets were randomized and presented to human
judges who were asked to make a binary judgment
as to whether the meaning and understandability of
the ablated case was comparable to the gold stan-
dard. The accuracy of a given round of ablation is
then calculated to be the percentage of tweets judged
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Per-token
Configuration F-measure Error Rate

-ADDITION 0.713 0.00029
-PUNCT 0.920 0.00018
-WORD 0.723 0.00050

-BEVERB 0.903 0.00071
-DETERMINER 0.937 0.00061
-OTHER 0.910 0.00064
-SUBJECT 0.853 0.00084

-REPLACEMENT 0.550 0.00025
-PUNCT 0.877 0.00040
-WORD 0.590 0.00028

-CAPITALIZATION 0.860 0.00022
-CONTRACTION 0.910 0.00037
-OTHER 0.883 0.00066
-SLANG 0.783 0.00051

-REMOVAL 0.580 0.00068
-PUNCT 0.880 0.00100
-WORD 0.600 0.00080

-OTHER 0.837 0.00095
-TWITTER 0.710 0.00088

Table 4: Text-To-Speech Synthesis Results.

to be similar to the gold standard.
The eSpeak speech synthesizer5 was used to pro-

duce audio files for all tweet variations in the abla-
tion study. As is common for speech synthesizers,
eSpeak does perform some amount of TTS-specific
normalization natively. While this does influence
the normalizations produced, the comparison to gold
standard methodology employed in this study helps
us to focus on differences that are primarily at-
tributable to the normalization edits we wish to ex-
amine, not those produced natively. To obtain the
gold standard, two native-English speaking judges
were recruited via oDesk. Inter-annotator agreement
was moderate, κ = 0.48.

4.3.1 Results
Table 4 shows the results of the speech synthesis

study. As shown, the removal of non-standard or out
of place tokens was most critical to the production
of a normalization that is clearly understandable to
human listeners. The aggregate results for token re-
movals were comparable to or better than those of
replacements at all levels of the taxonomy, in con-
trast to the results from the other two tasks, where
the larger number of replacements led to the largest

5Version 1.47.11, http://espeak.sourceforge.net/

performance hits. Meanwhile, word addition proved
to be less essential overall.

At the token level, the importance of token re-
moval is even more stark; the per-token error rate
of every category of removal is greater than that
of all other categories at the same taxonomy level.
Although most word additions had a comparatively
small effect on performance overall, they were im-
portant on a per-token basis. Most notably, sub-
ject adding had high per-token importance. In con-
trast, failing to add missing punctuation was not of-
ten marked as erroneous by human judges, nor was
failing to normalize capitalization or contractions.

Similar to those on dependency parsing, the re-
sults on speech synthesis suggest that a broad ap-
proach that considers several different types of nor-
malization edit is necessary to produce results com-
parable to those seen on clean text. However, at a
high level there is a clear divide in importance be-
tween normalization types, where the greatest per-
formance gains can be obtained by focusing on the
comparatively small number of token removals.

5 Discussion

The results presented in Section 4 are consistent
with the hypothesis that a “one size fits all” approach
to Twitter normalization is problematic, as the im-
portance of a given normalization edit was highly
dependent on the intended downstream task. Differ-
ences in which edits had the most substantial effect
were present at all levels of scrutiny. Adding sub-
jects and other words that a Twitter author dropped
can be vitally important if the goal is to improve
parsing performance, but can mostly be ignored if
the goal is NER. Removing twitter-specific or other-
wise non-standard words showed a gradation of im-
portance over the three tasks, with little importance
for NER, moderate importance for parsing, and crit-
ical importance for speech synthesis. Capitalization
correction had negligible impact on the parser or
synthesizer, but was helpful for NER.

The importance of different edit types can be seen
even at the most coarse level of examination. While
normalization for speech synthesis is primarily de-
pendent on removing unknown tokens, normaliza-
tion that targets name entity recognition would be
better served focusing on replacing non-standard to-
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kens with their standard forms. In contrast, parser-
targeted normalization must attend to both of the
tasks, as well as the task of restoring dropped tokens.

Despite the differences, there are a few common
threads that appear in each evaluation. Most no-
tably, the results suggest that the decision of most re-
cent Twitter normalization work to focus on word re-
placement was not entirely without merit, as the high
frequency of token replacements translated into high
overall importance for all tasks. Similarly, the focus
on slang was also somewhat reasonable, as failing to
handle slang terms had a significant impact on pars-
ing and speech synthesis, though it had little impact
on entity recognition. Nonetheless, the results in
Section 4 clearly suggest that handling these cases
represent only a small fraction of the actions nec-
essary to produce performance comparable to what
would be seen on formal text.

Another similarity among all instances was the
lack of importance of certain categories. For in-
stance, punctuation addition was not important for
any of the three tasks. While Zhang et al. had hy-
pothesized that punctuation addition would be im-
portant for dependency parsing, the results given
here suggest that the overall impact is minor. Sim-
ilarly, contraction standardization was not shown to
be important in any of the evaluations. Contraction
normalization is more representative of how the nor-
malization task was seen prior to the rise of social
media normalization, as it represents a fairly minor
normalizing action that might still be performed on
formal text. Since contractions likely appear in a va-
riety of forms in the data used to train NLP tools, it
is unsurprising that these tools are comparatively ro-
bust to contraction differences than to cases that are
less typically encountered.

6 Conclusion

In this work, we presented an in-depth look at the
effects of the normalization of Twitter data. To do
so, we introduced a taxonomy of normalization ed-
its based on an examination of our Twitter dataset
and inspiration from previous work. The taxonomy
allowed for normalization edits to be examined sys-
tematically at different levels of granularity, and en-
abled an examination of the effects of not only token
replacements, but the token additions and removals

that recent work has suggested may have been un-
justly ignored.

To understand the effects of each edit, we con-
ducted ablation studies that examined results on
three different downstream tasks: dependency pars-
ing, named entity recognition, and text-to-speech
synthesis. We found that while some normaliza-
tion edits were universally important (or unimpor-
tant) for the production of accurate results, many
differences persist. These results suggest that, for
best results, how the normalization task is performed
should not be agnostic of the downstream applica-
tion. Further, our results support the suggestion that
in order for downstream applications to produce ac-
curate results, in most cases it is necessary to take a
broad view of the normalization task the looks be-
yond simple word replacements.
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Cougnon, and Cédrick Fairon. 2010. A hybrid
rule/model-based finite-state framework for normaliz-
ing sms messages. In ACL, pages 770–779.

Alan W. Black and Keiichi Tokuda. 2005. The blizzard
challenge - 2005: evaluating corpus-based speech syn-
thesis on common datasets. In INTERSPEECH, pages
77–80.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007. Investigation and modeling of the structure of
texting language. IJDAR, 10(3-4):157–174.

428



Paul Cook and Suzanne Stevenson. 2009. An unsuper-
vised model for text message normalization. In CALC,
pages 71–78.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In NAACL-HLT, pages 359–369, At-
lanta, Georgia, June. Association for Computational
Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL, pages 363–370, Ann Arbor, Michigan, June.
Association for Computational Linguistics.
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